
Experiments typically require the establishment of some relationship
between physical parameters – for example, the period of a
pendulum and its length. All of the experiments in the Physics 2B
laboratory require the fitting of a straight line to experimental data,
from which the physical quantity of interest, and its uncertainty, can
be determined.

But given a series of linear data points, each with an uncertainty, how
does one determine the “best” straight line through the set of data?
The best fitting straight line is clearly that which can be drawn
passing through, or close to, all the data points. But:

no two people will draw the same “best” line through a given data
set

if the uncertainty on each data point is different, how do we take
this into account in determining the “best” straight line?

finding the uncertainties in the gradient and -axis intercept of the
graph is cumbersome, and tends to overestimate their values

To avoid these problems we can give a mathematical statement of
what the “best fitting” straight line means, and then use a computer to
determine it for us.

Figure 1 shows an graph with a line passing close
to the data points. For each individual value of , labeled , there are

two values of : refers to the value, that is, the one

measured in the experiment, and refers to the value of

found using the equation of a straight line
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The difference between the observed and calculated -value of each
data point is called the and is given by

We clearly want of straight line to have small values of for each

data point. And we state that the straight line will be the
one where the sum of the squares of the residuals (squared so that
each has a positive contribution to the sum) is smallest. If each data

point has an uncertainty in its -coordinate of , then we can define a

quantity (chi-squared) as:

Where the sum is over the data points.
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Key Point: The best fitting straight line is the one which gives the

minimum value of .
2

Weighted and unweighted fits to the same experimental data are
shown in Figure 2. Note that the weighted fit preferentially fits the
data with the smaller uncertainties at the expense of the data point at
=300s which has the largest uncertainty.

For data points fitted by a straight line having 2 adjustable

parameters ( and ), the expected value of is . This is also

known as the number of degrees of freedom. If is larger or smaller
than this then this indicates that something is wrong with the
assumptions that you have made.

If > then the model is not capable of representing the data to
the accuracy suggested by the error bars. Thus, the error bars are

for the scatter of the data.

If < , then the errors have been overestimated, i.e. the fit to
the data is good, and the error bars are relative to the
scatter of the data.

The value of can be estimated from a plot of the residuals after the
least-squares fit.

If then ~2/3rds of the data should lie within 1 of the
zero.

If > then <2/3rds of the data lie within 1 of the zero.

If < then >2/3rds of the data lie within 1 of the zero.

Figure 3 shows a linear fit to data obtained from a Michelson
interferometer experiment. The fit to the data is excellent, and a plot

of the residuals shows that the data points are within 1 of the
best-fitting straight line, suggesting that the uncertainties in the

micrometer readings of 0.002mm have been overestimated. We

would therefore expect the value of to be smaller than 11 2=9.

Calculation gives a value of = 3.1.

Figure 4 shows a linear fit to further data obtained from the same
experiment. Although the linear fit to the data excellent, a plot
of the residuals shows a serious systematic misfit. We would

therefore expect to be greater than 13 2=11. Calculation gives =
244.

This final example demonstrates the invaluable information that is
visible in a plot of the residuals.
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Weighted and Unweighted Fits

LINEST

LSFIT

In an LS fit we assume that the uncertainty on each data point is the
same, and all data points are then treated equally. This is the type of fit
performed by the standard function in Excel.

In a LS fit, we assume that the uncertainties are not the same and
weight each data point separately. Data points with small uncertainties are then
fitted at the expense of those with larger uncertainties. This is the type of fit
performed in Excel by the function. This is a non-standard addition to
Excel, and was developed in the Dept of Physics at the University of Texas,
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Least-Squares Fitting of a Straight Line

Micrometer reading versus N x lambda/2

(gradient is (–) the gear ratio)
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Residual versus N x lambda/2
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Micrometer reading vs n x (lambda^2)/2 for Na doublet
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Residual vs n x (lambda^2)/2 for sodium doublet
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Figure 1: - graph showing the residual .x y yD i Figure 2:Least-squares fit to data showing both
weighted and unweighted fits.

Figure 3: (Left) Linear LS fit to data from the Michelson interferometer experiment. The fit is excellent, and
a plot of the residuals (Right) reveals no systematic deviations, but suggests that the uncertainties on each
data point have been slightly overestimated.

Figure 4: (Left) The linear LS fit to this data from the Michelson interferometer experiment looks excellent,
but a plot of the residuals (right) from the fit shows a clear systematic deviation from a straight line.
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Mass of Copper Electrode Versus Time Showing

Weighted and Unweighted Fits
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