
Statistical Physics
Section 4: Assemblies of Weakly Interacting Constituents

Remember that an assembly comprises N microscopic constituents (atoms, spins etc) which
we generally refer to as ‘particles’.

By weakly interacting particles we mean that although there should be some mechanism for
particles to exchange energy, no energy is stored in any interaction potential. Therefore we
can write the total energy of the assembly as the sum of the individual energies.

4. 1. Localised Particles

Consider N identical particles situated on a regular lattice in three dimensions. For example,
we could be concerned with an array of spins making up a macroscopic piece of magnetic
material. Each particle has a permanent address within its assembly and is therefore distin-
guishable.

Under these circumstances each particle will have access to its own spectrum of states which
we label by jm say for particle m. If the particles are identical, which we generally assume,
each has the same spectrum of states. We can specify the microstate i of the assembly by
specifying the state jm of each particle as follows:

• Particle 1 is in state j1 with energy εj1

• Particle 2 is in state j2 with energy εj2
...

• Particle N is in state jN with energy εjN

That is, the microstate of the assembly is specified by the set of labels {j1, j2, . . . jN}.

Now, assuming that the particles are weakly interacting, the energy for the assembly is

Ei = εj1 + εj2 + · · ·+ εjN
. (1)

In the Canonical Ensemble we obtain the partition function of N distinguishable particles
as

Zc =
∑

j1,j2...jN

exp−β[εj1 + εj2 + · · ·+ εjN
]

Using the properties of the exponential, we can factorise this result as

Zc = [Z(1)]N (2)

where
Z(1) =

∑
j

exp(−βεj) (3)

is the single-particle partition function and the index j runs over the single-particle states.

Warning: Z(1), as defined above, is sometimes referred to in texts as the microcanonical
partition function. This is not to be confused with the microcanonical ensemble.
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The thermodynamic properties of the assembly now follow quite straightforwardly from the
use of the bridge equation:

F = −kT lnZc = −NkT lnZ(1) . (4)

Moreover, due to the factorised nature of the partition function, the single-particle proba-
bility

pj ≡ the probability of finding a particular particle (which belongs to the assem-
bly) in a specific state j;

is given by,

pj =
exp [−βεj]
Z(1)

, (5)

which is, of course, just the Canonical or Boltzmann distribution for a single-particle.

Equation (2) is an example of a factorisation property whereby weakly interacting (or ‘un-
coupled’) degrees of freedom lead to factorised pieces of the partition function. In turn, the
bridge equation, then gives the free energy as the sum of these contributions. For example,
in (4) the free energy of the assembly is just the sum of N contributions, one from each
particle.

4. 2. Non-localised Particles

If identical particles are non-localised (e.g. in a gas) there is no way we can label the particles
then keep track of them. This is due to quantum mechanics since if the particles collide we
are unable to retain information about which is which. Therefore

Nonlocalised, identical particles are indistinguishable

In this case the microstate i of the assembly is specified by stating how many particles are
in each quantum (or single-particle) state j. Thus

the set of occupation numbers {nj} specifies the microstate

That is

• state 1 whose energy is ε1 contains n1 particles

• state 2 whose energy is ε2 contains n2 particles
...

The sum over all microstates becomes a sum over the allowed occupation numbers. We write
the energy of microstate i as

Ei,N =
∑

j

njεj (6)
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and the total number of particles in a microstate is

N =
∑

j

nj . (7)

Working in the Canonical Ensemble would constrain the assembly to microstates with exactly
N particles. This would make the sum over occupation numbers awkward due to the fact
that all nj should add to give precisely N i.e. there is a ‘hard’ constraint. However, in the
Grand Canonical Ensemble we can sum over all possible values of N , i.e all possible values
of each nj, and just satisfy that on average we have N particles. This ‘soft’ constraint gives
rise to the chemical potential µ as we saw in section 2. Thus we proceed in the GCE.

The grand canonical partition function takes the form using (6,7)

Zgc =
∑

n1,n2...

exp{−β[n1ε1 + n2ε2 + . . . ] + βµ[n1 + n2 + . . . ]},

where the sum over nj is over the allowed occupation of state j. Thus, the partition function
may be written as

Zgc =
∏

j

Zj (8)

where
Zj =

∑
nj

exp[βnj(µ− εj)]. (9)

is the single-state partition function for state j.

This result may be compared to equation (2) for the partition function of the canonical
ensemble of nonconserved particles in the previous subsection. Here the factorisation is over
states rather than particles.

The probability of finding the assembly in the microstate characterised by the set {nj}, is
just the Grand Canonical (or ‘Gibbs’) distribution,

p{nj} =
exp[βµ

∑
j nj − β

∑
j njεj]

Zgc

.

Due to the factorisation over states the probability of finding exactly nj particles of the
assembly in state j is given by

pnj
=

exp βnj[µ− εj]

Zj

. (10)

It follows that the mean number of particles in a specific state j, with energy εj, is just

nj =
∑
nj

njpnj
= kT

∂ lnZj

∂µ
(11)

where we have used the usual trick of section 3.

In order to perform the sums over allowed occupation numbers we need to consider whether
the particles are Bosons or Fermions.
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Fermions: Fermions have half integer spin (e.g. spin 1/2) and the exclusion principle limits
the possible occupation numbers to nj = 0 or 1. Hence the single-state partition function
becomes

Zj = exp 0 + exp β(µ− εj) = 1 + exp β[µ− εj].

Bosons: Bosons are those particles with integral spin, and the occupation number can take
any nonnegative integer value. Thus the single-state partition function now becomes

Zj =
∞∑

nj=0

exp βnj[µ− εj]. (12)

The sum is, of course, given by the geometric series

∞∑
n=0

xn =
1

1− x
for |x| < 1 (13)

and (12) takes the form
Zj = {1− exp β[µ− εj]}−1.

Thus we can write the single-particle partition function for both cases as

Zj = {1± exp β[µ− εj]}±1 + Fermion
− Bosons

(14)

We now compute the mean number of particles in state j using (11)

nj =
1

β

∂ lnZj

∂µ

= ± 1

β

∂ ln [1± exp β[µ− εj]]

∂µ

=
exp β[µ− εj]

1± exp β[µ− εj]
.

Finally, we can rearrange slightly to yield

nj =
1

exp β[εj − µ]± 1

+ Fermi-Dirac
− Bose-Einstein

(15)

and these are the Fermi-Dirac and Bose-Einstein distributions for the mean number of par-
ticles in a given state j which are to be memorised.

Also we obtain for the grand potential

Φ = −kT lnZgc = ∓kT
∑

j

ln {1± exp β[µ− εj]}, (16)

23



and observable macroscopic properties then follow from the various thermodynamic relations.

4. 3. The Dilute Limit

We define the dilute limit as

exp [βµ] � 1 (17)

It can be shown (see P3) that this is achieved at either high temperatures or low particle
densities, when the de Broglie wavelength of a particle is much smaller than the mean
interparticle separation. Another criterion for the dilute (or classical) limit is that the
probability of a given state being occupied is small. If there are many unoccupied states,
then the exclusion principle for fermions becomes irrelevant as the chances of two particles
trying to occupy the same state become vanishing small. In the previous subsection we
derived an expression for this probability (10).

Now in the following we take, without loss of generality, the lowest energy state to be ε = 0
so that εj ≥ 0. Therefore (17) ensures that

exp β[µ− εj] � 1 ∀j (18)

At this stage, it is convenient to work with the grand potential. Using the expansion for
small x

ln[1 + x] ' x

we find
Φ ' ∓kT

∑
j

(±) exp β[µ− εj] = −kT
∑

j

exp β[µ− εj].

This is obviously consistent with our expectation that in the classical limit there is no
distinction between the different kinds of particles and the equation is valid for both FD and
BE statistics.

We can fix the chemical potential µ as follows. The mean particle number is given by

N = −
(
∂Φ

∂µ

)
T,V

=
∑

j

exp β[µ− εj]

= exp βµZ(1)

where we have spotted Z(1), the single-particle partition function (3). Rearranging this
expression then yields

µ = kT ln

[
N

Z(1)

]
and also

Φ = −kTN .
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Hence the Helmholtz free energy is

F = Φ + µN

= −kTN + kTN ln

[
N

Z(1)

]

' −kT ln

[
Z(1)N

N !

]
where in the last step we have used Stirling’s approximation for large N

lnN ! = N lnN −N (19)

This is an approximation that should be memorised. But we know that F is related to lnZc

through the canonical bridge equation to F = −kT lnZc. Therefore we deduce that in the
dilute limit

Zc =
Z(1)N

N !
(20)

for indistinguishable particles.

This recovers the semi-classical ‘quick fix’ i.e. the factor N ! corrects the overcounting of
actually identical microstates for indistinguishable particle, in the partition function for
distinguishable particles Z(1)N .

4. 4. The Density of states

For the purposes of calculating thermodynamic properties we will need to perform the sum
over states apparent, for example, in (16) or in the calculation of the mean particle number

N =
∑

j

nj .

What we wish to do is approximate the sum by an integral using a function known as the
density of states so that we can write

N =

∫ ∞

0

n(ε, µ)g(ε)dε (21)

where we have acknowledged the fact that FD and BE distributions (15) are functions of ε
and µ. Then the meaning of the density of states g(ε) is that

g(ε)dε = the number of states with energy between ε and ε+ dε.

The approximation of the sum by an integral facilitates the computation (integrals are
usually easier than sums) and is generally expected to be a good approximation when there
are many states with similar energies. This generally occurs at higher energies so we should
be at sufficiently high temperature that higher energy states are dominant - see for example
tutorial 2.3
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4. 5. Density of states for a particle in a box

We now review a calculation done in some detail in Physics 3. We consider for the moment
a spinless particle in a 3d box of side L. The time independent Schrödinger equation for the
free particle (potential energy U = 0) reduces to the equation for standing waves:(

− h̄2

2M
∇2 − ε

)
ψ = 0

where ε is the energy eigenvalue.

Consider first the one-dimensional case which becomes

ψ′′ = −k2ψ where k2 =
2Mε

h̄2

We have to fit the boundary conditions that ψ vanishes at the boundaries x = 0, L. Thus

ψ = A sin kx with k =
nπ

L
and n = 1, 2, 3 . . .

and A is just a constant chosen to normalise the wavefunction.

The generalisation to three dimensions with the boundary conditions that ψ vanishes at
x, y, z = 0, L is straightforward:

ψ = A sin kxx sin kyy sin kzz with kx =
nxπ

L
ky =

nyπ

L
kz =

nzπ

L
(22)

ε =
h̄2

2M

(
k2

x + k2
y + k2

z

)
(23)

Warning: The ns here are not occupation numbers!

Figure 1: A 2-d representation of ‘k-space’. The unit of area is (π/L)2. A shell of radius k
and thickness dk is indicated

For illustrative purposes Figure 1 shows the two dimensional case. Referring to Figure 1 we
see that k-space contains points, which represent the allowed quantum states of the particle,
distributed with density (L/π)2 per unit area of k-space, since each state occupies area
(π/L)2.
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We wish to consider three dimensions. In three dimensions the points will be distributed
with density (L/π)3 per unit volume of k-space.

Now the energy depends only on the magnitude k of the vector in k-space

ε =
h̄2

2M
k2

where
k = (k2

x + k2
y + k2

z)
1/2 .

Let us consider the number of points in a spherical shell of radius k and width dk. Actually
we consider only the positive octant of the sphere because all n’s in (22) are restricted to be
positive. This gives us the density of states Γ(k) in k space

Γ(k)dk = the number of states with wave vector k between k and k + dk.

We find

Γ(k)dk =

(
L

π

)3

× 4πk2dk

8

The first factor on the right hand side is the number states per unit volume and the second
factor is the volume of the octant shell.

Now to obtain the density of states in energy space, equate

g(ε) = Γ(k)

(
dk

dε

)
It is easiest to use () to calculate

dε

dk
=

(
2h̄2

M
ε

)1/2

and after a little algebra we obtain

g(ε)dε =

(
2M

h̄2

)3/2
V

4π2
ε1/2dε (24)

The important features to note here are that the density of states increases with energy as
ε1/2 and increases linearly with the volume V .

4. 6. Ideal Fermi and Bose Gases

We are now in a position to use the density of states (24) to calculate from (21) and (15)
the chemical potential and so study the thermodynamics of the Ideal Fermi and Ideal Bose
gases. In Physics 3 we studied the Ideal Fermi Gas in some detail particularly as a model
for conduction electrons. Moreover, it also serves as a model for stars such as White Dwarfs
and Neutron Stars. Sadly, we do not have time to explore further the Ideal Fermi Gas and
you are referred to text books for inspiration. Instead will be focussing our attention on the
Ideal Bose Gas which also has a wide range of applications and most importantly gives us
our first example of a phase transition.
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