
STATISTICAL PHYSICS 06/07

Quantum Statistical Mechanics Tutorial Sheet 3

The questions that follow on this and succeeding sheets are an integral part of this course. The
code beside each question has the following significance:

• K: key question – explores core material

• R: review question – an invitation to consolidate

• C: challenge question – going beyond the basic framework of the course

• S: standard question – general fitness training!

3.1 Particle Number Fluctuations for Fermions [s]

(a) For a single fermion state in the grand canonical ensemble, show that

〈(∆nj)
2〉 = n̄j(1− n̄j)

where n̄j is the mean occupancy.

Hint: You only need to use the exclusion principle not the explict form of n̄j.

How is the fact that 〈(∆nj)
2〉 is not in general small compared to n̄j to be reconciled with

the sharp values of macroscopic observables?

(b) For a gas of noninteracting particles in the grand canonical ensemble, show that

〈(∆N)2〉 =
∑
j

〈(∆nj)
2〉

(you will need to invoke that nj and nk are uncorrelated in the GCE for j 6= k). Hence
show that for noninteracting Fermions

〈(∆N)2〉 =
∫

g(ε) f(1− f) dε

follows from (a) where f(ε, µ) is the F-D distribution and g(ε) is the density of states.

(c) Show that for low temperatures f(1− f) is sharply peaked at ε = µ, and hence that

〈∆N2〉 ' kBTg(εF ) where εF = µ(T = 0)

[You may use without proof the result that
∫∞
−∞

ex dx
(ex+1)2

= 1.]

3.2 Entropy of the Ideal Fermi Gas [C]

The Grand Potential for an ideal Fermi is given by

Φ = −kT
∑
j

ln [1 + exp β(µ− εj)]

Show that for Fermions
Φ = kT

∑
j

ln(1− pj) ,



where pj = f(εj) is the probability of occupation of the state j. Hence show that the
entropy of a Fermi gas can be written in the form

S = −k
∑
j

[pj ln pj + (1− pj) ln(1− pj)]

You will need to use S = −
(

∂Φ

∂T

)
µ,V

and some patience to obtain the result!

Comment upon the result for the entropy from the standpoint of missing information.

3.3 Geometric Series [r] In problems we often make use of the geometric series in the form
∞∑

n=0

e−αn =
1

1− e−α
, for e−α < 1 .

Show that this form can be used to derive the results
∞∑

n=0

n e−αn =
e−α

(1− e−α)2

∞∑
n=0

n2 e−αn =
e−α

(1− e−α)2
+ 2

e−2α

(1− e−α)3
.

3.4 Particle Number Fluctuations for Bosons [s] Use the results of the previous question
to show that for Bosons in the Grand canonical Ensemble the variance in occupancy for a
given one-particle state j obeys

〈∆n2
j〉 = n̄j(n̄j + 1)

where n̄j is the mean occupancy. Hence show that the existence of a Bose Condensate
causes there to be macroscopic fluctuations in the particle number N of the system.

3.5 Bose Condensation [s] For a large system undergoing Bose condensation, show that
when the occupancy n0 of the single-particle ground state is macroscopic, that of the first
excited state, n1, though large, remains small compared to n1.

Hint: First convince yourself that, as explained in lectures, µ = O(1/N) in the condensed
regime. Then look at the N or V dependence of ε1 and consequently n1.

3.6 Bose Condensation in Harmonic Potentials [s/c] Consider a gas of N weakly inter-
acting bosons trapped in 3d harmonic potential (by a magnetic trap for example).

Vtrap =
1

2
mw2(x2 + y2 + z2)

a) Explain why the single particle quantum states have energies

ε = h̄w(nx + ny + nz + 3/2)

b) Calculate the total number of quantum states with energies less that ε and from this
deduce that the density of states g(ε) is

g(ε) ' ε2

2(h̄w)3
for large ε

Hint: This is the difficult bit since ε is a function of n rather than just the magnitude n.
You need to convince yourself that a surface of constant energy is a plane in n-space and
the number of states with energy less than ε is given by the volume of a tetrahedron.

c) Show that transition temperature for condensation is of order Tc ∼ N1/3h̄w/k
M.R. Evans : October 26, 2006


