STATISTICAL PHYSICS 06/07

Quantum Statistical Mechanics Tutorial Sheet 3

The questions that follow on this and succeeding sheets are an integral part of this course. The
code beside each question has the following significance:

3.1

3.2

K: key question — explores core material
R: review question — an invitation to consolidate
C: challenge question — going beyond the basic framework of the course

S: standard question — general fitness training!

Particle Number Fluctuations for Fermions [s]

(a) For a single fermion state in the grand canonical ensemble, show that
((Any)*) = 7;(1 — 7y)
where 7; is the mean occupancy.

Hint: You only need to use the exclusion principle not the explict form of 7.

How is the fact that ((An;)?) is not in general small compared to 72; to be reconciled with
the sharp values of macroscopic observables?

(b) For a gas of noninteracting particles in the grand canonical ensemble, show that

(AN)?) = > _{(An;)*)

J

(you will need to invoke that n; and ny are uncorrelated in the GCE for j # k). Hence
show that for noninteracting Fermions

(AN)3) = [ g(e) £(1 - f)de

follows from (a) where f(e, ) is the F-D distribution and g(e) is the density of states.

(¢) Show that for low temperatures f(1 — f) is sharply peaked at ¢ = p, and hence that

(AN?) ~ kgTg(er) where ep = p(7T =0)

etdr
(ex+1)2 — 1 ]

[You may use without proof the result that [°7
Entropy of the Ideal Fermi Gas [C]
The Grand Potential for an ideal Fermi is given by

O =—kT> In[l+expfBp—¢)

J

Show that for Fermions
¢ = k?TZlIl(l —pj) y

J



3.3

3.4

3.5

3.6

where p; = f(¢;) is the probability of occupation of the state j. Hence show that the
entropy of a Fermi gas can be written in the form

S = —kz [p;Inp; + (1 —p;) In(1 — p;)]

e
or

Comment upon the result for the entropy from the standpoint of missing information.

You will need to use S = — ( ) and some patience to obtain the result!
u,V

Geometric Series [r] In problems we often make use of the geometric series in the form

- —an 1 —Q
Z e = , for e“<1.
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Show that this form can be used to derive the results
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Particle Number Fluctuations for Bosons [s] Use the results of the previous question
to show that for Bosons in the Grand canonical Ensemble the variance in occupancy for a
given one-particle state j obeys

(An?) =n;(n; + 1)
where 7; is the mean occupancy. Hence show that the existence of a Bose Condensate
causes there to be macroscopic fluctuations in the particle number N of the system.

Bose Condensation [s] For a large system undergoing Bose condensation, show that
when the occupancy ng of the single-particle ground state is macroscopic, that of the first
excited state, ny, though large, remains small compared to n;.

Hint: First convince yourself that, as explained in lectures, © = O(1/N) in the condensed
regime. Then look at the N or V' dependence of €; and consequently 77.

Bose Condensation in Harmonic Potentials [s/c] Consider a gas of N weakly inter-
acting bosons trapped in 3d harmonic potential (by a magnetic trap for example).

1
‘/trap - imw2($2 + y2 + 22)

a) Explain why the single particle quantum states have energies
e =hw(ng +ny, +n,+3/2)

b) Calculate the total number of quantum states with energies less that ¢ and from this
deduce that the density of states g(e) is

62

2(hw)?

g(e) ~ for large e

Hint: This is the difficult bit since € is a function of n rather than just the magnitude n.
You need to convince yourself that a surface of constant energy is a plane in n-space and
the number of states with energy less than ¢ is given by the volume of a tetrahedron.

¢) Show that transition temperature for condensation is of order T, ~ N/*hw /k
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