
Mesoscopics and Quantum Transport – Solutions to Problems

1. Note that if we swap land and water in a system with p% land then we obtain one with
(100− p)% land. This symmetry implies one of 2 consequences:

• there is no coexistence of paths accross the whole system on land and water; the
boundary must be at half–filling, 50%.

• paths on water and land can coexist.

The system is supposed to be isotropic. If coexistence is allowed then it should be possible
to have continuous land from left to right and continuous water from top to bottom. This
is clearly impossible in 2D (but not in 3D). Hence the transition must be at half filling.

2. From the information given in the notes we have a smallest energy splitting ∆E = [ρ 4
3
πR3]

and
P (R) ∼ exp

(
−αR− β/[ρ4

3
πR3]

)

Find the optimum hop length by minimising the argument of the exponential

0 = α− 9β/[4πρR4]

⇒ R =

(
9β

4πρα

)1/4

⇒ P (R) ∼ exp


−

(
9α3

4πρkBT

)1/4

−
(

3

4πρkBT

)(
9

4πραkBT

)−3/4



⇒ σ ∼ exp


−4

3

(
9α3

4πρkBT

)1/4



⇒ T0 =
64

9π

α3

ρkB

In general the numerical coefficient is unimportant, but rather the functional dependence
on α and ρ.

3. Replace equation 8 with ε = αR, the solution of the 1D Laplace’s equation. Eliminate R
with equation 7 to obtain

αε =
1

ερ

⇒ ρ ∼ ε−2

∼ |E − EF|−2

a singularity.

4. Replace equation 2 with

δE ∼ 1/ρRd

7→ 1/∆EδRd

⇒ ∆E ∼ R−d/(δ+1)
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Now minimise the exponent with respect to R

0 = α− β
(

d

δ + 1

)
R(d+δ+1)/(δ+1)

⇒ R ∼
(
β

α

)(δ+1)/(d+δ+1)

⇒ σ ∼ exp

[
−
(
T0

T

)(δ+1)/(d+δ+1)
]

The Efros & Shklovskii density of states has δ = d− 1 which implies the exponent

δ + 1

d+ δ + 1
=

1

2

which is independent of d. We therefere expect hopping to give

σ ∼ exp
[
−(T0/T )1/2

]

in the presence of Coulomb interactions.

5. We have

dβ

d ln g
=

d

d ln g

(
1− a

gn

)

=
d

d ln g
(1− a exp(−n ln g))

= an exp(−n ln g)

= n
a

gn

Now evaluate this when β = 0 to obtain β ′ = n. From equation 25 we conclude that the
critical exponent is 1/n.

6. The crystal obeys Bloch’s theorem

ψ(r) = exp(ikr)U(r)

where U(r) is periodic. The kinetic energy may be evaluated

− h̄2

2m

d2ψ

dr2
=

h̄2

2m

(
k2U − 2ik

dU

dr
− d2U

dr2

)
exp(ikr)

= exp(ikr)
1

2m

(
h̄

i

d

dr
+ h̄k

)2

U(r)

Compare this with the ring which is threaded by a flux Φ, represented by a vector potential
A = (Φ/2πR)θ̂ where R is the radius of the ring. Thus the kinetic energy on the ring
may be written

1

2m

(
h̄

i

1

R

d

dθ
− e Φ

2πR

)
ψ(θ)

Comparing these 2 equations gives

k =
eΦ

2πh̄R
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Note that the energy should be periodic in k with period 2π/2πR = 1/R which im-
plies that it should be periodic in Φ with period h/e, a flux quantum for single electrons
(compare h/2e for superconductors).

The group velocity for a particular k state in the crystal is given by

vg =
1

h̄

dE

dk

which would imply for the ring

vg =
2πR

e

dE

dΦ

Alternatively consider Hamilton’s equation v = dH/dp.

Hence the ring carries a current for almost any finite flux.

This might be detected by measuring the magnetic response of the system, using (e.g. ) a
SQUID.

Note that the group velocity should scale as the band width, in this case the Thouless
energy, and should therefore be small for disordered wires and larger for clean systems
such as those formed by using a ring shaped gate on a semiconductor. In addition the
contributions from different bands can have different signs, also tending to reduce the
signal. This is not observed in experiments: the magnetic response of dirty systems is
typically much larger than expected and more like that expected from clean systems.

7. We start from

∑

i

Tiρi (µ1 − µB) =
∑

i

(2− Ti) ρi (µB − µ2)

∑

i

(1 +Ri) ρi (µ1 − µA) =
∑

i

(1−Ri) ρi (µA − µ2) ,

subtract the 2 equations and then sort the terms containing µ1 & µ2 on the left and those
containing µA & µB on the right.

[∑

i

Tiρi − (1 +Ri) ρi

]
µ1 +

[∑

i

(2− Ti) ρi − (1− Ri) ρi

]
µ2

=

[∑

i

(2− Ti) ρi + Tiρi

]
µB −

[∑

i

(1−Ri) ρi + (1 +Ri) ρi

]
µA

which leads us to
[∑

i

(−1 + Ti − Ri) ρi

]
µ1 +

[∑

i

(1− Ti +Ri) ρi

]
µ2

=

[∑

i

2ρi

]
µB −

[∑

i

2ρi

]
µA

which can be rearranged into

µ1 − µ2 =
2
∑
i ρi∑

i (1− Ti +Ri) ρi
(µA − µB)

Substituting this into equation 43 gives the required result.
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Returning to the 1st pair of equations we note that the 1st refers to the right hand lead and
the 2nd to the left hand lead. Gneralising these we get

NR∑

i

Tiρ
R
i (µ1 − µB) =

NR∑

i

(2− Ti) ρRi (µB − µ2)

NL∑

i

(1 +Ri) ρ
L
i (µ1 − µA) =

NL∑

i

(1−Ri) ρ
L
i (µA − µ2) .

where we 1st sort the µs

2



NR∑

i

ρRi


µ2 +



NR∑

i

Tiρ
R
i


 (µ1 − µ2) = 2



NR∑

i

ρRi


µB



NL∑

i

ρLi


 (µ1 + µ2) +



NL∑

i

Riρ
L
i


 (µ1 − µ2) = 2



NL∑

i

ρLi


µA

Note at this point that the factors on the right hand side are simply the total density of
states over all channels. Dividing each of the equations by these density of states factors
and subtracting the 1st from the 2nd gives




1 +



NL∑

i

ρLi



−1 

NL∑

i

Riρ
L
i


−



NR∑

i

ρRi



−1 

NR∑

i

Tiρ
R
i








(µ1 − µ2) = 2 (µA − µB)

which leads immediately to

G =
4e2

h

NR∑

i

Ti

1 +



NL∑

i

ρLi



−1 

NL∑

i

Riρ
L
i


−



NR∑

i

ρRi



−1 

NR∑

i

Tiρ
R
i




which is the required result.

8. We can write equation 48 in matrix form making use of the symmetry Tij = Tji and of the
sum rules. We also note that the current in leads 1 and 2 should be zero and in leads 3 and
4 should be opposite. This gives

0 = (T12 + T13 + T14)µ1 − T12µ2 − T13µ3 − T14µ4

0 = −T12µ1(T12 + T23 + T24)µ2 − T23µ3 − T24µ4

I = −T13µ1 − T23µ2(T13 + T23 + T34)µ3 − T34µ4

−I = −T14µ1 − T24µ2 − T34µ3(T14 + T24 + T34)µ4

We don’t need µ3 and µ4 so we will solve the 1st 2 equations for these quantities and
subsitute them into the 3rd & 4th equations.

µ3 + µ4 = (µ1 + µ2)

−T13T12 + T23T12 + T13T23 − T12T24 − T14T12 − T14T24

T13T24 − T23T14

(µ1 − µ2)

µ3 − µ4 =
T13T12 + T13T23 + T13T24 + T12T24 + T23T12 + T14T12 + T23T14 + T14T24

T13T24 − T23T14
(µ1 − µ2)
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Substituting this into the 3rd equation (the 4th gives the same result) gives

I =
µ1 − µ2

T13T24 − T23T14




T13T23T14 + T14T13T12 + T14T13T24 + T14T23T12

+T12T13T24 + T23T13T24 + T23T12T24 + T23T14T24

+T34T12T24 + T34T14T12 + T34T14T24 + T34T13T24

+T34T23T14 + T34T13T12 + T34T13T23 + T34T23T12




Invert this to obtain µ1 − µ2 and hence calculateR12,34.

9. In the case of R12,34 the classical current flows through the central wire or loop. In addi-
tion to the classical current there will be universal conductance fluctuations, apparently
random fluctuations as a function of (e.g.) magnetic field with amplitude ∆G ≈ e2/h,
where G is the conductance or inverse resistance. In case (b) there will be a periodic
variation with a period given by the number of flux quanta which thread the loop. This
flux is Φ = Bπr2, where r = 0.25µ, which is Bπr2 · e/h flux quanta. In other words the
periodicity is ∆B = h/πr2e. In the case of R13,24 the classical voltage is zero. In this
case we expect to observe the above fluctuations but with a mean conductance of zero.

This system is supposed to be equivalent to a macroscopic solid or to the Sharvin-Sharvin
system. The technology is not able to guarantee that the rings are really similar. Each
ring will give an oscillation with the field as above but with a different phase. The net
effect is that all the periodic oscillations cancel. The backscattering contribution will be
the same for each ring, however, and this will give a weaker oscillation with a period half
of that expected.
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