Accelerators and Detectors

Outline

Accelerators

Linear Accelerators Cyclotrons and Synchrotrons Storage Rings and Colliders Particle Physics Laboratories

Interactions of Particles with Matter Charged Particles Neutral Particles, Photons

Detectors in Particle Physics Position sensitive devices Calorimeters

Particle Identification

Experiments Mainly at collin

Mainly at colliders

Particle Accelerators

Accelerator Principle

Charged particles are accelerated to high energies using electromagnetic fields e-, e+, p, anti-p, ionised nuclei, muons

Why are Accelerators used?

Higher energies or momenta allow to probe shorter distances de Broglie wavelength

 $\lambda = \frac{\hbar c}{pc} = \frac{197 \text{ MeV} \cdot \text{fm}}{p \text{ [GeV/c]}}$

e.g. 20 GeV/c probes 0.010 fm <u>Cockroft-Walton Accelerator</u>

> High DC voltage accelerates particles through steps created by a voltage divider Limited to ~ 1 MV

Fermilab Injector

Ionised hydrogen, H₂- source accelerated to 750 kV

Van de Graaff Accelerator

charge transported by belt Limited to ~ 10 MV

Nuclear and Particle Physics

Linear Accelerators - Linac

E

<u> Working Principle – Linac</u>

Charged particles in vacuum tubes accelerated by Radio Frequency (RF) waves

RF tubes increase in length size a particle speed increases (protons, for e- $v \cong c$) Radio Frequency Acceleration

Radio Frequency fields O(few 100 MHz) Field strengths - few MV/m - klystrons transported by RF cavities Oscillating RF polarities produce successive accelerating kicks to charged particles when RF is decelerating particles shielded in RF tubes Particles in phase with RF

Fermilab Injector

400 MeV protons, 150 m long

Stanford Linear Accelerator (SLAC)

Largest Linac - 3 km long, 50 GeV e- and e+

Franz Muheim

t

Circular Accelerators

Cyclotron

Charged particles are deflected in magnetic field B Lorentz Force $\vec{F}_{I} = e\vec{v} \wedge \vec{B}$ radius of curvature ρ $p[GeV/c] = 0.3B[T]\rho[m]$

Particle accelerated by RF in magnet with E perp. B Protons, limited to ~ 10 MeV relativistic effects

Synchrotron

B-field and RF synchronised with particle speed radius p stays constant Superconducting dipole magnets B-fields up to 8 Tesla Quadrupole magnets focus beam alternate focusing and defocusin in horizontal and vertical plane

Synchrotron Radiation

Accelerated particles radiate Energy loss per turn most important for e-

SpS at CERN

 $\Delta E = \frac{4\pi}{3} \frac{e^2 \beta^3 \gamma^4}{\rho}$

Storage Ring - Colliders

Beams from synchrotron or linac

have bunch structure

Secondary Beams

Accelerated beam from synchrotron or linac

on target $\rightarrow e, \mu, \pi, p, K, n, \nu, \gamma^A X$ beams Many different types of experiments

Storage Rings

Particle beams accelerated in synchrotron and stored for extended periods of time

Colliders

Two counter-rotating beams collide at several interaction points around a ring

Luminosity

$$L = \frac{N_1 N_2}{r_x r_y} f n_B$$

N: # of particles in beam I

- # of bunches/beam n⊳
- $r_{x,y}$ beam dimension in x,y
- revolution frequency f

Fermilab

Chicago, http://www.fnal.gov Tevatron Current highest E_{COM} energy collider 1 TeV p on 1 TeV anti-p maximum 10¹² anti-p **Nuclear and Particle Physics**

Storage Ring - Colliders

CERN

Geneva, Switzerland, <u>http://www.cern.ch</u> PS -- 29 GeV, injector for SPS SPS -- 450 GeV p onto 450 GeV anti-p injector for LEP/LHC LEP -- 100 GeV e- onto 100 GeV e+ . antiprotos cms nautri neutrons destrone LHC SPS LHC-Ь ALICE ATLAS West And TOF 5 PS Gran Sasse (J 739 km

LHC -- will start in 2007 7 TeV p onto 7 TeV p 4 experiments ATLAS, CMS, LHCb, Alice

Nuclear and Particle Physics

Particle Physics Laboratories

Interactions with Matter

Basic Principles

Mainly electromagnetic interactions, ionization and excitation of matter "Applied QED", lots of other interesting physics **Charged Particles** Electrons, positrons Heavier particles: μ , π , K, p, ... Energy loss Inelastic collisions with the atomic electrons Deflection Elastic scattering from nuclei Bremsstrahlung Photon emission (Scintillation, Cherenkov) Neutral Particles Photons Photo electric effect **Compton** scattering **Pair** Production Neutrons, Neutral hadrons Nuclear reactions

Neutrinos

Weak reactions

Nuclear and Particle Physics

Energy Loss

e- and e+ $(m_{proj} = m_{target}) \rightarrow Bremsstrahlung$ dE/dx ~ 1/m_{target} \rightarrow scattering off nuclei very small

Bethe-Bloch

 $\begin{array}{lll} d\text{E}/dx \; \text{Energy Dependence} \\ & \text{only on } \beta\gamma & \text{independent of } m_{\text{proj}} \\ & \text{For small } \beta & d\text{E}/dx \; \propto \; 1/\beta^2 \\ \hline \text{Minimum Ionising Particles} \\ & \text{For } \beta\gamma \approx 4 \; \text{or } \beta \approx 0.97 \quad (\text{MIP}) \\ \hline \text{Relativistic rise} \\ & \text{For } \beta\gamma \gg 1 & \ln \gamma^2 \; \text{term} \\ & \text{Relativistic expansion of transverse E-field} \\ \end{array}$

larger for gases than dense media

Density effect δ term

Cancels relativistic rise cancelled at very high γ polarization of medium screens more distant atoms

dE/dx rather independent of Z except hydrogen

$$\frac{dE}{dx}\approx 1\dots 2\ MeV\ g^{-1}cm^2$$

Interaction of Photons

How do Photons interact?

- Photons are neutral
- Photons can create charged particles
- or transfer energy to charged particles

Photoelectric effect

Compton scattering

e+e- Pair Production

in Coulomb field of nucleus which absorbs recoil, requires $E_{\gamma} \ge 2m_e c^2$

 γ + nucleus \rightarrow e^+e^- + nucleus

 $\boldsymbol{\gamma}$ energy does not degrade, intensity is attenuated

Absorption of Photons in Matter

I: Intensity x: Target thickness

$$I_{\gamma} = I_0 \exp(-\mu x)$$

$$\mu = \mu_{photo} + \mu_{Compton} + \mu_{pair} + \dots$$

$$\mu_i = \frac{N_A}{A} \sigma_i \quad \left[cm^2 / g \right]$$

Nuclear and Particle Physics

Particle Detection

Experimental Measurements

Momentum, energy, and mass identification of charged and neutral long-lived particles e, μ , π , K, p, γ , n, ν

Parton Shower/ Hadronisation Particle Identification

<u>Hadrons versus Quarks</u>

Experiments/detectors measure hadrons Theory predicts quark and parton distributions Hadronisation by Monte Carlo methods

Nuclear and Particle Physics

Charged Particle Tracking

Nuclear and Particle Physics

by wire spacing

Franz Muheim

of MWPC

Tracking Detectors

Drift Chamber

Measure also drift time Drift velocities 5 ... 50 mm/µs Improved spatial resolution 100 ... 200 µm Fewer wires, less materia' Volumes up to 20 m³ Best for e+e- detectors BaBar experiment (SLAC) ~29000 wires ~7000 signal wires

Silicon Detectors

Metal strips, pads, pixels evaporated on silicon wafer Semi-conductor device Reverse bias mode Typically 50µm spacing and 10 µm resolution CMS experiment (LHC) 250 m² silicon detectors ~ 10 million channels

Nuclear and Particle Physics

Shower Cascades

Electron lose energy by Bremsstrahlung

$$-\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} z^2 \left(\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mc^2}\right)^2 E \ln \frac{183}{Z^{\frac{1}{3}}} \propto \frac{E}{m^2}$$

High energy e- (e+) or γ

-> electromagnetic showers

 π , K, p, n, ... produce hadronic showers

Sampling Calorimeter

Alternate between absorber materials (Fe, Pb, U) and

active layers (e.g. plastic scintillators)

Homogeneous Calorimeter

Measures all deposited energy Examples: scintillating crystals (NaJ, CsI, BGO, ...)

or cryogenic liquids (argon, krypton, xenon)

Energy measurement Better resolution for

electromagnetic shower

BaBar experiment 6580 CsI (Tl) crystals

Calorimeter - Insertion of last Module

Particle Identification

How do we measure Particle type?

Uniquely identified by its mass m Particles have different interactions Momentum $p = m\gamma\beta c$ of charged particles measured with tracking detectors

<u>Electrons, Photons</u>

Electromagnetic Calorimeter (crystal) Comparison with momentum (electron) Shower shape (electrons, photons)

Charged Particle Identification

Have momentum $p = m\gamma\beta c$ Need to measure particle velocity $v = \beta c$ Charged particles radiate Cherenkov photons in medium with speed v larger than c/n (refr. index n)

$$\cos \theta_C = \frac{1}{n\beta}$$
 with $n = n(\lambda) \ge 1$

Cherenkov angle measures v = βc

<u>Ring Imaging Cherenkov Detector</u>

<u>Muons</u>

Most penetrating particle little Bremsstrahlung

a few metres of iron and only muons are left