
Statistical Physics
Section 7: Interactions in Classical Fluids: Perturbation about the Ideal Gas

In this section we treat a classical fluid which comprises an assembly with N particles each
of mass m, in a volume V . We assume that the density

ρ =
N

V
(1)

is low enough that we can

• treat interactions as perturbations about the Ideal Gas

• neglect quantum indistinguishability and use Classical Statistical Mechanics

7. 1. Classical Statistical Mechanics

The classical Hamiltonian (which is, for our purposes, the energy) is

H = E =
∑

i

p2
i

2m
+ U

({
q

i

})
(2)

where i labels the particles, p
i

is the momentum and q
i

is the position vector of particle
i. We use this notation to emphasise that p

i
and q

i
are examples of conjugate or canoni-

cal coordinates such as you may have met in the formalism of Lagrangian or Hamiltonian
dynamics.

Thus, classically the state of a particle i is specified by two coordinates q and p. So in 3d
each particle has 6 coordinates px,py,pz,qx,qy,qz and we can think of the state of the particle
corresponding to a point in 6d space.

For N particles the dimension of the phase space of the N -particle system is 6N i.e. we can
think of the state of the whole assembly as a point in the 6N dimensional known the phase
space of the assembly.

Problem: Since q and p are continuous coordinates we have an infinity of possible states.
This poses problems, for example, in using the Boltzmann definition of the entropy as pro-
portional to the logarithm of the weight of a macrostate since the weight will always be
infinite!

Solution: Divide phase space up into cells if side δp δq etc—see figure 1. Call the ‘volume’
of a cell (in the 6d space)

h3 = (δp)3(δq)3

What is the meaning of this construction?

• In quantum mechanics the uncertainty principle would furnish a natural interpretation
for the cell size.

• Classically one can interpret the cells as the uncertainty in any physical measurement
(this was the view of Maxwell).
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Figure 1: A 1d phase space divided into cells of side δq, δp.

• In the end the size of the cell turns out to be a ‘book-keeping’ device: it disappears
from the final physical results.

• We can identify a cell in phase space with a state → controlled number of states.

Having identified cells in phase space with states, we can write down an expression for the
classical partition function

Zc =
1

N !

∑
cells

exp−βH (3)

If we take the cells small enough that the value of the energy varies very slowly between cells
then we can replace the sum by an integral∑

cells

−→ 1

h3

∫
dpx dpy dpz

∫
dqx dqy dqz

The sum over cells becomes a ‘volume’ integral over the 6d phase space; we divide by the
volume of a cell so that, for example, the number of cells equals the phase space volume
divided by the cell volume.

Zc(T, V, N) =
1

N ! h3N

∫ [∏
i

d3pi d
3qi

]
e
−βH({q},{p})

(4)

Thus the partition function is the integral of the Boltzmann factor over the 6N dimensional
phase space. The limits of integration on momentum components are pi = ±∞ and on
positions qi = 0, L.

In a purely classical approach, the factor h−3N introduced by hand above as the cell size, also
serves to make the integral dimensionless; so h is some constant with the units of momentum
× length. But by comparing this Zc with the classical limit of an ideal gas, one finds that h
is in fact Planck’s constant. Hence, as discussed previously quantum mechanics is involved,
even in the so called “classical” limit, in an inescapable way. The indistinguishability factor
1/N ! is also not obvious from a purely classical viewpoint, but must be there to ensure the
entropy works out correctly. Basically we are employing the semi-classical ‘quick fix’.
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Alternatively we can consider (4) as the fundamental postulate of classical statistical me-
chanics.

Recovery of Classical Ideal Gas

For the classical ideal gas a particle’s energy is simply its kinetic energy

εi(qi
, p

i
) =

p2
i

2m

and the assembly energy is just the sum of the particle energies.

Therefore the spatial integrals in (4) give V N and

Zc(T, V, N) =
V N

N ! h3N

N∏
i=1

[∫
d3pi e

−βp2
i /2m

]
=

V N

N ! h3N

[∫
dp e−βp2/2m

]3N

=
V N

N ! h3N

[(
2mπ

β

)1/2
]3N

=
1

N !

[
V

λ3
T

]N

We have used the formula for the gaussian integral that should be memorised∫ ∞

−∞
dz exp−αz2 =

(π

α

)1/2

and the definition of the thermal de Broglie wavelength

λT =

(
h2

2πmkBT

)1/2

(5)

Note that h is present in Zc via λT . Thus, quantities stemming from ln Zc such as the free
energy F = −kT ln Zc or entropy S will apparently retain a dependence on h, as an additive
constant.

However it should be noted that it is only free energy and entropy differences that can be
measured experimentally (absolute values of free energy are not defined) and in the expression
for e.g. a free energy difference the h dependence cancels.

Thus in the end h indeed plays no role in the results as we would expect for a classical
assembly.

Explicitly we have

Fideal = −kT ln Zc = kTN [1− ln N − ln V + 3 ln λT ] (6)

Pideal = −∂Fideal

∂V
=

NkT

V
(7)

where we have used Stirling’s approximation in obtaining (6) from (5)
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7. 2. Configurational Integral

In the interacting case an important simplification arises from the fact that the interaction
potential U({q}) does not depend on the particle momenta. Then

H({q}, {p}) =
N∑

i=1

p2
i

2m
+ U({q})

(where pi = |p
i
|) and Zc factors into two pieces:

Zc(T, V, N) =
1

N !h3N

∫ ∏
i

d3pi e
−β

P
p2

i /2m

∫ ∏
i

d3qi e
−βU({q})

(8)

corresponding to integrals over positions, and integrals over momenta. These factors can
conveniently be separated (in dimensionless form) as follows:

Zc(T, V, N) = Zideal Q (9)

where the first factor is the partition function for the noninteracting case (the ideal gas)

Zideal =
V N

N !h3N

∏
i

[∫
e−βp2

i /2md3pi

]
=

[V/λT ]N

N !
(10)

and the second is a correction factor (unity for ideal gases)

Q = V −N

∫ N∏
i=1

d3qi e
−βU(q

1
,...q

N
)

(11)

which is known as the configurational integral. Accordingly, the interactions between our
particles enter only via Q, and if we can evaluate this we have all we need to compute
Zc(T, V, N).

From the factorization of Zc there follows the decomposition of the free energy

F (T, V, N) = Fideal(T, V, N)− kT ln Q (12)

and of the equation of state,

P (T, V, N) = −
(

∂F

∂V

)
T,N

=
NkT

V
+ Pconf (13)

Thus the “configurational pressure”

Pconf = kT
∂ ln Q

∂V
(14)

gives the correction to the ideal gas equation of state, i.e. the correction to the pressure due
to interactions.
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7. 3. Virial Expansion

In the following we take the interaction potential to be of the form

U({q}) =
1

2

∑
i6=j

φ(|q
i
− qj|) =

∑
i<j

φij(rij) (15)

Note that this implies

• 2 body interactions

• a central potential (depends only on distance between particles)

Examples of interatomic potentials are:

• The hardcore potential

φij(r) =
∞ r ≤ a
0 > a

(16)

• the Lennard Jones potential

φij(r) = 4ε[(r0/r)
12 − (r0/r)

6] (17)

Here ε is the depth of the attractive well and r0 the hard core radius.

Figure 2: Sketch of the hard core potential and the Lennard Jones potential

For the Lennard Jones case note the generic features of repulsion at short distance, attraction
at intermediate distance and interaction → 0 at long range. In the generic case, there is no
intrinsic limit to the number of particles that can be interacting simultaneously with each
other. Consequently new collective phenomena, such as the phase transition from a vapour
to a liquid, become possible. The hard core case, on the other hand, is not generic and is a
very special case.

Our task is to calculate the configurational integral (11) which we write in the form

Q =
1

V N

∫ [∏
i

d3qi

] ∏
i<j

Fij (18)

where
Fij = exp−βφij (19)
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Just to be clear, let us write out the products

Q =
1

V N

∫
d3q1 . . . d3qNF12F13 . . . F1NF23 . . . F2N . . . FN−1 N

note that there N(N − 1)/2 Fijs in the product: this is just the number of ways of choosing
2 sites from N .

We can think of Q as being a spatial average i.e. it is the integral of something (the product
of Fij) over the spatial co-ordinates divided by the volume V N . Therefore we can write

Q = 〈
∏
i<j

Fij〉 (20)

where the angle brackets indicate the spatial average. Now this is very difficult to calculate
because, for example Fij is correlated with Fik.

However a first approximation is

Q =
∏
i<j

〈Fij〉

= 〈F 〉N(N−1)/2 (21)

i.e. we replace the average of the product by the product of the averages. This amounts to
the approximation that Fij are in fact uncorrelated. Note that 〈Fij〉 = 〈F 〉 does not depend
on the indices i,j (as long as i 6= j).

We let
Fij = 1 + fij (22)

note that

fij = exp(−βφij)− 1 → 0 as r →∞
−1 as r → 0

(23)

so in a dilute gas, where the interparticle separations are large, fij is typically small. Let us
take i,j = 1,2 as representative:

〈F12〉 = 1 +
1

V N

∫
d3q1 . . . d3qNf12 = 1 +

1

V 2

∫
d3q1d

3q2f12

where we have integrated out the coordinates not involved in f12 and used
∫

d3q = V .

Now we change variables to centre of mass and relative coordinates

r = q
1
− q

2
R =

1

2
(q1 + q2) (24)

Noting that there is only dependence on the relative coordinate r so that
∫

d3R = V , we
obtain

〈F12〉 = 1 +
1

V

∫
d3r [exp−βφ(r)− 1] (25)

which we write as

〈F12〉 = 1− 2B2

V
(26)
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where

B2 = −1

2

∫
d3r [exp−βφ(r)− 1] (27)

The constant B2 is known as the second virial coefficient.

So within our crude approximation we have

Q =

(
1− 2B2

V

)N(N−1)/2

(28)

and following (12) we find

F = Fideal − kT ln Q ' Fideal +
N2kT

V
B2

where we have approximated N(N − 1) ' N2 and ln(1− 2B2/V ) ' −2B2/V when N, V are
large.

Then, from (13,14) we obtain

P

kT
= ρ + B2ρ

2 (29)

where ρ = N/V . Finally we note

S = −∂F

∂T
= Sideal −Nkρ

∂

∂T
(TB2)

Notes

• (29) is the start of the virial expansion. This is a perturbation expansion in the
density ρ about the ideal gas limit. That is, we see the start of

P

kT
= ρ + B2ρ

2 + B3ρ
3 · · · (30)

• The microscopic theory developed here relates the virial coefficients Bn to the atomic
interaction potential φij.

• In the tutorial you are invited to develop a simple approximation for a generic φij

which yields
B2 = b0 − a0/kT (31)

where b0 and a0 are positive constants. This recovers (see tutorial) the expansion of
the ‘van der Waals equation of state’ usually written(

P + ρ2a
)

=
NkT

V −Nb
(32)

Also within the approx (31) one can show the entropy is reduced below that of the
ideal gas. This is to be expected from information theory: the attractive interactions
should make the positions of the atoms correlated. Correlations in the positions then
reduce the missing information about the microscopic state of the system.
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7. 4. *Extension to higher order

To improve upon our crude approximation (21), and in order to calculate the higher order
virial coefficients let us write

Fij = 〈F 〉+ λij (33)

where λij is the deviation of Fij from its average spatial value and 〈λij〉 = 0.

Then
Q = 〈(〈F 〉+ λ12) (〈F 〉+ λ13) · · · 〉 (34)

which we wish to expand in powers of λij. We do not explicitly carry out this procedure
here, but note that it results in

Q = 〈F 〉N(N−1)/2 +

(
N
3

)
〈F 〉N(N−1)/2−3〈λ12λ23λ13〉+ . . .

Notes

• It turns out that an average of a product of λs in which a subscript appears only once
is zero. Therefore there are no linear or quadratic terms in the expansion (convince
yourself).

• The first term is what we calculated as our crude approximation in the previous sec-
tion. The second term involves a ‘cluster’ of three sites say 123 and 〈λ12λ23λ13〉 is
representative of such terms. The binomial coefficient comes from the number of ways
of choosing three sites from N .

• Physically the first term, which involved averaging Fij, represents the interaction of
two particles i.e. a ‘two particle molecular cluster’. The second term, as noted above,
involves ‘three particle particle clusters’, hence () is known as a cluster expansion.

• To extend to higher orders diagrammatic methods are required to enumerate the vari-
ous clusters. This was actually the first instance of diagrammatic methods see e.g. the
books by Huang or Pathria for details.

• But at higher densities the expansion at best converges slowly and at least near the
phase transition to the liquid phase the expansion fails to converge at all. This is
because near the phase transition larger and larger clusters of particles become impor-
tant. Also perturbation theory about the ideal gas can’t be expected to quantitatively
describe the (high density) liquid phase which is a different state of matter! We will
understand this more fully when we study phase transitions in Section 9–12
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