
Statistical Physics—Section 1: Information Theory approach to Statistical Me-
chanics

Statistical Mechanics describes all systems comprising a large number of microscopic con-
stituents. Traditionally one studies gases, solids etc where the constituents are atoms and
molecules but also one can consider various astrophysical examples, for example neutron
stars, and modern statistical mechanics considers applications to a whole gamut of systems
including traffic flow, economics, neural networks...

In Physics 3 you were introduced to the subject of Statistical Mechanics by considering
assemblies (i.e. systems) of microscopic constituents. First one established entropy as cor-
responding to the statistical weight Ω of a macrostate through the relation

S = kB ln Ω .

where Ω is the number of microstates corresponding to the macrostate, that is its weight.
The above definition is the Boltzmann entropy. The technique for deriving the key dis-
tributions (Boltzmann, Fermi-Dirac, Bose-Einstein) was to place the system in a reservoir of
energy or particles etc and demand that the entropy of the assembly + bath was maximised.

Here we take a more general and, hopefully, elegant approach to establishing the basic
distributions based solely on probability and information.

1. 1. Definition of Probability

Previously you will have encountered the frequency definition of probability i.e.

pi = lim
N→∞

no. outcomes i

N

where pi is the probability of outcome i in a procedure (sometimes referred to as a trial) and
N is the number of procedures. Clearly, this definition is not much use if we want to make
probabilistic statements about the results of ‘one-off’ events.

The alternative a priori definition of probability is known as the ‘degree of belief’:

pi is a quantitative measure of the degree of rational belief that a procedure
will yield outcome i

e.g. if there are q possible outcomes of a trial and we have no rational reason to favour any
one outcome over any other, then we would assign probability 1/q to each outcome. Tossing
a coin would correspond to q = 2 and rolling a die to q = 6.

To obtain probability as a degree of belief we need to define certain rules. We take the simple
case of a procedure with r mutually exclusive and exhaustive outcomes:

(i) 0 ≤ pi ≤ 1

(ii) pi1 or i2 = pi1 + pi2

(iii)
∑r

i=1 pi = 1

(iv) 〈y〉 ≡ y =
∑r

i=1 piyi defines the expectation value of a random variable y

1



1. 2. Missing Information Function

Clearly the probability distribution somehow quantifies the uncertainty about the outcome
of a trial. For example, if pj = 1 and pi = 0 for i 6= j then with certainty the outcome
of a trial will be j and there is no uncertainty i.e. we learn nothing by carrying out the
trial. In that case there is no ‘missing information’ about the outcome. On the other hand
if all outcomes are equally likely then this is the case of maximum uncertainty or maximum
‘missing information’ about the outcome.

Our aim is to deduce explicitly a function S({p}r) measuring the missing information
associated with the procedure. The notation {p}r simply indicates the set of probabilities
for the r possible outcomes. The following properties are required:

(i) For p1 = p2 = · · · = 1/r, S should be an increasing function of r i.e. for equally likely
outcomes, the more outcomes the more the uncertainty.

(ii) S should be a continuous function of its arguments so that changing the probabilities a
little only changes S a little

(iii) S should be a symmetric function of its arguments since relabelling two outcomes,
which would interchange the probabilities, would not change the information content
of the probabilities.

(iv) Consider dividing the outcomes into n groups labelled j = 1, · · ·n; each group contains
rj outcomes and the probability that the outcome is one of those in group j is wj.
Then, the crucial property is the following:

S({p}r) − S({w}n) =
n∑

j=1

wjS

(
pi1

wj

,
pi2

wj

, · · ·
pirj

wj

)

This is to be interpreted as follows: the left hand side is the missing information about
the particular outcome minus the missing information about the particular group. So
this should give the missing information about the outcome given that one knows
which group it is in. Then we see that the right hand side of the equation is indeed
the missing information about which outcome given that one knows that it is group j
averaged by the probability of each group j.

N.B. To understand why pi

wj
appear in the last term consider

pi =
∑
j

pi|jwj

where pi|j is the conditional probability of outcome i given that the outcome is in group j.
Since the outcome is in only one group we have

pi|j =

{
0 if i not in group j
pi

wj
if i is in group j

(1)

Condition (iii) is taken care of by the following ansatz

S({p}r) =
r∑

i=1

φ(pi) .
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We can deduce that φ(0) = 0 by noting that if we add outcomes with probability zero this
does not change the information content of the distribution since we know these outcomes
never occur. Similarly in the case where one outcome has probability 1 and the rest 0 we
know with certainty which outcome occurs so there is no missing information. We conclude
that we must have φ(1) = 0.

Now consider the case pi = 1/r (all outcomes equally likely) for which

S({p}r) = rφ(1/r) .

Dividing the outcomes into n groups, each with m outcomes so that r = mn

wj =
1

n
=

m

r

Then

S({w}n) = nφ(1/n) =
r

m
φ
(

m

r

)
and

∑
j

wjS

(
1

wj

{p}m

)
= mφ(1/m)

Finally we find that (iv) becomes

rφ(
1

r
) − r

m
φ(

m

r
) = mφ(

1

m
)

This equation looks difficult but it can be checked by substitution and using the properties
of ln (exercise) that the solution is

φ(
1

r
) = −(

k

r
) ln(

1

r
) where k is some positive constant

= −kpi ln pi .

One can check that this satisfies φ(1) = φ(0) = 0 and the preceding equation for φ.

Finally we deduce

S({p}r) = −k
r∑

i=1

pi ln pi

This is the important result which will play a key role in the next few lectures. We have
gone through this derivation, which has been a little involved, to show that the missing
information function can be deduced from simple principles and is unique.

Notes

(i) This function is the unique solution, modulo k, which satisfies (i)–(iv)

(ii) S is non-negative (since ln p < 0)

(iii) S is maximised when all probabilities are equal (see tutorial)

(iv) S is additive (see tutorial)
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Finally we have to choose k. Originally in the context of “Shannon Information” (which
is actually a misnomer since it is missing information) k was taken as k = 1/ ln 2. To
understand this consider a string of B bits each taking values 0,1. Then the total number
of states for the bit string is 2B and if all states are equally likely one obtains

S = −k
2B∑
i=1

1

2B
ln

1

2B
= Bk ln 2 = B

Thus, the missing information associated with the string is B and is measured in bits.

On the other hand, if we take k = kB where kB is Boltzmann’s constant (units of en-
ergy/Temperature) the missing information may be identified with the Gibbs Entropy.

1. 3. The Gibbs entropy

Let us define the Gibbs entropy as

S = −kB

∑
i

pi ln pi

where the sum is over microstates and pi is the probability that the system is in microstate
i. This definition, like Boltzmann’s, is a fundamental postulate whose ultimate justification
is its ability to explain the experimental facts. However from our development of missing
information we have a strong rationale for the Gibbs entropy if we can accept that entropy
is synonymous with missing information.

The motivation for this is quite natural. In Physics 3 we equated entropy with disorder,
and the more disordered a ‘macrostate’ was the higher the statistical weight and the higher
the entropy. But we can also consider disorder as being equivalent to missing information
or uncertainty. So in a perfectly ordered state we have full information about each micro-
scopic constitutent and the missing information is zero. Disorder corresponds to a decrease
in the information about the microscopic constituents and necessitates the assignment of a
probability to each possible microstate. The missing information then quantifies the overall
uncertainty or disorder in the probability distribution. As the missing information is exten-
sive (see tutorial) we can identify it as an entropy when it has the appropriate units (i.e.
choosing k = kB).

The Gibbs entropy has several advantages over the Boltzmann entropy:

(1) It defines entropy directly from the distribution of microstates, thus avoiding the identi-
fication of a macrostate.

(2) It defines entropy for systems which are not large (e.g. systems with only one or two
states). This is very important since it helps one to “divide and conquer” by breaking up a
system into small subsystems.

(3) It defines entropy for systems which are not in thermal equilibrium but have been per-
turbed in some way, or are undergoing some irreversible process. We return to this in IV.

To see how the Boltzmann entropy is recovered generally see tutorial 1.4. Here we can easily
check the case where all microstates i are equally likely for which pi = 1/Ω then

S = −k
Ω∑

i=1

1

Ω
ln
(

1

Ω

)
= k ln Ω .
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