
Statistical Physics
Section 11: Exact Results for the Ising Model

In one dimension the Ising energy becomes

E = −h
N∑

i=1

Si − J
N∑

i=1

SiSi+1 (1)

Note that we have assumed periodic boundary conditions which mean we take SN+1 = S1 i.e.
the spins are on a ring. This is a standard device to make things simple—one can consider
other boundary conditions but it won’t alter the physics.

11. 1. Solution in 1d for h = 0

↑↑ · · · ↑↑↓↓ · · · ↓↓↑↑ · · · ↑↑

Example of two domain walls in a one-dimensional assembly of N Ising spins.

As we saw last section a microstate consists of clusters or domains of spins of the same sign
separated by ‘domain walls’. In the absence of an external field there are two possible ground
state which contain no domain walls (the all up and all down configurations of spins). The
number of domain walls in a microstate specifies the energy relative to the ground state i.e.
each domain wall costs energy 2J .

Let

ni =
1− SiSi+1

2
=

{
1 if domain wall present
0 if no domain wall present

(2)

Then
SiSi+1 = 1− 2ni (3)

and

E = −NJ + 2J
N∑

i=1

ni (4)

The first term is just a constant which can be ignored, thus the assembly has been trans-
formed to a non-interacting assembly of domain walls.

The Boltzmann distribution for the single domain wall problem can be written down

p(ni) =
e−2βJni

1 + e−2βJni
(5)

The probability p(1) = p that a domain wall is present then has the behaviour

β →∞ (T → 0) p ' e−2βJ → 0
β → 0 (T →∞) p → 1/2

So we get the expected limits of no domain walls at T = 0 and a disordered state where
spins are randomly up or down as T → ∞. However already we can see from (5) that p(1)
goes smoothly between these two extremes and there is no phase transition. Thus for T > 0
we are always in the paramagnetic phase.
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To see this in more detail we should consider the two point correlation function. Let j and
k be two sites separated by distance l = |j − k| and let m be the number of domain walls
between the two sites.

Then

SjSk =
+1 if m even
−1 if m odd

= (−1)m

and we can average to obtain
〈SjSk〉 =

∑
m

pm(−1)m (6)

where pm is the probability that there are precisely m domain walls between the two sites.
pm is given by the binomial distribution for having m domain walls in the l possible locations
between the two sites with a domain wall present with probability p thus

〈SjSk〉 =
l∑

m=0

(
l
m

)
pm(1− p)l−m(−1)m = (1− 2p)l (7)

where we have spotted the binomial expansion of (1− 2p)l. We can write this as (convince
yourself)

〈SjSk〉 = exp l ln(1− 2p) = exp−l/ξ (8)

where the correlation length

ξ =
1

| ln(1− 2p)|
' 1

2p
' e2βJ

2
(9)

when p is small (low T )

Now we conclude from (8) that

lim
|j−k|→∞

〈SjSk〉 = 0 ∀T > 0 (10)

which implies that we are always in the paramagnetic phase. This is because we expect
generally

lim
|j−k|→∞

〈SjSk〉 = 〈Si〉2 (11)

so for a ferromagnetic phase we would obtain a non-zero limit and there would be long-range
order.

Thus we have shown that there is no long-range order and no phase transition in the d = 1
Ising model. This directly contradicts our mean field prediction of a phase transition (for
z = 2) at Tc = 2J/k. Mean field theory is disastrously wrong in one dimension!

On the other hand we see that ξ diverges as T → 0 so we could think of T = 0 as a critical
point, but this is a bit of a cheat really.

11. 2. *General solution of 1d Ising Model (see Advanced Statistical Physics Course)

For the general case (h 6= 0) we wish to calculate the partition function

Z =
∑

{Si=±1}
e−βE({Si}) =

∑
S1=±1

∑
S2=±1

. . .
∑

SN=±1

e−βE({Si}) (12)
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Now let us write the energy in the following way

E({Si}) = −h

2

∑
i

Si −
h

2

∑
i

Si+1 − J
∑

i

SiSi+1 (13)

Then

exp(−βE) =
∏
i

exp

[
βh

2
(Si + Si+1) + βJSiSi+1

]
(14)

and we have
Z =

∑
{Si=±1}

∏
i

T (Si, Si+1) (15)

where

T (Si, Si+1) = exp

[
βh

2
(Si + Si+1) + βJSiSi+1

]
(16)

We can write the values T (Si, Si+1) as a 2×2 symmetric matrix known as the Transfer
Matrix

T =

(
eβ(J+h) e−βJ

e−βJ eβ(J−h)

)
(17)

where the first (second) row corresponds to Si = +1 (−1) and the first (second) column
corresponds to Si+1 = +1 (−1)

Now writing out (15), and recalling we are using periodic boundary conditions, we have

Z =
∑

S1=±1

∑
S2=±1

T (S1, S2)
∑

S3=±1

T (S2, S3) . . .
∑

SN=±1

T (SN−1, SN)T (SN , S1) (18)

= Trace
[
TN

]
(19)

= λN
+ + λN

− (20)

In going from (18) to (19) we have used the usual rules of matrix multiplication and the
definition of the trace as the sum of the diagonal elements; in going from (19) to (20) we
have used the usual properties of the eigenvalues and trace of a symmetric matrix.

Direct calculation (you are invited to do so in the tutorial) gives λ±, the eigenvalues of T ,
as

λ± = eβJ cosh βh±
√

e2βJ sinh2 βh + e−2βJ (21)

Then the free energy per spin

f = −kT

N
ln Z → −kT ln λ+ (22)

for large N .

The thermodynamic properties can be obtained by taking the various derivatives of f with
respect to h, β.

11. 3. Absence of long-range order in 1d

Let us generally consider two phases of a one dimensional system separated by a domain

wall.

AA · · ·AABB · · ·BB
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Domain wall between two phases A and B

and assume the two phases have equal free energies. In the Ising model the two phases are
the Ferromagnetic up and down phases. We wish to determine whether a domain wall is
favoured thermodynamically.

The energy cost ∆E of the domain wall will be finite if the interactions are short-ranged.
For example the Ising model we have studied has nearest neighbour interactions and the
energy cost is ∆ = 2J . We could also consider an Ising model with next nearest neighbour
interactions etc. The important point is that the energy cost of a domain wall does not
depend on the system size N .

The entropy gain due to the creation of a domain wall can be computed from the Boltzmann
entropy

∆S = k ln Ω

where here Ω = N is the number of possible positions for the domain wall. Thus the free
energy difference of a state of two domains divided by a domain wall over the ordered state
of one phase is

∆F = ∆E − T∆S = ∆E − kT ln N (23)

which for all T > 0 will be negative for sufficiently large N . Thus entropy wins, domain
walls are always created and long range order cannot be maintained in one dimension.

11. 4. Existence of a Phase Transition in d = 2

Let us consider the Ising model on a square lattice. A domain wall between the up and down

phases is now an extended object: a chain of links.

+ + + + + +

+ + + + − +

+ + + − − +

− − − − − −

In 2d a Domain wall between up and down domains is an extended object

Let’s say the length of the chain is Ñ .

Then the energy cost of the whole chain is

∆E = 2JÑ

since we have Ñ nearest neighbour pairs of spins of opposite signs.

To evaluate the entropy gain due to a domain wall in the system we have to estimate Ω the
number of possible paths for the domain wall. If we start at the left hand side and the size
of the lattice is N = L× L then there are L starting positions.
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At each step the domain wall can move to the right, move up or move down. This implies
that the number of domain walls is approximately

Ω ' L3Ñ (24)

This may seem a crude estimate (in fact it is an upper bound) but we only need a crude
estimate because we take the logarithm

∆S = kÑ ln 3 + k ln L ' kÑ ln 3 (25)

Then
∆F ' Ñ [2J − kT ln 3] (26)

Clearly for sufficiently low T , namely

T <
2J

ln 3
(27)

∆F > 0 and a domain wall is not thermodynamically favoured. Thus the ordered phase is
stable for low enough T (but T > 0) and long range order is maintained.

However we know that at large T the domain wall must be favoured and we should have
a disordered phase. This will occur at a critical temperature Tc. The above domain wall
argument can be sharpened (see Huang) so that it actually gives a rigorous lower bound

Tc >
2J

ln 3
(28)

which compares favourably to the exact value determined from the exact solution (Huang
chapter 15..... but not for the faint hearted!)

Tc =
2J

ln(
√

2 + 1)
(29)

What the crude argument misses is the existence of small ‘bubbles’ of the minority phase
inside the majority phase at finite (but low) T .

11. 5. Mapping to a Lattice Gas

In the lattice gas model each site of a lattice is either occupied by a particle or is empty.
Thus each lattice site has associated with it a variable

ci =
1
0

(30)

The overall number concentration of the gas is

c =
number of particles

number of lattice sites
=

∑
i ci

N
(31)

A hardcore repulsion between lattice gas particles is wired in due to the occupancy ci = 1.0.
A short-range attractive potential is introduced by an energy −ε < 0 associated with a pair
of neighbouring particles.

E = −ε
∑

<ij>

cicj (32)
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Now the canonical partition function for the lattice gas should respect the fact that only
microstates with precisely Nc particles are allowed:

Zc =
∑

{ci=1,0}
e−βEδ(

∑
i

ci −Nc) (33)

where the δ–function restricts the sum to the allowed microstates. However it is easier to
work on the Grand Canonical Ensemble where we allow the particle number to fluctuate but
introduce a chemical potential µ to tune the average number of particles

ZLG =
∑

{ci=1,0}
e−β(E−µ

∑
i
ci) =

∑
{ci=1,0}

exp

+βε
∑

<ij>

cicj + βµ
∑

i

ci

 (34)

where the sum over ci = 1, 0 is now unrestricted.

The effective energy E − µ
∑

i ci can be mapped onto the Ising energy (plus a constant) by
the identification

Si = 2ci − 1 J =
ε

4
h =

εz + 2µ

4
(35)

(see tutorial). Therefore
ZLG = Const.× ZIsing (36)

and the grand potential of the lattice gas and free energy of the Ising model are the same
(up to an unimportant constant)

ΦLG(T, µ) = FIsing(T, h) + constant (37)

The coexistence curve of the lattice gas is then

µc = −εz/2 (38)

(which corresponds to h = 0) and the critical point will be given by the Ising value Tc(J) =
Tc(ε/4)

Figure 1: Phase diagram of the lattice gas in the (µ, T ) plane

Thus for T < Tc we have a discontinuous transition as µ is increased through µc from a
liquid phase to the gas phase

cliq =
1 + |m|

2
→ cgas =

1− |m|
2

(39)

where ±|m| is the magnetisation in the ferromagnetic phase of the Ising model.
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