

QCDOC Project
Supercomputing 2004
Peter Boyle
for the QCDOC collaboration

QCDOC Collaboration

Columbia: N. Christ, S. Cohen, C. Cristian, C. Kim,

L. Levkova, X. Liao, G. Liu,

R. Mawhinney, A. Yamaguchi

UKQCD: P. Boyle, B. Joo

Riken-Brookhaven: S. Ohta (KEK), T. Wettig (Regensburg)

SciDac: C. Jung, K. Petrov

IBM Research: A. Gara, D. Chen

Introduction

Quantum Chromodynamics On a Chip

Scientific instrument designed to simulate the strong nuclear force that binds quarks in protons, QCD.

- Quarks and gluons analogous to electrons and photons
- Non-linear must be solved numerically
- Perform Feynman path integral for QCD in $(2fm)^4$ 4-torus importance sampling, Markov, Metropolis etc...
- 32^4 box $\Rightarrow 10^8$ dimensional integral
- Each sample costs around $\simeq 10^{16} 10^{20}$ flops.
- Hundreds of Teraflop-years (or more)
- Dirac equation must be solved millions of times along Markov chain

Dirac Equation

$$\sum_{\mu=x,y,z,t} \gamma^{\mu} (\partial_{\mu} + igA_{\mu}(x)) \psi(x) = m\psi(x)$$

The QCD Gluon field A_{μ} is a 3 × 3 complex analog of the electromagnetic vector potential. \Rightarrow 2 GB/s memory BW per Gflop/s

 ψ is a 3 (color) \times 4 (spin) complex field

Problem characteristics

Krylov solvers dominate: Dirac matrix multiply + global summation

- Simple nearest neighbour stencil.
- Communications are nearest neighbour on Toriodal Network
- Very large machines ⇒ small local sub-lattice
- Challenge is to provide the data fast enough
- Interconnect as agressive as a local DRAM system
- Communications repetitive
- Communicate in multiple directions simultaneously
- Predictable memory access patterns ⇒ prefetch

Exploit simplifications: special purpose machines increase scalability

Machine	Date	Processor (FPU precision)	Nodes	Speed (Gflops)	Memory (GBytes)
Previous:					
3x3 multiplier	1983	CU(16) + PDP11	1	0.001	192 Bytes
16-node	1985	286/TRW (22)	16	0.25	0.016
64-node	1987	286/Weitek (32)	64	1.0	0.128
256-node	1989	286/Weitek (64)	256	16.0	0.5
CU QCDSP	1998	TI DSP (32)	8,192	400	16
RBRC QCDSP	1998	TI DSP (32)	12,288	600	24
Current:					
RBRC QCDOC	2004	440 PPC (64)	12,288	10,000	1,570
UKQCD QCDOC	2004	440 PPC (64)	12,288	10,000	1,570
US LGT QCDOC	2005	440 PPC (64)	12,288	10,000	1,570

Also: http://www.netlib.org/utk/lsi/pcwLSI/text/node38.html

Caltech, APE, Fermilab, GF11, QCDPAX, CP-PACs, GigE mesh.

QCDOC Architecture

- 6 dimensional torus
- QCD can be maximally spread out in four/five dimensions
- Extra dimensions allow partitioning
- Over 10k nodes ⇒ small subvolume per node
- fast on-chip memory
- high performance nearest neighbour communication
- 24 DMA FIFO's to nearest neighours.
- Frequent global summation : Hardware assist
- Communication performance \simeq memory performance

QCDOC Asic Technology

- ullet IBM SA27E 0.18 μ mixed logic + Embedded DRAM process
- 420 MHz IBM PowerPC SoC (440 CPU + FPU)
- 5 Watts allowing high density
- Custom 4MB on-chip embedded memory controller (IBM Research, Yorktown Heights)
- Custom communication network and DMA (Columbia)
- Custom Ethernet-JTAG boot/diagnostic protocol (IBM Research, Yorktown Heights)
- Hardware and Software Co-Designed

Serial Communications Unit

- 12 × 420Mbit/s LVDS serial links using IBM HSSL transceivers
- Single bit detect, ACK/NACK, hardware retransmit, checksums
- Block-strided descriptor based DMA
- Concurrently runs all links efficiently
- Hardware assist for global summation

Prefetching Edram Controller

- Wide 1152 bit backend to Embedded DRAM macros with ECC.
- Multiple ports: efficient concurrent access for Comms and Compute
- Each PEC port linearly prefetches two streams
- Double buffers gather writes

QCDOC Asic, 1 Gflop/s

QCDOC Daughterboard 2 Gflop/s, \$450

Two independent compute nodes + Ethernet system

QCDOC Motherboard, \$17k

64 Gflop/s, 32 Daughterboards, 64 nodes, very dense 768 Gigabit/s internode, 800 Mbit/s Ethernet.

QCDOC Motherboard

4096 node prototype, 4Tflop/s, \$1.6 million (Air cooled with chilled water heat exchanger)

12288 node UKQCD machine on the BNL machine floor. 10.3 Tflop/s peak (current clock speed), \$5 Million

UKQCD machine disassembled and in shipping, 12288 node RBRC machine nearly complete, 12288 node DOE SciDAC machine by March

DDR memory data eye (write path)

Ethernet Data Eye (three level signal)

Performance

- Memory system performance
- Network performance
- Application performance

Streams performance

Compiler/Options/Code	Comment	Memory	MB/s
xlc -O5 -qarch=440	vanilla source	Edram	747
gcc-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6	vanilla source	Edram	747
gcc-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6	builtin_prefetch	Edram	1024
Assembly	Auto-generated asm	Edram	1670
xlc -O5 -qarch=440	vanilla source	DDR	260
gcc-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6	vanilla source	DDR	280
gcc-3.4.1 -funroll-all-loops -fprefetch-loop-arrays -O6	builtin_prefetch	DDR	447
Assembly	Auto-generated asm	DDR	606

- Multi link bandwidth as good as CPU memory bandwidth!
- Up to 8,000,000 ping ping packets per second using all 12 links
- Single link half RTT Latency: 690 ns.
- Single link ping pong obtains 50% max bandwidth on 32 byte packets.

Global reduction

- Hdw acceleration for "All-to-All" along an axis.
- CPU performs arithmetic.

GlobalSum
$$ightarrow$$
 300ns $imes rac{1}{2} D(N_{\mathsf{proc}})^{\frac{1}{D}}$

- Slope of log-log plot asymptotically $\frac{1}{D}$
- 1024 node global sum in *under* 16 μ s.
- 20-30 μ s (estimated) for $D \geq$ 3 on 12k nodes

Application code performance

Various discretisations, 4⁴ local volume

Action	Nodes	Sparse Matrix	CG Performance
Wilson	512	44%	39%
AsqTad	128	42%	40%
DWF	512	46%	42%
Clover	512	54%	47%

On 2⁴ surface to volume ratio is 4

QCDOC nodes can apply Wilson sparse matrix in around 20 μ s for 44% of peak with 16 distinct communications.

Scaling

16⁴ on 1k nodes (equivalent to 32⁴ on 16k nodes)

Expect 4 to 5 Tflop/s sustained on large machines

Partitioning

- Machine is a $2k \times 2l \times 2m \times 2 \times 2 \times 2$ hyper-torus.
- Partitions are 6d hyper-rectangular slices of machine
- Locally redefine Application to Machine axis map
- Present 1,2,3,4,5 or 6 dim torus to applications
- Logical nearest neighbor is physically the nearest neighbor

Remapped slice of machine: lower dimensional torus:

- Fold any two dimensions independent of others
- Can iterate to fold multiple dimensions together

Software environment

Custom node kernel

- Integrated diagnostics
- One application process
- No timer driven scheduling
 - → avoid scheduler induced slowdown
- Map physical memory in TLB
 - → avoid TLB misses
 - → Zero-copy DMA
- User space access to communications hardware reduces latency
- POSIX compliant single process subset (Cygwin/newlib libc)
- Custom Ethernet driver
- Custom NFS client provides I/O to host and trivially parallel file system

Multi-threaded *qdaemon* on host boots machine in under 2 minutes Boot via JTAG download to I/D cache in parallel Qdaemon provides diagnostics, program load, user interface.

Reliability

- Careful and controlled boot process
- Log and test each memory, device, bus, bridge before use
- Discovers and checks machine topology
- Count and report DDR, Edram ECC errors
- Count and report SCU link errors
- Report checksum mismatches on any link in machine
- Optionally terminate jobs on any correctable errors
- Application level: run 10% reproducibility testing long term
- 100% reproducibility testing during shakeout phase

Compile Chain & Programming environment

- C/C++ with message passing extensions
- Two standard "C" and "C++" compile tools: GCC, XLC
- Library for internode message passing (QMP, SCU)
- QMP is SciDAC QCD cross platform library for message passing
- Lean libraries reduce latency
- Library supports pre-registered channels and multidirectional optimisation
- Software routing for multi-hop packets
- Memory allocation extensions for Edram void *qalloc(int flags,size_t bytes)
- Standard compliant: benefits everyone documentation is already written & code is portable

Summary

- Machine is very scalable on Cartesian nearest neighbor problems
- Exceptional internode latency/bandwidth characteristics
- Sub-microsecond ping-pong
 8 million small messages per second half maximum on 32 byte packets
- Exceptional global reduction performance
- Good memory performance: 2 Bytes/Flop
- Ideal scaling obtained for a very tightly coupled problem
- Novel dimension folding scheme allows 1d to 6d problems
- Low power and low cost allows very large systems to be built
- \$1 USD per sustained Mflop/s at 5 Tflop/s on a non-trivial problem
- 30 peak Tflop/s aggregate on three machines
- Machines will be run 24×7 for 5 years in a dedicated fashion

