
Lecture 22: Stokes’ Theorem and Applications (RHB 9.9, Dawber chapter 6)

22. 1. Stokes’ Theorem

If S is an open surface, bounded by a simple closed curve C, and A is a vector field defined
on S, then

∮
C

A · dr =
∫
S

(∇× A) · dS

where C is traversed in a right-hand sense about dS. (As usual dS = ndS and n is the unit
normal to S).

Proof (D 6.1; RHB 9.9):

Divide the surface area S into N adjacent small surfaces as indicated in the diagram. Let
∆Si = ∆Si ni be the vector element of area at ri. Using the integral definition of curl,

n · (curl A) = n · (∇× A) = lim
∆S→0

1

∆S

∮
C

A · dr

we multiply by ∆Si and sum over all i to get

N∑
i=1

(
∇× A(ri)

)
· ni ∆Si =

N∑
i=1

∮
Ci
A · dr +

N∑
i=1

εi ∆Si

where Ci is the curve enclosing the area ∆Si, and the quantity εi → 0 as ∆Si → 0.

Since each small closed curve Ci is traversed in the same sense, then, from the diagram, all

contributions to
N∑
i=1

∮
Ci
A · dr cancel, except on those curves where part of Ci lies on the

curve C. For example, the line integrals along the common sections of the two small closed
curves C1 and C2 cancel exactly. Therefore

N∑
i=1

∮
Ci
A · dr =

∮
C

A · dr

Hence ∮
C

A · dr =
∫
S

(∇× A) · dS =
∫
S

n · (∇× A) dS
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Mathematical Note: For those worried about how to analyse ‘the error term’, note that for
finite N , we can put an upper bound

N∑
i=1

εi ∆Si ≤ S max
i

{
εi
}

This tends to zero in the limit N →∞, because εi → 0 and S is finite.

22. 2. Physical Applications of Stokes’ Theorem

In lecture 17 it was stated that if a vector field is irrotational (curl vanishes) then a line
integral is independent of path. We can now prove this statement using Stokes’ theorem.

Proof

Let ∇×A(r) = 0 in R, and consider the difference of two line integrals from the point r
0

to the point r along the two curves C1 and C2 as shown:∫
C1

A(r′) · dr′ −
∫
C2

A(r′) · dr′

We use r′ as integration variable to distinguish it from the limits of integration r
0

and r.

We can rewrite this as the integral around the closed curve C = C1 − C2:∫
C1

A(r′) · dr′ −
∫
C2

A(r′) · dr′ =
∮
C

A(r′) · dr′

=
∫
S

∇× A · dS = 0
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In the above, we have used Stokes’ theorem to write the line integral of A around the closed
curve C = C1 − C2, as the surface integral of ∇×A over an open surface S bounded by C.
This integral is zero because ∇× A = 0 everywhere in R. Hence

∇× A(r) = 0 ⇒
∮
C

A(r′) · dr′ = 0

for any closed curve C in R as claimed.

Clearly, the converse is also true ı.e. if the line integral between two points is path inde-
pendent then the line integral around any closed curve (connecting the two points) is zero.
Therefore

0 =
∮
C

A(r′) · dr′ =
∫
S
∇× A · dS

where we have used Stokes’ theorem and since this holds for any S the field must be irrota-
tional.

Ampère’s Law

In Physics 2 you will have met the integral form of Ampère’s law, which describes the
magnetic field B produced by a steady current J :∮

C

B · dr = µ0

∫
S
J · dS

where the closed curve C bounds the surface S i.e. the rhs is the current flux across S. We
can rewrite the lhs using Stokes’ theorem to obtain∫

S
(∇×B) · dS = µ0

∫
S
J · dS .

Since this holds for any surface S we must have

∇×B − µ0 J = 0

which is the differential form of Ampère’s law and is one of Maxwell’s equations (see next
year).

Planar Areas

Consider a planar surface in the e1−e2 plane and the vector field

A =
1

2
[−ye1 + xe2] .

We find ∇×A = e3. Since a vector element of area normal to a planar surface in the e1−e2

plane is dS = dS e3 we can obtain the area in the following way∫
S
∇× A · dS =

∫
S
e3 · dS =

∫
S
dS = S

Now we can use Stokes’ theorem to find

S =
∮
C

A · dr =
1

2

∮
C

(−ye1 + xe2) · (e1dx+ e2dy)

=
1

2

∮
C

(x dy − y dx)
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where C is the closed curve bounding the surface.

e.g. To find the area inside the curve

x2/3 + y2/3 = 1

use the substitution x = cos3 φ, y = sin3 φ, 0 ≤ φ ≤ 2π then

dx

dφ
= −3 cos2 φ sinφ ;

dy

dφ
= 3 sin2 φ cosφ

and we obtain

S =
1

2

∮
C

(
x
dy

dφ
− y dx

dφ

)
dφ

=
1

2

∫ 2π

0

(
3 cos4 φ sin2 φ+ 3 sin4 φ cos2 φ

)
dφ

=
3

2

∫ 2π

0
sin2 φ cos2 φ dφ =

3

8

∫ 2π

0
sin2 2φ dφ =

3π

8

22. 3. Example on joint use of Divergence and Stokes’ Theorems

Example: show that ∇ · ∇ × A ≡ 0 independent of co-ordinate system:

Let S be a closed surface, enclosing a volume V . Applying the divergence theorem to ∇×A,
we obtain ∫

V

∇ · (∇× A) dV =
∫
S

(∇× A) · dS

Now divide S into two surfaces S1 and S2 with a common boundary C as shown below

Now use Stokes’ theorem to write∫
S

(∇× A) · dS =
∫
S1

(∇× A) · dS +
∫
S2

(∇× A) · dS =
∮
C

A · dr −
∮
C

A · dr = 0

where the second line integral appears with a minus sign because it is traversed in the
opposite direction. (Recall that Stokes’ theorem applies to curves traversed in the right
hand sense with respect to the outward normal of the surface.)

Since this result holds for arbitrary volumes, we must have

∇ · ∇ × A ≡ 0
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