
Statistical Physics
Section 6: The Many Body Problem

In this section we discuss the Many body Problem with reference to a particular context:
vibrations of a crystalline solid.

6. 1. Many Particle Schrödinger equation

Consider a system of N distinguishable particles of mass m. (Ignore spin for the moment.)
Schrödinger’s equation is
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where α labels the particles and U is the interaction potential which depends on the relative
positions of all the particles e.g. we could have the Coulomb interaction between particles
with charge e
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This is an example of a ‘2-body’ interaction.

For the case where U = 0, the statistical mechanics of this system can be solved as we have
seen in our previous work on weakly interacting systems. However in general when U 6= 0
we run up against. . .

The Bedrock Problem: We cannot solve the many body
problem! (except in very special cases).

However, as we have seen, one case where we can solve (1) is when the potential energy term
contains no interaction terms i.e. when
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Then we can write the Hamiltonian of (2) as
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α
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and the many-body eigenfunctions are factorised
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Aside In order to impose indistinguishability we should take suitable symmetrised combina-
tions of these eigenfunctions to form the wavefunctions. Different symmetrised combinations
correspond to fermions and bosons.
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We refer to (5) as a diagonal form of the Hamiltonian since the particles are not coupled by
any ‘off-diagonal’ terms such as Hαβ.

Crudely speaking, the whole of many body physics is concerned with making transformations
and/or approximations which put the Hamiltonian (2) into a diagonal form.

6. 2. Specific heat of a crystalline solid

We consider N atoms situated near the sites of a regular lattice. We call the displacement
vector of atom α from the lattice site rα.

Einstein Theory (see P3) Here we simply replace (2) by a non-interacting H
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where ω is a free parameter which we can fix by comparing to experimental data. The
Hamiltonian is a sum of N 3d quantum harmonic oscillators and ω is the frequency of each
oscillator. Thus the physical model is that each atom sits in its own harmonic potential well
and oscillates independently of the others.

Figure 1: Left hand: model of crystal solid as atoms connect by harmonic springs (this is
the harmonic approximation). Right hand: model of each atom as independent harmonic
oscillator (Einstein Model)

Recall that a three dimensional harmonic oscillator is the same as 3 one dimensional harmonic
oscillators. Therefore

E =
3N∑
i=1

εi where εi = h̄ω(ni + 1/2) . (8)

Then
Zc = [Z(1)]3N

where

Z(1) =
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2
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where x = βh̄ω
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where we have used the geometric series (see tutorial 3.3). We now proceed to calculate the
energy:

E = −∂ lnZc
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The heat capacity is given by
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Note that here the ‘constant volume’ constraint on the partial derivative is the same as the
‘constant ω’ constraint. This is because the only way volume (or any other variable except
temperature) can enter into the model is through the parameter ω.

We find
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The Einstein model does not do badly for such a simple approximation but it breaks down
at low temperatures (x = h̄ω/kT � 1) where the predicted heat capacity

CV

3NK
' (h̄ω/kT )2 exp(−h̄ω/kT )

is not borne out experimentally—instead a T 3 behaviour is observed.

The reason is that at low temperatures co-operative effects become important and one has
to consider collective oscillations of the atoms rather than the independent oscillations of
the Einstein theory which is only a reasonable approximation at high temperatures.

6. 3. Harmonic Approximation, Phonons and Debye Theory

Recall we denote by r(α) the displacement of atom α from its equilibrium position and x
(α)
i as

its ith Cartesian component. In general the potential energy U could be a very complicated
function U(r(1), r(2), . . . r(N)) of the displacements of the atoms.

Now assuming the displacements are small we can make a Taylor series expansion (in 3N
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Since U must be a minimum at the equilibrium positions the second term (linear in the
xs is zero) vanishes. Retaining only the final term on the rhs is known as ‘the harmonic
approximation’. Abbreviating the second partial derivatives to Aiαjγ we may write the total
Hamiltonian as
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Now in principle we can diagonalise this Hamiltonian by transforming to appropriate coor-
dinates. This is because it is simply the Hamiltonian of a system of 3N coupled harmonic
oscillators.

Recall from second year Mathematical Physics that systems of coupled oscillators have nor-
mal modes in which all the displacements oscillate with the same frequency. The motion of
the system can then be expressed in terms of the a superposition of normal mode excitations
and the energy can be expressed as the sum of the energy in each normal mode.

Moreover we can, in principle, make a transformation to normal co-ordinates qr =
∑

iα λr iαx
(α)
i

where here λr iα are the components of the transformation matrix. Note that the normal
coordinates are collective co-ordinates involving all the x

(α)
i and describe complicated co-

operative oscillations. Since there are 3N co-ordinates x
(α)
i , there are 3N normal modes.

We do not wish to get into the details of the transformation to normal coordinates but just
note the important result that after transforming to the normal co-ordinates qr labelled by
r (r = 1 . . . 3N) the Hamiltonian (11) becomes
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3N∑
r=1

h̄2

2m

∂2

∂q2
r

+
3N∑
r=1

mω2
r |qr|2

2m
(12)

which is of diagonal form i.e. the normal mode coordinates diagonalise the Hamiltonian

The normal modes are quantum oscillators, and the quanta of energy are known as phonons.
Phonons really do exist and are much-studied experimentally e.g. by scattering neutrons or
x-rays off the solid.

Thus

E =
3N∑
r=1

h̄ωr(nr + 1/2) nr = number of phonons in mode r (13)

We now proceed to compute the canonical partition function

Zc =
3N∏
r=1

Zr where Zr =
exp−xr/2

1− exp−xr

with xr = βh̄ωr

The energy follows as

E = −∂ lnZc

∂β

= constant +
∑
r

h̄ωr
1

exp βh̄ωr − 1
(14)

We can ignore the first term as it is just a constant. The second can be compared to
the energy of an ideal Bose gas at µ = 0. The phonons behave with Bose statistics and

1

exp βh̄ωr − 1
is the mean number of phonons in mode r. Thus we have a gas of phonons
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(the chemical potential µ = 0 since the number of phonons is not a conserved quantity).
Using a density of modes we can write the energy as

E =
∫
h̄ω

1

exp βh̄ω − 1
g(ω)dω (15)

To calculate E we need the spectrum of frequencies ωr i.e. the ‘phonon spectrum’ or density
of modes

g(ω)dω = the number of modes with frequency between ω and ω + dω.

In second year one calculated normal modes and normal coordinates for systems of N = 2
or 3 particles in one dimension. Continuing this programme for large N in 3d, to obtain the
full normal mode spectrum is generally very difficult! Thus approximations are required.

Debye Theory

The Debye theory is to posit a form for the density of modes

g(ω) = AV ω2 (16)

This can be motivated by a calculation of the low frequency modes that correspond to sound
waves. For these modes the wavelength λ is much larger than the lattice spacing a: λ� a.
The idea is then to treat the crystalline solid as an elastic medium and write down a classical
wave equation which, for standing waves, reads

∇2φ+ k2φ = 0 .

here φ(r) is the displacement field i.e. the displacement from equilibrium of an atom at
position r; k is the magnitude of the 3d wavevector k, the wavelength is given by λ = 2π/k
and k = ω/c where c is the speed of sound in the solid.

Thus the calculation of the density of modes is basically the same as was done in Physics
3 for EM radiation. A slight complication in the present case is that the speed of sound
is different for longitudinal waves (where the atomic displacements are parallel to the wave
propagation direction) than for transverse waves (where the displacements are orthogonal
to the propagation direction). For transverse waves there are two orthogonal polarisations.
See Baierlein for details. Here we content ourselves with simply assuming (16).

Now recall that there should be 3N normal modes in total. To respect this we introduce a
‘cut-off’ frequency ωmax. Thus∫ ωmax

0
AV ω2dω =

AV ω3
max

3
= 3N , (17)

from which we find

ωmax =
(

9ρ

A

)1/3

. (18)

Thus there is just one free parameter which we can take to be ωmax.

This maximum frequency defines a characteristic temperature, usually written as ΘD (al-
though in lectures I used T ∗), through

kBΘD = h̄ωmax (19)
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Thus we can take the free parameter as ΘD.

We now proceed to calculate the energy through

E =
∫ ∞

0
h̄ω g(ω)n(ω) dω

= AV h̄
∫ ωmax

0

ω3

exp(βh̄ω)− 1
dω

First consider the high T limit T � ΘD(= hωmax/kB) which implies hω/kBT � 1. We
expand exp(βhω) ' 1 + βhω to obtain

E ' AV h̄
∫ ωmax

0

w3

βh̄ω
dω = 3NkBT (20)

where we have used (17). (20) is just the equipartition result—as we expect, high tempera-
ture recovers a classical limit and h disappears from physical results.

Now consider the low T limit T � ΘD. In this case we change variables to x = βhω to
get the dependence on physical parameters out of the integral and leave the dimensionless
integral as a constant:

E =
AV h̄

(βh̄)4

∫ ΘD/T

0

x3

exp(x)− 1
dx

Now for T � ΘD we can replace the upper limit of the integral by infinity and obtain an
integral whose value happens to be π4/15. The precise value is actually not important here,
what is important is that it is a finite, non-zero constant.

Thus at low temperatures E ∝ T 4 and the heat capacity

CV ∝ T 3 (21)

which is the key result of the Debye theory and improves greatly upon the Einstein model
prediction. It is well borne experimentally for e.g. for copper or solid Argon (see Baier-
lein Fig. 6.9; Mandl Fig. 6.7). For comparison with experiment there is a single fitting
parameter—the Debye temperature ΘD.

Note that at low T only the low frequency modes will be excited and it is precisely these
modes that are correctly described by the Debye theory as sound waves (i.e. by approximat-
ing the solid by an elastic medium). Thus the Debye theory is correct at both low and high
T ! (But remains an approximation in between).

6. 4. The importance of the density of modes

Recall that the energy for both EM radiation (see Physics 3) and the vibrational energy of
the crystalline solid can be written as

E =
∫ ∞

0
h̄ω g(ω)n(ω) dω

where n(ω) is the B-E distribution. Thus the way that the details of the system/theory/model
enter is through the density of modes g(ω).

This has several implications
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• Seemingly disparate systems will be described by the same theory if they have the
same form of g(ω) e.g. blackbody radiation and the Debye theory of crystalline solids
both have g(ω) ∝ ω2

• One can build up better and better theories by making better and better approxima-
tions to the true density of modes (which is often very complicated)

e.g.

For the crytalline solid the Einstein model (which considers oscillators all of the same
frequency) corresponds to a density of modes that is a delta function at a single fre-
quency (the Einstein frequency).

The Debye theory is an improvement corresponding to a density of modes with a
quadratic frequency dependence, cut off at ωmax (the Debye frequency).
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