Lecture 15: Vector Operator Identities ($R H B$ 8.8)

There are a large number of identities for div, grad, and curl. It's not necessary to know all of these, but you are advised to be able to produce from memory expressions for $\underline{\nabla} r, \underline{\nabla} \cdot \underline{r}$, $\nabla \times r, \nabla \phi(r), \nabla(a \cdot r), \nabla \times(a \times r), \nabla(f g)$, and 1234 below. You should be familiar with the rest and to be able to derive and use them when necessary!
Most importantly you should be at ease with div, grad and curl. This only comes through practice and deriving the various identities gives you just that. In these derivations the advantages of suffix notation, the summation convention and $\epsilon_{i j k}$ will become apparent.
In what follows, $\phi(\underline{r})$ is a scalar field; $\underline{A}(\underline{r})$ and $\underline{B}(\underline{r})$ are vector fields.

15. 1. Distributive Laws

1. $\underline{\nabla} \cdot(\underline{A}+\underline{B})=\underline{\nabla} \cdot \underline{A}+\underline{\nabla} \cdot \underline{B}$
2. $\underline{\nabla} \times(\underline{A}+\underline{B})=\underline{\nabla} \times \underline{A}+\underline{\nabla} \times \underline{B}$

The proofs of these are straightforward using suffix or 'x y z' notation and follow from the fact that div and curl are linear operations.

15. 2. Product Laws

The results of taking the div or curl of products of vector and scalar fields are predictable but need a little care:-
3. $\underline{\nabla} \cdot(\phi \underline{A})=\phi \underline{\nabla} \cdot \underline{A}+\underline{A} \cdot \underline{\nabla} \phi$
4. $\underline{\nabla} \times(\phi \underline{A})=\phi(\underline{\nabla} \times \underline{A})+(\underline{\nabla} \phi) \times \underline{A}=\phi(\underline{\nabla} \times \underline{A})-\underline{A} \times \underline{\nabla} \phi$

Proof of (4): first using $\epsilon_{i j k}$

$$
\begin{aligned}
\underline{\nabla} \times(\phi \underline{A}) & =\underline{e}_{i} \epsilon_{i j k} \frac{\partial}{\partial x_{j}}\left(\phi A_{k}\right) \\
& =\underline{e}_{i} \epsilon_{i j k}\left(\phi\left(\frac{\partial}{\partial x_{j}} A_{k}\right)+A_{k}\left(\frac{\partial}{\partial x_{j}} \phi\right)\right) \\
& =\phi(\underline{\nabla} \times \underline{A})+(\underline{\nabla} \phi) \times \underline{A}
\end{aligned}
$$

or avoiding $\epsilon_{i j k}$ and using 'x y z' notation: $\underline{\nabla} \times(\phi \underline{A})=\left|\begin{array}{ccc}\underline{e}_{x} & \underline{e}_{y} & \underline{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \phi A_{x} & \phi A_{y} & \phi A_{z}\end{array}\right|$.
The x component is given by

$$
\begin{aligned}
\frac{\partial\left(\phi A_{z}\right)}{\partial y}-\frac{\partial\left(\phi A_{y}\right)}{\partial z} & =\phi\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\left(\frac{\partial \phi}{\partial y}\right) A_{z}-\left(\frac{\partial \phi}{\partial z}\right) A_{y} \\
& =\phi(\underline{\nabla} \times \underline{A})_{x}+[(\underline{\nabla} \phi) \times \underline{A}]_{x}
\end{aligned}
$$

A similar proof holds for the y and z components.
Although we have used Cartesian coordinates in our proofs, the identities hold in all coordinate systems.

15. 3. Products of Two Vector Fields

Things start getting complicated!
5. $\underline{\nabla}(\underline{A} \cdot \underline{B})=(\underline{A} \cdot \underline{\nabla}) \underline{B}+(\underline{B} \cdot \underline{\nabla}) \underline{A}+\underline{A} \times(\underline{\nabla} \times \underline{B})+\underline{B} \times(\underline{\nabla} \times \underline{A})$
6. $\underline{\nabla} \cdot(\underline{A} \times \underline{B})=\underline{B} \cdot(\underline{\nabla} \times \underline{A})-\underline{A} \cdot(\underline{\nabla} \times \underline{B})$
7. $\underline{\nabla} \times(\underline{A} \times \underline{B})=\underline{A}(\underline{\nabla} \cdot \underline{B})-\underline{B}(\underline{\nabla} \cdot \underline{A})+(\underline{B} \cdot \underline{\nabla}) \underline{A}-(\underline{A} \cdot \underline{\nabla}) \underline{B}$

Proof of (6):

$$
\begin{aligned}
\underline{\nabla} \cdot(\underline{A} \times \underline{B}) & =\frac{\partial}{\partial x_{i}} \epsilon_{i j k} A_{j} B_{k} \\
& =\epsilon_{i j k}\left(\frac{\partial A_{j}}{\partial x_{i}}\right) B_{k}+\epsilon_{i j k} A_{j}\left(\frac{\partial B_{k}}{\partial x_{i}}\right) \\
& =B_{k} \epsilon_{k i j} \frac{\partial A_{j}}{\partial x_{i}}-A_{j} \epsilon_{j i k} \frac{\partial B_{k}}{\partial x_{i}}
\end{aligned}
$$

The proofs of (5) and (7) involve the product of two epsilon ijks. For example, this is why there are four terms on the rhs of (7).
All other results involving one $\underline{\nabla}$ can be derived from the above identities.

Example: If \underline{a} is a constant vector, and \underline{r} is the position vector, show that

$$
\underline{\nabla}(\underline{a} \cdot \underline{r})=(\underline{a} \cdot \underline{\nabla}) \underline{r}=\underline{a}
$$

In lecture 13 we showed that $\underline{\nabla}(\underline{a} \cdot \underline{r})=\underline{a}$ for constant \underline{a}. Hence, we need only evaluate

$$
\begin{equation*}
(\underline{a} \cdot \underline{\nabla}) \underline{r}=a_{i} \frac{\partial}{\partial x_{i}} \underline{e}_{j} x_{j}=a_{i} \underline{e}_{j} \delta_{i j}=a_{i} \underline{e}_{i}=\underline{a} \tag{1}
\end{equation*}
$$

and the identity holds.
Example: Show that $\underline{\nabla} \cdot(\underline{\omega} \times \underline{r})=0$ where $\underline{\omega}$ is a constant vector.
Using 6. $\underline{\nabla} \cdot(\underline{\omega} \times \underline{r})=\underline{\omega} \cdot(\underline{\nabla} \times \underline{r})-\underline{r} \cdot(\underline{\nabla} \times \underline{\omega})=0-0$

Example: Show that $\underline{\nabla} \cdot\left(r^{-3} \underline{r}\right)=0$, (where $r=|\underline{r}|$ as usual).
Using identity (3), we have

$$
\underline{\nabla} \cdot\left(r^{-3} \underline{r}\right)=r^{-3}(\underline{\nabla} \cdot \underline{r})+\underline{r} \cdot \underline{\nabla}\left(r^{-3}\right)
$$

We have previously shown that $\underline{\nabla} \cdot \underline{r}=3$ and that $\underline{\nabla}\left(r^{n}\right)=n r^{n-2} \underline{r}$. Hence

$$
\begin{aligned}
\underline{\nabla} \cdot\left(r^{-3} \underline{r}\right) & =r^{-3}(\underline{\nabla} \cdot \underline{r})+\underline{r} \cdot \underline{\nabla}\left(r^{-3}\right) \\
& =\frac{3}{r^{3}}+\underline{r} \cdot\left(\frac{-3}{r^{5}} \underline{r}\right) \\
& \left.=\frac{3}{r^{3}}+\frac{-3}{r^{5}} r^{2}=0 \quad \text { (except at } r=0\right)
\end{aligned}
$$

15. 4. Identities involving $2 \underline{\nabla}$'s
1. $\underline{\nabla} \times(\underline{\nabla} \phi)=0 \quad$ curl $\operatorname{grad} \phi$ is always zero.
2. $\underline{\nabla} \cdot(\underline{\nabla} \times \underline{A})=0 \quad \operatorname{div} \operatorname{curl} \underline{A}$ is always zero.
3. $\underline{\nabla} \times(\underline{\nabla} \times \underline{A})=\underline{\nabla}(\underline{\nabla} \cdot \underline{A})-\nabla^{2} \underline{A}$

Proofs are easily obtained in Cartesian coordinates using suffix notation:-
Proof of (8)

$$
\begin{aligned}
\underline{\nabla} \times(\underline{\nabla} \phi) & =\underline{e}_{i} \epsilon_{i j k} \frac{\partial}{\partial x_{j}}(\underline{\nabla} \phi)_{k}=\underline{e}_{i} \epsilon_{i j k} \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{k}} \phi \\
& =\underline{e}_{i} \epsilon_{i j k} \frac{\partial}{\partial x_{k}} \frac{\partial}{\partial x_{j}} \phi \quad\left(\text { since } \frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x} \text { etc }\right) \\
& =\underline{e}_{i} \epsilon_{i k j} \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{k}} \phi \quad(\text { interchanging labels } j \text { and } k) \\
& =-\underline{e}_{i} \epsilon_{i j k} \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{k}} \phi \quad(i k j \rightarrow i j k \text { gives minus sign) } \\
& =-\underline{\nabla} \times(\underline{\nabla} \phi)=0
\end{aligned}
$$

since any vector equal to minus itself is must be zero. Proof of (9) is similar. It is important to understand how these two identities stem from the anti-symmetry of $\epsilon_{i j k}$ hence the antisymmetry of the curl curl operation.
(10) can be proven using the identity for the product of two $\epsilon_{i j k}$. Although the proof is tedious it is far simpler than trying to use 'xyz' (try both and see!)
(10) is an important result and is used frequently in electromagnetism, fluid mechanics, and other 'field theories'.
Finally, when a scalar field ϕ depends only on the magnitude of the position vector $r=|\underline{r}|$, we have

$$
\nabla^{2} \phi(r)=\phi^{\prime \prime}(r)+\frac{2 \phi^{\prime}(r)}{r}
$$

where the prime denotes differentiation with respect to r. Proof of this relation is left to the tutorial.

Before commencing with integral vector calculus we review here polar co-ordinate systems.
Polar Co-ordinate Systems Here $d V$ indicates a volume element and $d A$ an area element. Note that different conventions, e.g. for the angles ϕ and θ, are sometimes used, in particular in the Mathematics 'Several Variable Calculus' Module.

Plane polar co-ordinates

Cylindrical polar co-ordinates

Spherical polar co-ordinates

