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Abstract

These are the lecture notes to accompany the Physical Mathematics lecture course.
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Chapter 1

Introduction

1.1 Organisation

Online notes & tutorial sheets

www.ph.ed.ac.uk/~paboyle/

1.1.1 Books

There are many books covering the special functions material in this course. Good ones
include:

• “Mathematical Methods for Physics and Engineering”, K.F. Riley, M.P. Hobson and
S.J. Bence (Cambridge University Press)

• “Mathematical Methods in the Physical Sciences”, M.L. Boas (Wiley)

• “Mathematical Methods for Physicists”, G. Arfken (Academic Press)

These, and plenty more besides, are available for free in the JCMB library.

1.1.2 On the web

There are some useful websites for quick reference, including:

• http://mathworld.wolfram.com,

• http://en.wikipedia.org,

• http://planetmath.org.

• Numerical Recipes: http://apps.nrbook.com/c/index.html.
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1.1.3 Workshops

Workshops run from week 2 through week 11.
There are two sessions:

• Tuesday 11:10-12:00 (room 1206C JCMB)

• Tuesday 14:00-15:50 (room 3217 JCMB)

1.1.4 Feedback

In week 8, I will hand out a 60 minute mock exam, and example solutions.

Anyone who wishes to have their script marked for feedback can hand this in. The mark will
not contribute to your course mark, but serves as useful practice and diagnostic.

1.1.5 Structure

This brief introduction is Chapter 1. The rest of the course is composed of two parts.

Chapter 2 covers techniques for the solution of the partial differential equations (PDE’s) of
physics.

Chapter 3 covers probability, statistics and the fitting of data.

The structure of the course is different compared to previous years, due to the reorganisation
of MFP in the second year.

• We retain the material on special functions and PDEs in curvilinear coordinate systems.

• We add material on probability and statistics.

You will note however from past papers that previous years contained substantial emphasis
on Fourier series and Fourier transforms, topics which it is now expected that you already
know and are skilled in using.



Chapter 2

Generalised Fourier series & special
functions
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2.1 PDE’s and physics

Physics involves the description of behaviour of the universe with partial differential equa-
tions. The main PDEs in physics are:

Poisson equation (electrostatics) Laplace equation
Wave equation Schrödinger equation
Navier-Stokes equations Maxwell’s equations

Some common ones are summarised in the following table.

Name Equation Physical context

Poisson ∇2φ(r) = −ρ(r)
ε0

Electrostatics:

φ(r) = potential;
ρ(r) = charge density.

Wave ∇2u(r, t) = 1
v2

∂2

∂t2
u(r, t) All areas:

v = wave speed;
u(r, t) = ‘displacement’
from equilibrium.

Laplace ∇2φ(r) = 0 Special cases of above.

Schrödinger
(
− h̄2

2m
∇2 + U(r)

)
ψ(r) = Eψ(r) Quantum mechanics:

ψ(r) = wave function.

Solving these equations for two and three dimensional problems can be challenging, and the
first half of this course addresses techniques for the solution of PDEs in common situations.

This general approach involves several concepts which we will cover in more detail later.

1. Differential operators
Gradient, Divergence and Curl are the building blocks for three dimensional equations.

2. Separation of variables
the problem can be simplified to independent one dimensional ODE’s by seeking solu-
tions of a particular form.

3. Solution of the separated ODEs
Recognising solution (e.g. wave equation)
Substitute a power series (Method of Froebenius)

4. Reconstruct general solution
The orthogonality and completeness of the solutions of an ODE allow us to write any
solution as a linear combination of the normal mode solutions.
It is this property that allows us to represent general functions by Fourier series.
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We shall see that the normal strategy for dealing with several dimensions in analytical
calculation is to duck the issue, and reduce it to one dimensional problems. This works for
symmetrical problems if we choose coordinate systems that possess the same symmetries.

For non-symmetrical situations, one often resorts to using numerical approaches. For ex-
ample, computational fluid dynamics is used to optimise the shapes of complex objects like
aeroplanes and cars.
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2.2 The wave equation

We can describe the transverse displacement of a stretched string using a function u(x, t)
which tells us how far the infinitesimal element of string at (longitudinal) position x has
been (transversely) displaced at time t. The function u(x, t) satisfies a partial differential
equation (PDE) known as the wave equation:

∂2u

∂x2
=

1

c2
∂2u

∂t2
(2.1)

where c is a constant,and has units of length over time (i.e. of velocity) and is, in fact, the
speed of propagation of travelling waves on the string.

In the absence of boundaries, the general solution can be seen by noting:

∂2u

∂x2
− 1

c2
∂2u

∂t2
=

(
∂

∂x
− 1

c

∂

∂t

)(
∂

∂x
+

1

c

∂

∂t

)
u

=

(
∂

∂x
+

1

c

∂

∂t

)(
∂

∂x
− 1

c

∂

∂t

)
u

This is solved by
u(x, t) = f(x− ct) + g(x+ ct)

where f and g are arbitrary functions of a single variable. This represents the superposition
of arbitrary left and right propagating waves.

2.2.1 Separation of variables

Our equation of motion in Eqn. (2.1) is perhaps the simplest second order partial differential
equation (PDE) imaginable – it doesn’t contain any mixed derivatives (e.g. ∂2u

∂x∂t
). We call

such a differential equation a separable one, or say that it is of separable form.

We can seek particular solutions in which variations with space and time are independent.
Such standing waves are of the seperable form:

u(x, t) = X(x) T (t) .

This really is a restriction of the class of possible solutions and there are certainly solutions
to the wave equation that are not of separated form (e.g. travelling waves as above).

However, we shall see all solutions of the wave equation (separated form or not) can be
written as a linear combination of solutions of separated form, so this restriction is not a
problem.

Differentiating, we get

∂u

∂x
=
dX

dx
T ≡ X ′T ⇒ ∂2u

∂x2
= X ′′T

∂u

∂t
=X

dT

dt
≡ XṪ ⇒ ∂2u

∂t2
= XT̈
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Substituting this into the PDE:

X ′′(x)T (t) =
1

c2
X(x)T̈ (t) ,

Thus,
X(x)′′

X(x)
=

1

c2
T̈ (t)

T (t)

Now
∂

∂t
LHS =

∂

∂x
RHS = 0

Hence both LHS and RHS must be equal to the same constant and we may write

X ′′

X
=

1

c2
T̈

T
= −k2 (say),

where −k2 is called the separation constant.

Now we have separated our PDE in two variables into two simple second order ordinary
differential equations (ODEs) in one variable each:

d2X

dx2
=− k2X(x)

d2T

dt2
=− ω2

kT (t)

where the angular frequency ωk = ck. This is the interpretation of c for standing waves: it
is the constant of proportionality that links the wavenumber k to the angular frequency ωk.

Quantum mechanics terminology

These have the form of an eigenvalue problem, where X(x) must be an eigenfunction of the
differential operator d2

dx2 with eigenvalue −k2. Similarly T (t) must be an eigenfunction of d2

dt2

with eigenvalue −ω2
k = −c2k2.

2.2.2 Solving the ODE’s

We can now solve the two ODEs separately. The solutions to these are familiar from simple
harmonic motion, and we can just write down the solutions:

X(x) =Ak sin kx+Bk cos kx

T (t) =Ck sinωkt+Dk cosωkt

⇒ u(x, t) = (Ak sin kx+Bk cos kx) (Ck sinωkt+Dk cosωkt)

where Ak, Bk, Ck, and Dk are arbitrary constants. The subscript denotes that they can take
different values for different values of k. At this stage there is no restriction on the values of
k: each values provides a separate solution to the ODEs.
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2.2.3 Boundary conditions

The details of a specific physical system may involve the boundary conditions (BCs) solutions
must satisfy. For example, what happens at the ends of the string and what were the initial
conditions.

• The string weight & tension on a guitar determine c.

• The length (& frets) of a guitar determine the boundary conditions.

• The plucking of the guitar determines the initial conditions.

Assume the string is stretched between x = −L and x = L, then the BCs in this case are
that

u(x = −L, t) = u(x = L, t) = 0

for all t. Because these BCs hold for all times at specific x, they affect X(x) rather than
T (t). We find

u(0, t) = 0 ⇒ Bk = 0 ,

u(L, t) = 0 ⇒ kn = nπ/L , n = 0, 1, 2 . . .

Here, BCs have restricted the allowed values of k and thus the allowed frequencies of os-
cillation. Different boundary conditions will have different allowed values. Restriction of
eigenvalues by boundary conditions is a very general property in physics:

finite boundaries ⇒ discrete (quantised) eigenvalue spectrum ⇒ allowable separation constants.

Each n value corresponds to a normal mode of the string:

u(x, t) = An sin knx{Cn sinωnt+Dn cosωnt}

A normal mode is an excitation of the string that obeys the BCs and oscillates with a single,
normal mode frequency. We sometimes call these eigenmodes of the system, with associated
eigenfrequencies ωn = ωkn .

Completeness

Just like any vector can be represented as a linear combination of basis vectors, so the general
solution to the wave equation is a linear superposition of (normal) eigenmode solutions:

u(x, t) =
∞∑
n=1

An sin knx{Cn sinωnt+Dn cosωnt}

≡
∞∑
n=1

sin knx{En sinωnt+ Fn cosωnt} (2.2)
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This normal mode decomposition not obvious and the proof is beyond the scope of this
course. We will simply assume this to be true.

In fact, almost any function can be described by such a linear combination of normal modes.

Completeness of the normal modes is general and applies to all “Sturm Liouville” ODE’s

As before ωn = ckn. We sum only from n = 1 because sin k0x = 0, and we do not need to
include negative n because sin −nπx

L
= − sin nπx

L
. Constants An, Cn, Dn are all unknown, so

we can merge them together to give En = AnCn and Fn = AnDn.

We also see that the way we have ensured that u(0, t) = 0 is by making it an odd function
in x: u(−x, t) = −u(x, t) ⇒ u(0, t) = 0.

2.2.4 Initial conditions

As we have a second order temporal ODE, we need two sets of initial conditions to solve the
problem. Typically these are the the shape f(x) and velocity profile g(x) of the string at
t = 0:

u(x, 0) = f(x) =
∞∑
n=1

Fn sin knx

u̇(x, 0) = g(x) =
∞∑
n=1

ωnEn sin knx

These conditions determine unique values for each of the En and Fn. Having got these, we
can substitute them back into the general solution to obtain u(x, t) and thus describing the
motion for all times.

Consider the equation for Fn. Let’s choose to calculate one, specific constant out of this set
i.e. Fm for some specific m. To do this, multiply both sides by sin kmx and integrate over
the whole string (in this case x = 0...L) giving:∫ L

0

dx f(x) sin kmx =
∞∑
n=1

Fn

∫ L

0

dx sin knx sin kmx .

Now we note that the sine functions form an orthogonal set :∫ L

0

dx sin knx sin kmx =
1

2

∫ L

0

dx [cos(knx− kmx)− cos(knx+ kmx)]

=
1

2


[

sin(knx−kmx)
kn−km

− sin(knx+kmx)
kn+km

]L
0

; n 6= m[
x− sin(knx+kmx)

kn+km

]L
0

; n = m

=
L

2
δmn

where δmn is the Kronecker delta, giving zero for m 6= n

The orthogonality of normal modes is general and applies to all “Sturm Liouville” ODE’s.
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So: ∫ L

0

dx f(x) sin kmx =
∞∑
n=1

Fn

∫ L

0

dx sin knx sin kmx

=
L

2

∞∑
n=1

Fnδmn

=
L

2
Fm

using the sifting property. Therefore, after relabelling m→ n:

Fn =
2

L

∫ L

0

dx f(x) sin knx

En =
2

Lωn

∫ L

0

dx g(x) sin knx . (2.3)

We are given f and g, so as long as we can do the integrals on the RHS, we have determined
all the unknown constants and therefore know the motion for all times.

The solution written as a sum of sine waves is an example of a Fourier series.

A quick example

Suppose the initial conditions are that the string is initially stretched into a sine wave
f(x) = a sin(3πx/L) (for some a) and at rest, i.e. g(x) = 0.

The latter immediately gives En = 0 for all n. The former gives:

Fn =
2

L

∫ L

0

dx f(x) sin knx

=
2a

L

∫ L

0

dx sin
3πx

L
sin

nπx

L
=

2a

L
× L

2
δn3

using the above relation. So all the Fn are zero except F3 = a. So the motion is described
by

u(x, t) = a sin
3πx

L
cos

3πct

L
.

The answer is very simple. If the system starts as a pure normal mode of the system, it will
remain as one.
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2.3 Method of Froebenius

A general method that works for more complicated equations can be illustrated by pretending
we do not know the solution to the wave equation.

2.3.1 Bill and Ted’s excellent misadventure

Bill and Ted have brought Pythagoras to the future and lost him in a night club. We now
live in a world without sin and cos. To rectify this we will use the method of Froebenius to
rediscover these precious functions

1. Substitute the infinite series y(x) =
∞∑
n=0

Cnx
n to the differential equation

y′′ + y = 0

We end up with two sums.

∞∑
n=0

cnn(n− 1)xn−2 +
∞∑
n=0

cnx
n = 0

2. Relabel the summation using m = n− 2 on the y′′ term obtaining

∞∑
m=−2

cm+2(m+ 2)(m+ 1)xm +
∞∑
n=0

cnx
n = 0

3. Use a notation where Ci = 0 for i < 0 to sum the y term over the range
∞∑

n=−2

∞∑
m=−2

cm+2(m+ 2)(m+ 1)xm +
∞∑

m=−2

cmx
m =

∞∑
m=−2

[cm+2(m+ 2)(m+ 1) + cm]xm = 0

4. As this is true for all values of x, each Hence we obtain the indicial equation

Cm+2(m+ 1)(m+ 2) = −Cm

This relates every other coefficient in a recurrence relation.

5. Deduce that C0 can be non-zero even though C−2 = 0, and that C1 can be non-zero
even though C−1 = 0 because

(m+ 2)(m+ 1) = 0

for m = −1,−2

We therefore have two independent series, and two free parameters C0 and C1 as should
be the case for a 2nd order ODE.
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6. We therefore find the series with

(a) C0 = 1, C1 = 0

∞∑
n=0

(−1)(n) x
2n

(2n)!
= 1− x2

2.1
+

x4

4.3.2.1
. . .

(b) C0 = 0, C1 = 1

∞∑
n=0

(−1)(n) x(2n+1)

(2n+ 1)!
= x− x3

3.2
+

x5

5.4.3.2
. . .

Giving these two independent series their names we recognise

cosx ≡ 1− x2

2!
+
x4

4!
. . .

sin x ≡ x− x3

3!
+
x5

5!
. . .

7. We can now make up the world’s first table of sinusoids by summing the series to high
order!

Towards the end of the 1800’s enormous effort was expended computing special func-
tions by hand to high order in the Taylor expansion, and tabulating the values as a
function of x.

In fact, prior to scientific calculators it was common for laboriously computed Tables
of Sines to be handed out in mathematics examinations, even in the 1980’s.
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2.4 Fourier Series

In the previous section we made things easy by considering the stretched string. The bound-
ary conditions were deliberately chosen to give us only sine solutions. Now we will consider
the more general case.

2.4.1 Overview

Fourier series are a way of decomposing a function as a sum of sine and cosine waves. We
say that the solutions of an ODE are complete because as the number of Fourier modes
included is taken to ∞ the Fourier series will completely describe any function (there is a
mathematically precise statement of this).

Fourier series are particularly useful if we are looking at system that satisfies a wave equation,
because sinusoids are the normal mode oscillations which have simple time dependence. We
can use this decomposition to understand more complicated excitations of the system.

Fourier series describe a finite interval of a function, typically −L→ L or 0 → L. If the size
of the system is infinite we instead need to use Fourier transforms.

Outside this range a Fourier series is periodic (repeats itself) because all the sine and cosine
waves are themselves periodic. The Fourier series periodically extends the function outside
the range.

Fourier series are useful in the following contexts:

• The function really is periodic e.g. a continuous square wave

• We are only interested in what happens inside the expansion range.

Fourier modes Consider the wave equation on an interval [−L,L] with periodic boundary
conditions

d2X(x)

dx2
= −k2X(x)

X(x+ 2L) = X(x)

The solutions look like

X(x) = akψk(x) + bkφk(x) ,

where ψk(x) ≡ cos kx ,

φk(x) ≡ sin kx .

ak, bk are unknown constants. Now, periodicity condition means cos k(x+ 2L) = cos kx and
sin k(x+ 2L) = sin kx. This is satisfied if 2kL = 2nπ or

k =
nπ

L

for n an integer.
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2.4.2 The Fourier expansion

The set of Fourier modes {ψn≥0(x), φn≥1(x)} are therefore defined as:

ψn(x) = cos
nπx

L
,

φn(x) = sin
nπx

L
(4.1)

Between −L ≤ x ≥ L we can write a general real function as a linear combination of these
Fourier modes:

f(x) =
∞∑
n=0

anψn(x) +
∞∑
n=1

bnφn(x)

= a0 +
∞∑
n=1

(anψn(x) + bnφn(x)) (4.2)

where an and bn are (real-valued) Fourier coefficients.

2.4.3 Orthogonality

Having written a function as a sum of Fourier modes, we would like to be able to calculate
the components. This is made easy because the Fourier mode functions are orthogonal i.e.∫ L

−L
dx ψm(x)ψn(x) = Nψ

n δmn ,∫ L

−L
dx φm(x)φn(x) = Nφ

n δmn ,∫ L

−L
dx ψm(x)φn(x) = 0 .

Nψ
n≥0 and Nφ

n≥1 are normalisation constants which we find by doing the integrals using the
trig. identities in Eqn. (4.3) below. It turns out that Nψ

n = Nφ
n = L for all n, except n = 0

when Nψ
0 = 2L.

ASIDE: useful trig. relation To prove the orthogonality, the following double angle
formulae are useful:

2 cosA cosB = cos(A+B) + cos(A−B)

2 sinA cosB = sin(A+B) + sin(A−B)

2 sinA sinB = − cos(A+B) + cos(A−B)

2 cosA sinB = sin(A+B)− sin(A−B) (4.3)

2.4.4 Calculating the Fourier coefficients

The orthogonality proved above allows us to calculate the Fourier coefficients as follows:
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am =


1

2L

∫ L

−L
dx ψm(x)f(x) m = 0 ,

1

L

∫ L

−L
dx ψm(x)f(x) m > 0 ,

Similarly, bm =
1

L

∫ L

−L
dx φm(x)f(x) .

Proof: suppose f(x) =
∑

k akψk + bkφk, then

1

Nψ
j

∫ L

−L
ψjf(x)dx =

∑
k

ak

Nψ
j

∫ L

−L
ψjψk +

bk

Nψ
j

∫ L

−L
ψjφkdx

=
∑
k

akδjk + bk × 0

= aj

The proof for bk is very similar.
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Figure 5.1: Transverse vibrations of N masses m attached to a stretched string of length L.

2.5 Functions as vectors

2.5.1 Scalar product of functions

In physics we often make the transition:

discrete picture → continuous picture.

TakeN particles of massm = M
N

evenly spaced on a massless string of length L, under tension
T . The transverse displacement of the nth particle is un(t). As there are N coordinates we
can think of the motion as occurring in an N -dimensional space.

The gap between particles is a = L/(N+1), and we can label the nth particle with x = xn ≡
na. We can also write un(t), the transverse displacement of the nth particle, as u(xn, t).

Transition to the continuum Let the number of masses N become infinite, while
holding L = Na and M = Nm fixed. We go from thinking about motion of masses on
a massless string to oscillations of a massive string. As N → ∞, we have a → 0 and
xn ≡ na → x: a continuous variable. The N -component displacement vector u(xn, t)
becomes a continuous function u(x, t).

Scalar product → integral

In N -dimensions the inner product of vectors f = {f1, f2, . . . fN} and g = {g1, g2, . . . gN}, is:

f · g = f ∗1 g1 + f ∗2 g2 + . . .+ f ∗NgN =
N∑
n=1

f ∗ngn

≡
N∑
n=1

f(xn)
∗g(xn)

Again, we have moved the n dependence inside the brackets for convenience.



CHAPTER 2. GENERALISED FOURIER SERIES & SPECIAL FUNCTIONS 21

In an interval x → x + dx there are ∆n = dx/a particles. So, for large N we can replace
a sum over n by an integral with respect to dx/a: the sum becomes a definite integral.
Multiplying through by this factor of a ,

af · g ≡ a

N∑
n=1

f(xn)
∗g(xn) −→

N→∞

∫ L

0

dx f(x)∗ g(x)

The conclusion is that there is a strong link between the inner product of two vectors and
the inner product of two functions.

2.5.2 Inner products, orthogonality, orthonormality and Fourier
series

We want the inner product of a function with itself to be positive-definite, i.e. f · f ≥ 0
meaning it is a real, non-negative number and that |f |2 = f · f = 0 ⇒ f(x) = 0.

That is, the norm of a function is only zero if the function f(x) is zero everywhere.

For real-valued functions of one variable (e.g f(x), g(x)) we choose to define the inner product
as

f · g ≡
∫
dx f(x).g(x)

= g · f

and for complex-valued functions

f · g ≡
∫
dx f(x)∗.g(x)

= (g · f)∗ 6= g · f

The integration limits are chosen according to the problem we are studying. For Fourier
analysis we use −L→ L. For the special case of waves on a string we used 0 → L.

Normalised: We say a function is normalised if the inner product of the function with
itself is 1, i.e. if f · f = 1.

Orthogonal: We say that two functions are orthogonal if their inner product is zero, i.e.
if f · g = 0. If we have a set of functions for which any pair of functions are orthogonal, we
call it an orthogonal set, i.e. if φm · φn ∝ δmn for all m, n.

Orthonormal: If all the functions in an orthogonal set are normalised, we call it an or-
thonormal set i.e. if φm · φn = δmn.

Example: complex Fourier series

An example of an orthogonal set is the set of complex Fourier modes {ϕn}. We can decom-
pose any function f(x) as
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f(x) =
∞∑

n=−∞

cnϕn(x) where ϕn(x) = e−iknx = e−inπx/L (5.1)

We define the inner product as

f · g =

∫ L

−L
dx f(x)∗g(x)

and we see the orthogonality:

ϕm · ϕn ≡
∫ L

−L
dx ϕm(x)∗ϕn(x) = Nn δmn

with normalisation Nn ≡ ϕn · ϕn = 2L. Then

f(x) =
∞∑

n=−∞

cnϕn(x) ⇒ cn =
ϕn · f
ϕn · ϕn

In more detail, the numerator is

ϕn · f ≡
∫ L

−L
dx ϕ∗n(x)f(x)

Note that the order of the functions is very important : the basis function comes first.

In each case, we can projected out the relevant Fourier component by exploiting the fact that
the basis functions formed an orthogonal set. The same can be done for the real Fourier
series which we leave as an exercise.

Normalised basis functions

Consider the complex Fourier series. If we define some new functions

ϕ̂n(x) ≡
1

√
ϕn · ϕn

ϕn(x) =
ϕn(x)√

2L

then it should be clear that
ϕ̂m · ϕ̂n = δmn

giving us an orthonormal set. The inner product is defined exactly as before.

We can choose to use these normalised functions as a Fourier basis, with new expansion
coefficients Cn:

f(x) =
∞∑

n=−∞

Cnϕ̂n(x) ⇒ Cn = ϕ̂n · f

because the denominator ϕ̂n · ϕ̂n = 1.

Coefficients Cn and cn are closely related:

Cn = ϕ̂n · f =
ϕn · f√
ϕn · ϕn

=
√
ϕn · ϕn

ϕn · f
ϕn · ϕn

=
√
ϕn · ϕn cn =

√
2L cn

We can do the same for real Fourier series, defining ψ̂n and φ̂n and associated Fourier
coefficients An and Bn. The relationship to an and bn can be worked out in exactly the same
way.
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2.6 Differential operators

2.6.1 Partial derivatives

If f(x, y) is a function of two variables, we can define partial derivatives with respect to each
variable.

∂

∂x
f(x, y) = lim

ε→0

f(x+ ε, y)− f(x, y)

ε
∂

∂y
f(x, y) = lim

ε→0

f(x, y + ε)− f(x, y)

ε
(6.2)

2.6.2 Gradient operator

We define the gradient operator grad as:

∇f(x) = ei∂if(x) = x̂
∂

∂x
f(x) + ŷ

∂

∂y
f(x) + ẑ

∂

∂z
f(x) (6.3)

In two dimensions this is very familiar. If f(x, y) is a function of two variables (a height as
a function of map coordinates), then ∇f(x, y) is just a two component vector indicating the
steepness and direction of slope.

→

Example: Electrostatic field

The electric field in one dimension is given by E(x) = −dV (x)
dx

.

In three dimensions this clearly generalises as follows:

Ex(x, y, z) = −∂V (x, y, z)

∂x

Ey(x, y, z) = −∂V (x, y, z)

∂y

Ez(x, y, z) = −∂V (x, y, z)

∂z
. (6.4)



CHAPTER 2. GENERALISED FOURIER SERIES & SPECIAL FUNCTIONS 24

This is rather succintly written as

E = −∇V = −(
∂V (x, y, z)

∂x
,
∂V (x, y, z)

∂y
,
∂V (x, y, z)

∂z
)

Here, V is a scalar, ∇ is a vector indexed differential operator, and the result E is vector.

The direction of the gradient ∇ of a function picks out the direction of steepest upwards
slope (i.e. the opposite direction to a skiers “fall-line”) automatically.

2.6.3 Divergence of a vector function

Consider a vector field v(x, y, z) = v(x).

The divergence of a vector field is the scalar product

∇ · v(x) = ∂ivi =
∂

∂x
vx(x) +

∂

∂y
vy(x) +

∂

∂z
vz(x).

Example: Oil from a well

To illustrate the meaning of divergence consider an idealised blow-out preventer as a small
pipe releasing crude oil into the Gulf stream at huge environmental cost.

We denote the velocity field v(x), and consider a cubical box of side ε, volume ε3, containing
the outlet. The box is taken sufficiently small that Taylor expansion of the v(x) works.

If we consider the x̂ faces first, the inflow (for positive vx), in m3s1, through face-A is

fin = ε2vx(0,
ε

2
,
ε

2
) +O(ε)4).

We can always take ε small enough that this is a good approximation. The net outflow
through face-B is is

fout = ε2vx(ε,
ε

2
,
ε

2
) +O(ε)4) = ε2[vx(0,

ε

2
,
ε

2
) + ε

∂

∂x
vx(0,

ε

2
,
ε

2
)]

Thus the net outflow from these faces is

fout − fin = ε3
∂

∂x
vx(0,

ε

2
,
ε

2
).
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The other directions are similar and the net outflow per unit volume is

∂

∂x
vx +

∂

∂y
vy +

∂

∂z
vz = ∇ · v.

Thus we can identify the divergence of a vector field as the outflow per unit volume.

2.6.4 Curl of a vector function

The vector cross product can also be used to define the curl of a vector. The name curl was
coined by James Clerk Maxwell.

∇× v(x) = (
∂

∂y
vz(x)− ∂

∂z
vy(x),

∂

∂z
vx(x)− ∂

∂x
vz(x),

∂

∂x
vy(x)− ∂

∂y
vx(x))

Curl on a square

Consider an infinitessimal square in the x− y plane. The z-component of curl is

∂

∂x
vy(x)− ∂

∂y
vx(x) ' 1

ε
[vy(ε, 0, 0)− vy(0, 0, 0) + vx(0, ε, 0)− vx(0, 0, 0)]

This just measures the difference in the parallel component of v between opposite sides, and
is thus a measure of how our square would rotate if it were suspended in a fluid flow v.

2.6.5 Laplacian

The Laplacian operator acting on a scalar function f is

∇2f(x) = ∇ · (∇f(x)) = (
∂2

∂2
x

+
∂2

∂2
y

+
∂2

∂2
z

)f(x),

.

We define the Laplacian of a vector function v as

∇2v(x) = (∇2vx(x),∇2vy(x),∇2vz(x))

The Laplacian is a measure of the total curvature, summed across all three dimensions.

• A (symmetrical) saddle point has zero Laplacian.

• A minimum has positive Laplacian

• A maximum has negative Laplacian
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Figure 7.1: A vibrating rectangular membrane with displacement normal to the page.

2.7 Multi-dimensional differential equations

In one (spatial) dimension, the wave equation read

∂2

∂x2
u(x, t) =

1

c2
∂2

∂t2
u(x, t) . (7.1)

In a general number of dimensions, it can be written in a coordinate independent way as

∇2u(r, t) =
1

c2
∂2

∂t2
u(r, t) , (7.2)

where ∇2 ≡ div grad is known as the Laplacian operator and r is a position vector.

If we are working in Cartesian coordinates r = (x, y, z, . . .) the Laplacian takes the form

∇2 =


∂2

∂x2 d = 1 ,
∂2

∂x2 + ∂2

∂y2
d = 2 ,

∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
d = 3 ,

and so on. Later we will see what form it takes in other, curvilinear coordinate systems.

2.7.1 Waves in a rectangular membrane

Given a physical problem, we should always choose a coordinate system that best matches
the boundary conditions.

For a rectangular membrane, a Cartesian coordinate system is best. (For a circular mem-
brane, circular polar coordinates are better. We shall see later that they bring their own
complications.)

The membrane (of size L×M) is shown in Fig. 7.1, with edges fixed and oscillations in and
out of the page. The displacement from equilibrium u(x, y, t) satisfies the wave equation:

∇2u ≡ ∂2u

∂x2
+
∂2u

∂y2
=

1

c2
∂2u

∂t2
.

To solve this, we consider solutions of separated form:

u(x, y, t) = X(x) Y (y) T (t) .
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Substituting this into the wave equation, dividing by u = XY T and rearranging, we get

1

X

d2X

dx2
+

1

Y

d2Y

dy2
=

1

c2T

d2T

dt2
= −k2 .

We have used the same argument as before that both sides are constant: the LHS is inde-
pendent of t, whereas the RHS depends only on t. As we expect the solutions to have an
oscillatory form, we have chosen the separation constant to be negative and squared.

We can further rearrange the LHS equation to read

1

X

d2X

dx2
= −k2 − 1

Y

d2Y

dy2
= −p2

Again, the LHS depends only on x and the RHS only on y, so they must both be equal to
a second separation constant. We now have three separate differential equations to solve:

d2X

dx2
= −p2X ,

d2Y

dy2
= −q2Y ,

d2T

dt2
= −ω2

kT .

with k2 = p2 + q2 and ωk = ck. The solution may be written as:

u(x, y, t) = (A cos px+B sin px) (C cos qy +D sin qy) (G cosωkt+H sinωkt) .

Spatial boundary conditions: the normal modes

The membrane is fixed at the boundary, so:

• u(x = 0, y, t) = 0 for all y, t, implying A = 0.

• u(x = L, y, t) = 0 for all y, t, implying sin pL = 0 so p = pm = mπ/L for integer m.

• u(x, y = 0, t) = 0 for all x, t, implying C = 0.

• u(x, y = M, t) = 0 for all x, t, implying sin qM = 0 so q = qn = nπ/M for integer n.

The normal mode vibrations therefore take the form

u(x, y, t) = sin
(mπx

L

)
sin
(nπy
M

)
[Emn cosωmnt+ Fmn sinωmnt] ,

where Emn and Fmn are unknown constants that will be determined from the initial condi-
tions (i.e. the temporal boundary conditions).

Each normal mode is labelled by integers (m,n), with an oscillation frequency that increases
with both m and n

ωmn = ckmn = c
√
p2
m + q2

n = c

√(mπ
L

)2

+
(nπ
M

)2

In the (m,n) mode:

• lines of zero displacement are nodal lines
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Figure 7.2: Rectangular membrane: normal modes of vibration.

• there are nodal lines at x = 0, L/m, 2L/m, . . . L

• there are nodal lines at y = 0,M/n, 2M/n, . . .M

• on opposite sides of any nodal line, the amplitude has opposite sign.

Fig. 7.2 shows some of the low-lying normal modes. “±” denotes whether the membrane is
above or below its equilibrium position. Only the relative sign matters, of course: the whole
membrane is oscillating up and down.

Initial conditions: the rectangular harmonics

The general solution is a linear superposition of normal modes, which looks just like a two
dimensional Fourier series:

u(x, y, t) =
∞∑
m=1

∞∑
n=1

Rmn(x, y) [Emn cosωmnt+ Fmn sinωmnt] (7.3)

where Rmn are what we might call the rectangular harmonics:

Rmn(x, y) = sin
(mπx

L

)
sin
(nπy
M

)
. (7.4)

They form a complete, orthogonal basis set, satisfying the orthonormality condition:

Rmn ·Ruv ≡
∫ L

0

dx

∫ M

0

dy Rmn(x, y)
∗ Ruv(x, y) = Rmn ·Rmn δmu δnv =

LM

4
δmu δnv . (7.5)

Consider an example where we are told that initially the membrane is at rest (implying
Fmn = 0 for all modes) and stretched into the form of a given function p(x, y):

u(x, y, t = 0) = p(x, y) =
∑
m,n

EmnRmn(x, y) .
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Using the orthonormality, we can project out the components:

Ruv · p ≡
∫ L

0

dx

∫ M

0

dy Ruv(x, y) p(x, y) =
∑
mn

Emn (Ruv ·Rmn) =
∑
mn

Emn (Ruv ·Ruv) δum δvn

=
LM

4

∑
mn

Emn δum δvn =
LM

4
Euv

⇒ Euv ≡
Ruv · p
Ruv ·Ruv

=
4

LM

∫ L

0

dx

∫ M

0

dy Ruv(x, y) p(x, y)

and with these coefficients and Eqn. (7.3) we know the motion for all subsequent times.

2.7.2 More dimensions

If we solve the wave equation in higher dimensional systems with rectangular boundaries,
we find a quantised separation constant for each dimension. The squared frequency is pro-
portional to the sum of the squares of these constants. Try it for three dimensions to see
how it works.
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Figure 8.1: Orthogonal curvilinear coordinates in three dimensions.

2.8 Curvilinear coordinate systems

We now consider vector calculus in alternate coordinates systems which use some combina-
tion angles and distances.

Specifically we consider orthogonal curvilinear coordinate systems (fig. 8.1). Such coordinate
systems can be particularly useful when the functions we are considering have symmetries,
such as cylindrical or spherical symmetry.

In plain English these are orthogonal curvilinear coordinate systems systems that have per-
pendicular directions ei, but which rotate in some position dependent way, which we choose
to track some symmetry of the physics.

The directions at each point are selected by the infinitessimal change in x generated by an
infinitessimal change in each of the curvilinear coordinates.

We must be able to translate the differential equations of physics appropriately. If we label
the curvilinear coordinates (ξ1, ξ2, ξ3) the local axes are given by

∂x

∂ξi
= hiei

Here, hi =
∣∣∣ ∂x
∂ξi

∣∣∣ is a scale factor with that ensures ei is a unit vector.

It is useful to consider a locally defined cartesian coordinate system

x̃i = x · ei

2.8.1 Circular (or plane) polar coordinates

Plane polar coordinates (r, φ) are defined by:

x = r cosφ , y = r sinφ , (8.1)

The radial coordinate r (sometimes written as r) can range from 0 to ∞. The angular
coordinate φ (sometimes written as θ) ranges from 0 to 2π.
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Figure 8.2: Plane polar coordinates.

The local orthonormal basis generated by polar coordinates is:

∂x

∂r
= (cosφ, sinφ)

∂x

∂φ
= r(− sinφ, cosφ)

hr = 1

hφ = r

er = (cosφ, sinφ)

eφ = (− sinφ, cosφ) (8.2)

Exercise Show that this system is orthogonal by verifying that (∂x
∂r

) · (∂x
∂φ

) = 0

Area integrals

When we change coordinates in an integral, we have to include a scale factor in the integration
variable.

As we increase each coordinate by an infinitesimal amount, we sweep out a small area which
we call dA. Now, as we chose orthogonal curvilinear coordinates we know er and eφ are
perpendicular, and the area is

dA = dx̃rdx̃φ

= hrdrhφdφ

= rdrdφ (8.3)
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Figure 8.3: Cylindrical polar coordinates.

Example: area of circle Consider

R∫
0

dr

2π∫
0

rdφ = 2π

R∫
0

rdr = πR2

2.8.2 Cylindrical polar coordinates

An simple extension of plane polar coordinates into the third dimension: see Fig. 8.3.

x = r cosφ , y = r sinφ , z = z (8.4)

• radius r ∈ [0,∞], angle φ ∈ [0, 2π], and z coordinate z ∈ [−∞,∞].

• Scale factors: hr = 1, hφ = r, hz = 1.

Example: volume of a cylinder Consider

L∫
0

dz

R∫
0

dr

2π∫
0

rdφ = 2πL

R∫
0

rdr = πR2L

2.8.3 Spherical polar coordinates

Useful when there is spherical symmetry: see Figure 8.4.

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ (8.5)
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Figure 8.4: Spherical polar coordinates.

• radius r ∈ [0,∞], angle θ ∈ [0, π], angle φ ∈ [0, 2π].

∂x

∂r
= (sin θ cosφ, sin θ sinφ, cos θ)

∂x

∂θ
= r(cos θ cosφ, cos θ sinφ,− sin θ)

∂x

∂φ
= r(− sin θ sinφ, sin θ cosφ, 0)

hr = 1

hθ = r

hφ = r sin θ (8.6)

Example : volume of sphere∫ R

0

dr

∫ π

0

rdθ

∫ 2π

0

r sin θdφ = 2π

∫ R

0

r2dr

∫ π

0

sin θdθ

= 2π

[
r3

3

]R
0

[− cos θ]π0

=
4

3
πR3 (8.7)

Example : area of sphere∫ π

0

Rdθ

∫ 2π

0

R sin θdφ = 2πR2

∫ π

0

sin θdθ

= 2πR2[− cos θ]π0
= 4πR2 (8.8)
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2.8.4 Gradient

In the local coordinate system the gradient operator is∑
i

∂

∂x̃i
ei =

∑
i

1

hi

∂

∂ξ̃i
ei

Circular polars

∇f =
∂f

∂x̃r
er +

∂f

∂x̃φ
eφ

=
∂f

hr∂r
er +

∂f

hφ∂φ
eφ

=
∂f

∂r
er +

1

r

∂f

∂φ
eφ (8.9)

Cylindrical polars

∇ =
∂f

∂r
er +

1

r

∂f

∂φ
eφ +

∂f

∂z
ẑ

Spherical polars

∇ =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ

2.8.5 Divergence

For the divergence we must be a little bit more careful. The coordinate dependence of the
scale factors themselves must be taken into account.

∇ · v = lim
V→0

∫
A v · n̂dA

V

Consider the infinitessimal cube

Flux through (1a) is F1 = v1 h2 dξ2 h3 dξ3.

Net flux difference between (1a) and (1b) is ∂F1

∂ξ1
δξ1.
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Thus, summing over all pairs of faces

∇ · v =
1

h1h2h3δξ1δξ2δξ3

[
∂F1

∂ξ1
δξ1 +

∂F2

∂ξ2
δξ2 +

∂F3

∂ξ3
δξ3

]
=

1

h1h2h3

[
∂h2h3v1

∂ξ1
+
∂h3h1v2

∂ξ2
+
∂h1h2v3

∂ξ3

]
(8.10)

Circular polars

∇ · v =
1

r

∂

∂r
(rvr) +

1

r

∂

∂φ
vφ

Cylindrical polars

∇ · v =
1

r

∂

∂r
(rvr) +

1

r

∂

∂φ
vφ +

∂

∂z
vz

Spherical polars

∇ · v =
1

r2

∂

∂r
(r2vr) +

1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂

∂φ
vφ

2.8.6 Laplacian

We can now form the Laplacian as simply the divergence of the gradient, combining the
results of the previous two subsections:

∇2f = ∇ ·∇f

leading to:

Circular polars

∇2f =
1

r

∂

∂r
(r
∂f

∂r
) +

1

r2

∂2f

∂φ2

Cylindrical polars

∇2f =
1

r

∂

∂r
(r
∂f

∂r
) +

1

r2

∂2f

∂φ2
+
∂2f

∂z2

Spherical polars

∇2f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
. (8.11)

Note, that there are no mixed second order derivatives and that these equations are seperable.
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2.8.7 Curl

2.9 Wave equation in circular polars

Equivalently, solving the wave equation for a circular drum

∇2u =
1

c2
∂2u

∂t2
.

In this section we shall use r for the radial coordinate. As before, we consider solutions
of separated form: u(r, φ, z, t) = R(r)Φ(φ)T (t). Substitute into wave equation and divide
across by u = RΦT .

1

R

∂2R

∂r2
+

1

rR

∂R

∂r
+

1

r2Φ

∂2Φ

∂φ2
=

1

c2T

∂2T

∂t2
.

First separation: time equation: LHS(r, φ, z) = RHS(t) = constant

1

c2
1

T

d2T

dt2
= −k2.

The solutions to this are of the form T (t) = Gk cosωkt+Hk sinωkt with ωk ≡ ck.

Second separation: Multiply through by r2 and separate again:

LHS(r) = RHS(φ) = a constant.

For the angular dependence:
1

Φ

d2Φ

dφ2
= −n2;

The solution is Φ = C cosnφ+D sinnφ.

We want the solution to the wave equation to be single valued, so Φ(φ+2π) = Φ(φ), forcing
n to be integer-valued: n = 0,±1,±2 . . .

The equation describing the radial dependence is the only difficult one to solve:

d2R

dr2
+

1

r

dR

dr
− n2

r2
R + k2R = 0 .

Multiply across by r2 and rewrite

r2R′′ + rR′ + (k2r2 − n2)R = 0 . (9.12)

This is known as Bessel’s equation of order n. The solutions are known as Bessel functions.
Being a quadratic ODE, there are two independent solutions called Jn(kr) and Yn(kr). Note
we have labelled the solutions with integer n.

Method of Froebenius

We can solve Bessel’s equation by substituting a general Laurent series as a trial solution. A
Laurent series is a generalisation of a Taylor series to possibly include negative power terms
(called poles).
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We try a solution

R(r) =
∞∑
i=0

Cir
i+m

where ci and m are unknowns. m represents the lowest power of r that occurs in the solution,
and where it arises ci = 0 for i < 0 because otherwise m would not represent the lowest
power of r.

Differentiating we get

R′(r) =
∞∑
i=0

(i+m)Cir
i+m−1

rR′(r) =
∞∑
i=0

(i+m)Cir
i+m

r2R′′(r) =
∞∑
i=0

(i+m)(i+m− 1)Cir
i+m

Bessel’s equation becomes a relation between coefficients:

∞∑
i=0

(i+m)Cir
i+m + (i+m)(i+m− 1)Cir

i+m − n2Cir
i+m + k2Ci−2r

i+m

Since this must be true for all r, then we have the indicial equation[
(i+m) + (i+m)(i+m− 1)− n2

]
Ci + k2Ci−2 = 0

The series switches on when C−2 = 0 and C0 6= 0. Then,

m2 = n2.

We are interested in the case where m ≥ 0 so that the solutions are finite at r = 0.

Next, we are interested in forming a recurrence relation between coefficients. The above
indicial equation suggests

Ci =
k2

n2 − (i+m)2
Ci−2

If we consider the Bessel function J0(r), we take n = m = 0 and have (up to normalisation)

C0 = 1

C2 = −k
2

4

C4 = +
k4

4.16

C6 = − k6

4.16.36
. . . (9.13)

The series is

1− (kr)2

4
+

(kr)4

4.16
− (kr)6

4.16.36
. . .

and is purely a function of (kr). As the sign oscillates we have many turning points.
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Figure 9.5: The first three Bessel functions of integral order.
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Figure 9.6: Rescaling the J0 and J1 Bessel functions so that one of the nodes lies at r = a

Roots of Bessel functions

The first few Jn and Yn functions are plotted in Fig. 9.5. The Yn functions diverge at the
origin and so are not suitable for describing oscillations of a drumskin.

The Bessel functions Jn(x) have a series of zeros (“nodes” or “roots”) which we label αn1,
αn2, αn3.

For the function sinnx, the nodes occur at x = αnm = mπ are equally spaced. For Bessel
functions, however, they are not. The nodes must be found numerically, in practice either
looked up in tables or calculated using packages such as Maple.

Spatial BCs and normal modes

Our solution can be written as

u(r, φ, t) = Jn(kr) (C cosnφ+D sinnφ) (G cosωkt+H sinωkt)

with ωk = ck and currently no restriction on k.

We now apply spatial boundary conditions. Recall periodicity in φ quantised n. In the radial
direction we require that the drumskin does not move at the rim:

u(r = a, φ, t) = 0 for all φ and t.
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We therefore want the edge of the drum to coincide with one of the nodes of the Bessel
function. The mth node of the Bessel function of order n occurs when the argument of the
Bessel function takes value αnm, and we rescale the Bessel function so that one of these zeros
coincides with r = a.

It doesn’t matter which node we choose to lie at r = a, so we have different normal mode
solutions depending on which m we choose. The allowed values of k are therefore

knma = αnm.

Quantising k also quantises ωk. This is like we fond for the harmonics, but the normal mode
frequencies are here not equally spaced (because the αnm are not evenly spaced). This proves
why the drum is not as harmonious as the guitar.

Some examples of rescaling for n = 0 and n = 1 are shown in Fig. 9.6.

Our normal mode solutions are therefore

u(r, φ, t) = Jn

(
αnm

r

a

)
(Cnm cosnφ+Dnm sinnφ) (Gnm cosωnmt+Hnm sinωnmt) .

Each normal mode is labelled by n and m and will have different constants so we label them
appropriately. k depends on n and m via αnm, so we also change the label on ω.

Zeros and nodal lines

Only J0 is zero at the origin (e.g. Fig. 9.5) so u = 0 at r = 0 for all t if n > 0.

Nodal lines are other points on the drumskin that remain stationary for this normal mode:

• We find (m− 1) nodal lines in r: they occur at αnmr/a = αnm′ =⇒ r = aαnm′/αnm
for m′ = 1, 2 . . . (m− 1). (See Fig. 9.6.)

• 2n nodal lines in φ: occur at intervals δφ = π/n for n 6= 0. N.B. do not need to start
at φ = 0.

Some low-lying modes are shown in Fig. 9.7. Note that the wave equation had rotational
symmetry. This does not mean that the solutions have to have rotational symmetry (n =
1, 2 . . . do not). It means that if we take normal mode solution and then rotate it, it is still
a solution of the wave equation.

The general solution

The general solution is a linear superposition of all allowed modes:

u(r, φ, t) =
∞∑
n=0

∞∑
m=1

Jn

(
αnm

r

a

)
(Cnm cosnφ+Dnm sinnφ) (Gnm cosωnmt+Hnm sinωnmt)

(9.14)
Each (n,m) term contains two normal modes (cosnφ and sinnφ), and there are four un-
known constants. Two unknowns per mode is what we expect for a second order differential
equation.

We will use initial conditions to fix the unknowns, but before that we need to learn a bit more
about the properties of Bessel functions. In particular we need an orthogonality relation.
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Figure 9.7: Some normal modes for a round drum.

Orthogonality and completeness

We state one orthogonality relation without proof. For given, fixed n∫ a

0

dr Jn

(
αnm

r

a

)
Jn

(
αnl

r

a

)
r =

a2

2
[Jn+1(αnm)]2δm,l , (9.15)

where Jn(αnm) = 0, i.e. αnm is the mth root of the Bessel function of integral order n.

The extra factor of r compared with Fourier orthogonality arises mathematically because
Bessel’s equation contained first order derivatives in r.

The extra factor of r compared with Fourier orthogonality arises physically because Bessel’s
equation arose in the radial direction of two dimensional wave equation. It is a vestigial
circumference factor 2πr, turning a line integral into an area integral that is appropriate for
a 2D orthogonality relation.

The set of Bessel functions {Jn(αnmx) ; m = 1 . . .∞} for fixed n form a complete set, so any
function can be expanded in the interval 0 ≤ r ≤ a as a Bessel (or Fourier-Bessel) series :

f(r) =
∞∑
m=1

AnmJn

(
αnm

r

a

)
, (9.16)

The coefficients are determined using the orthogonality condition in the usual way, as we
shall now see.

Initial conditions for the drumskin

The general solution for the displacement of a circular drumskin of radius a was given in
Eqn. (9.14). Combining constants we have:

f(r, φ, t) =
∞∑
n=0

∞∑
m=1

Jn

(αnmr
a

)
(Anm cosnφ+Bnm sinnφ) cos(ωnmt+ εnm)
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Typical initial conditions are that the drumskin is initially at rest (implying εnm = 0) and
described by given function p(r, φ):

f(r, φ, t = 0) ≡
∞∑
n=0

∞∑
m=1

AnmJn

(αnmr
a

)
cosnφ+BnmJn

(αnmr
a

)
sinnφ = p(r, φ) . (9.17)

Given initial conditions p(r, φ) we can find the coefficients Anm and Bnm via our orthogonality
relations. We rewrite the initial condition equation as

∞∑
n=0

∞∑
m=1

(AnmΨnm(r, φ) +BnmΦnm(r, φ)) = p(r, φ) . (9.18)

where we have basis functions

Ψnm(r, φ) = Jn

(αnmr
a

)
cosnφ , Φnm(r, φ) = Jn

(αnmr
a

)
sinnφ . (9.19)

Define the inner product of two of these basis functions as

S · T ≡
∫
dA S T =

∫
dr

∫
dφ r S(r, φ) T (r, φ) ,

and we find that {Ψnm,Φnm} form an orthogonal set:

Ψuv ·Ψnm =
a2π

2
(1 + δu0)[Ju(αuv)]

2 δun δvm

Ψuv · Φnm = 0

Φuv · Φnm =
a2π

2
[Ju(αuv)]

2 δun δvm

We might term such functions the (unnormalised) Circular Harmonics. They are orthogonal,
but not orthonormal. Note that the extra r is just what we get when we transform an area
integral from Cartesian to circular polar coordinates. Note also that the angular orthogo-
nality ensures we only compare Bessel functions of the same order (which is all Eqn. (9.15)
covered).

We can use this orthogonality to obtain the coefficients from Eqn. (9.17). Applying (Ψuv·)
or (Φuv·) to both sides we get

Auv =
2

a2π(1 + δu0)[Ju(αuv)]2
×
∫ a

0

dr

∫ 2π

0

dφ r Ψuv(r, φ) p(r, φ)

Buv =
2

a2π[Ju(αuv)]2
×
∫ a

0

dr

∫ 2π

0

dφ r Φuv(r, φ) p(r, φ)

We probably have to do these integrals numerically.
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2.10 Wave equation in spherical polar coordinates

We now look at solving problems involving the Laplacian in spherical polar coordinates. The
angular dependence of the solutions will be described by spherical harmonics.

We take the wave equation as a special case:

∇2u =
1

c2
∂2u

∂t2

The Laplacian given by Eqn. (8.11) can be rewritten as:

∇2u =
∂2u

∂r2
+

2

r

∂u

∂r︸ ︷︷ ︸
radial part

+
1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2︸ ︷︷ ︸
angular part

. (10.1)

2.10.1 Separating the variables

We consider solutions of separated form

u(r, θ, φ, t) = R(r) Θ(θ) Φ(φ) T (t) .

Substitute this into the wave equation and divide across by u = RΘΦT :

1

R

d2R

dr2
+

2

rR

dR

dr
+

1

r2

1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

1

r2 sin2 θ

1

Φ

d2Φ

dφ2
=

1

c2
1

T

d2T

dt2
.

First separation: r, θ, φ versus t

LHS(r, θ, φ) = RHS(t) = constant = −k2.

This gives the T equation:
1

c2
1

T

d2T

dt2
= −k2 (10.2)

which is easy to solve.

Second separation: θ, φ versus r

Multiply LHS equation by r2 and rearrange:

− 1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− 1

sin2 θ

1

Φ

d2Φ

dφ2
=
r2

R

d2R

dr2
+

2r

R

dR

dr
+ k2r2 . (10.3)

LHS(θ, φ) = RHS(r) = constant = λ

We choose the separation constant to be λ. For later convenience, it will turn out that
λ = l(l + 1) where l has to be integer.

Multiplying the RHS equation by R/r2 gives the R equation:

d2R

dr2
+

2

r

dR

dr
+

[
k2 − λ

r2

]
R = 0. (10.4)

This can be turned into Bessel’s equation; we’ll do this later.
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Third separation: θ versus φ

Multiply LHS of Eqn. (10.3) by sin2 θ and rearrange:

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
+ λ sin2 θ = − 1

Φ

d2Φ

dφ2
= m2

LHS(θ) = RHS(φ) = constant = −m2 .

The RHS equation gives the Φ equation without rearrangement:

d2Φ

dφ2
= −m2Φ . (10.5)

Multiply the LHS by Θ/ sin2 θ to get the Θ equation:

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

[
λ− m2

sin2 θ

]
Θ = 0 . (10.6)

2.10.2 Solving the separated equations

Now we need to solve the ODEs that we got from the original PDE by separating variables.

Solving the T equation

Eqn. (10.2) is of simple harmonic form and solved as before, giving sinusoids as solutions:

d2T

dt2
= −c2k2T ≡ −ω2

kT ,

with ωk = ck.

Solving the Φ equation

Eqn. (10.5) is easily solved. Rather than using cos and sin, it is more convenient to use
complex exponentials:

Φ(φ) = e±imφ

Note that we have to include both positive and negative values of m.

As φ is an angular coordinate, we expect our solutions to be single-valued, i.e. unchanged
as we go right round the circle φ→ φ+ 2π:

Φ(φ+ 2π) = Φ(φ) ⇒ ei2πm = 1 ⇒ m = integer.

This is another example of a BC (periodic in this case) quantising a separation constant.

In principle m can take any integer value between −∞ and ∞.

It turns out in Quantum Mechanics that

m is the integer magnetic quantum number and −l ≤ m ≤ l

for the z-component of angular momentum. In that context we will see that it is restricted
to the range −l ≤ m ≤ l.
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Solving the Θ equation

Starting from Eqn. (10.6), make a change of variables w = cos θ:

d

dw
=
dθ

dw

d

dθ
=

(
dw

dθ

)−1
d

dθ
= − 1

sin θ

d

dθ
,

(1− w2)
d

dw
= −1− cos2 θ

sin θ

d

dθ
= −sin2 θ

sin θ

d

dθ
= − sin θ

d

dθ
,

d

dw
(1− w2)

d

dw
= − 1

sin θ

d

dθ

[
− sin θ

d

dθ

]
=

1

sin θ

d

dθ

[
sin θ

d

dθ

]
.

Eqn. (10.6) becomes (
d

dw
(1− w2)

d

dw
+ λ− m2

1− w2

)
Θ(w) = 0 .

which is known as the Associated Legendre Equation. Solutions of the Associated Legendre
Equation are the Associated Legendre Polynomials. Note that the equation depends on m2

and the equation and solutions are the same for +m and −m.

It will turn out that there are smart ways to generate solutions for m 6= 0 from the solutions
for m = 0 using angular momentum ladder operators (see quantum mechanics of hydrogen
atom). So it would be unnecessarily “heroic” to directly solve this equation for m 6= 0.

In this course we will only solve this equation for m = 0.

Solving the Legendre equation

For m = 0 we can write the special case as the Legendre Equation:(
(1− w2)

d2

dw2
− 2w

d

dw
+ λ

)
Θ(w) = 0 .

We apply the method of Froebenius by taking

Θ(w) =
∞∑
i=0

ciw
i

Then
∞∑
i=0

cii(i− 1)(wi−2 − wi)− 2ciiw
i + λciw

i = 0

and rearranging the series to always refer the power wi,

∞∑
i=0

[ci+2(i+ 2)(i+ 1) + ci(λ− i(i− 1)− 2i]wi = 0

Since this is true for all w, it is true term by term, and the indicial equation is

ci+2 ((i+ 2)(i+ 1)) = ci (i(i+ 1)− λ)
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Start The series ”switches on” when c0 × 0 = 0 admits c0 6= 0 and c−2 = 0
Also when c1 × 0 = 0 admits c1 6= 0 and c−1 = 0.

Termination Note, however ci+2 ' ci for large i. This gives an ill convergent series and for finite
solutions the series must terminate at some value of i, which we call l. Thus,

λ = l(l + 1)

for some (quantised) integer value l.

It will turn out in quantum mechanics that l is the orbital angular momentum quantum number.

Legendre polynomials

We denote the solutions the Legendre polynomials

Pl(w) ≡ Pl(cos θ)

For example: P0 starts, and terminates with a single term C0.
P1 starts, and terminates with a single term C1.
P2 starts, with C0 and terminates on C2.
etc...

The first few are

P0(w) = 1

P1(w) = w

P2(w) =
1

2
(3w2 − 1)

P3(w) =
1

2
(5w3 − 3w)

Exercise: use the recurrence relation

ci+2 ((i+ 2)(i+ 1)) = ci (i(i+ 1)− l(l + 1))

to verify that these are our series solutions of Legendre’s equation.

Orgthogonality

The orthogonality relation is∫ 1

−1

Pm(w)Pn(w)dw =

∫ π

0

Pm(cos θ)Pn(cos θ) sin θdθ = Nmδmn

where Nm is a normalisation factor that we do not need here.

In quantum mechanics this is already sufficient to cover S, P , D and F orbitals.
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Associated Legendre polynomials

As mentioned the associated Legendre polynomials can be produced from Legendre polyno-
mials in quantum mechanics using angular momentum ladder operators. Firstly,

P 0
l (w) = Pl(w)

Without proof, we can note that it can be shown that if Pl(w) satisfies Legendre’s equation,
then

P
|m|
l (w) = (1− w2)|m|/2

d|m|

dw|m|
Pl(w)

will satisfy the associated Legendre polynomial for magnetic quantum number m.

As Pl is a polynomial of order l, then the above m-th derivative vanishes for |m| > l and
thus m = −l,−l + 1, . . . , 0, . . . l − 1, l.

General angular solution

Putting aside the radial part for the moment, the rest of the general solution is:

Θ(θ)Φ(φ)T (t) =
∞∑
l=0

l∑
m=−l

Pm
l (cos θ) eimφ (Eml cosωkt+ Fml sinωkt)

The angular dependence is given by the combination:

Pm
l (cos θ) eimφ ∝ Y l

m(θ, φ)

These are known as the spherical harmonics (once we include a normalisation constant).
We’ll discuss these more in Sec. 2.10.3. What we have not yet established is the link between
the value of k (and hence ωk) and the values of m and l. To do this, we would need to solve
the radial equation for various special cases.

2.10.3 The spherical harmonics

Spherical harmonics {Y m
l (θ, φ)} provide a complete, orthonormal basis for expanding the

angular dependence of a function. They crop up a lot in physics because they are the
normal mode solutions to the angular part of the Laplacian. They are defined as:

Y m
l (θ, φ) =

(−1)m√
2π

√
2l + 1

2
· (l −m)!

(l +m)!
Pm
l (cos θ)eimφ .

The extra factor of (−1)m introduced is just a convention and does not affect the orthonor-
mality of the functions.

The spherical harmonics satisfy an orthogonality relation:∫ 2π

0

dφ

∫ π

0

dθ sin θ
[
Y m1
l1

(θ, φ)
]∗
Y m2
l2

(θ, φ) = δl1,l2δm1,m2 .

Note that they are orthonormal, not just orthogonal, as the constant multiplying the product
of Kronecker deltas is unity.
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Completeness and the Laplace expansion

The completeness property means that any function f(θ, φ) evaluated over the surface of the
unit sphere can be expanded in the double series known as the Laplace series :

f(θ, φ) =
∞∑
l=0

l∑
m=−l

almY
m
l (θ, φ) ,

⇒ alm =

∫ π

0

dθ

∫ π

−π
dφ sin θ [Y m

l (θ, φ)]∗f(θ, φ) .

Note that the sum over m only runs from −l to l, because the associated Laplace polynomials
Pm
l are zero outside this range.
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2.10.4 Time independent Schroedinger equation in central poten-
tial

Consider

− h̄2

2m
∇2ψ(x) + Ṽ (r)ψ(x) = Ẽψ(x).

We consider solutions of separated form: ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ). Substitute into Schroedinger
equation and divide across by ψ = RΘΦ.

2m

h̄2 (V (r)− E)− 1

R

1

r2

∂

∂r
r2 ∂

∂r
R =

1

Θ

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
Θ +

1

Φ

1

r2 sin2 θ

∂2

∂φ2
Φ

Multiplying through by r2

r2 2m

h̄2 (V (r)− E)− 1

R

∂

∂r
r2 ∂

∂r
R =

1

Θ

1

sin θ

∂

∂θ
sin θ

∂

∂θ
Θ +

1

Φ

1

sin2 θ

∂2

∂φ2
Φ

First separation: radial & angular dependence

LHS(r) = RHS(θ, φ) = constant = −l(l + 1).

Radial equation [
− ∂

∂r
r2 ∂

∂r
+ l(l + 1) + r2 2m

h̄2 (V (r)− E)

]
R = 0

The differential equation is simplified by a substitution,

u(r) = rR(r)

u′(r) = R(r) + rR′(r)

u′′(r) = 2R′(r) + rR′′(r) =
1

r

∂

∂r
r2 ∂

∂r
R

and so [
− d2

dr2
+
l(l + 1)

r2
+

2m

h̄2 (V (r)− E)

]
u(r) = 0

We take a Coulomb potential and will be considering bound states, with E < 0. It is
convenient to rewrite in terms of the modulus |E| and introduce explicit negative sign. We

also change variables to ρ =

√
8m|E|
h̄

r

V (r) =
−e2

4πε0r
=
−e2

√
8m|E|

4πε0h̄ρ
,

and so multiplying by 1
r

and expressing in terms of u{
8m|E|
h̄2

[
− d2

dρ2
+
l(l + 1)

ρ2

]
+

2m

h̄2

[
|E| − e2

4πε0ρ

√
8m|E|
h̄2

]}
u(ρ) = 0

We define λ = e2

4πε0h̄

√
m

2|E| = α
√

mc2

2|E| , where α = e2

4πε0h̄c
' 1

137
is the fine structure constant.

This gives us [
d2

dρ2
− 1

4
− l(l + 1)

ρ2
+
λ

ρ

]
u(ρ) = 0
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Solution by method of Froebenius

We are now (almost!) ready to apply the method of Froebenius. In principle it could
immediately be applied and we would get a an infinite Taylor series that indeed solves the
equation.

However, a closed form solution can be obtained with one extra transformation that removes
an over all exponential dependence on ρ. Observe that this equation for large ρ tends to

→
[
d2

dρ2
− 1

4

]
u(ρ)

which has as a normalisable solution u(ρ) → e−
ρ
2 (and in addition a non-normalisable solution

u(ρ) → e+
ρ
2 which we ignore).

We can do rather better by taking a trial solution:

u(ρ) = e−
ρ
2 f(ρ).

Then,

u′ = e−
ρ
2

[
f ′(ρ)− 1

2
f(ρ)

]
.

u′′ = e−
ρ
2

[
f ′′(ρ)− f ′(ρ) +

1

4
f(ρ)

]
.

Now, [
d2

dρ2
− d

dρ
+

�
�

��1

4
− 1

4
− l(l + 1)

ρ2
+
λ

ρ

]
f(ρ) = 0

We now apply the method of Froebenius for a series substituting f(ρ) =
∞∑
i=0

ciρ
i,

∞∑
i=0

ci(i)(i− 1)ρi−2 − ci(i)ρ
i−1 − l(l + 1)ciρ

i−2 + λciρ
i−1

Thus, reexpressing so that all terms are of equal power ρi−1

∞∑
i=−1

ci+1(i+ 1)(i)ρi−1 − ci(i)ρ
i−1 − l(l + 1)ci+1ρ

i−1 + λciρ
i−1

and we have the indicial equation,

ci+1 [i(i+ 1)− l(l + 1)] = ci [i− λ]

Series start: The series “switches on” for ck ≡ ci+1 when i(i+ 1) = (k − 1)k = l(l + 1).

The first term ck has k = l + 1.
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Series termination: If the series does not terminate, then ci+1 → ci
i
, and f →

∑ ρi

i!
. This

looks like the other solution that is a non-normalisable exponential u(ρ) ' e+
ρ
2 which we do

not seek.

Only if λ = i = n then the series ”switches off” after n− l terms.

ci+1 = ci
i− λ

i(i+ 1)− l(l + 1)

We call n the principal quantum number. Note that for any given l, then n ≥ l + 1 as the
series commences at k = l + 1. The energy is

α

√
mc2

2|E|
= n

Thus

|E| = α2mc2

2n2

This energy is consistent with the Hydrogen spectrum (Lymann, Balmer series etc...).

Wavefunctions

We denote the radial solution for L = l, and principle quantum number n ≥ l + 1 as Rnl.

Using our recurrence relation

ci+1 = ci
i− n

i(i+ 1)− l(l + 1)

we have

n = 1, l = 0 n = 2, l = 0 n = 2, l = 1
c0 0 0 0
c1 1 1 0
c2 0 −1

2
1

c3 0 0 0

The above energy relation gives us that for each n

ρ =

√
8m|E|
h̄

r (10.7)

=
2

n

αmc

h̄
r (10.8)

=
2

n

r

a0

(10.9)

where a0 = h̄
αmc

is the usual Bohr radius.

The solutions are then
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R1S ∝ 1

ρ
e−

ρ
2ρ (10.10)

= e−
ρ
2 (10.11)

= e
− r

a0 (10.12)

R2S ∝ 1

ρ
e−

ρ
2

(
ρ− 1

2
ρ2

)
(10.13)

= e−
ρ
2

(
1− 1

2
ρ

)
(10.14)

= e
− r

2a0

(
1− 1

2

r

a0

)
(10.15)

R2P ∝ 1

ρ
e−

ρ
2ρ2 (10.16)

= e−
ρ
2ρ (10.17)

= e
− r

2a0
r

a0

(10.18)

Note, we have not carefully normalised these radial wavefunctions. For each l the different
wavefunctions for the various n > l are orthogonal to each other. The orthogonality relation
contains a residual r2 factor corresponding to a vestige of the required orthogonality of
wavefunctions under the 3d volume integral.∫ ∞

0

Rnl(r)Rml(r)r
2dr = NnNmδnm

A complete orthonormal set can of course be formed as usual but is beyond the scope of the
course.
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2.11 Generalised Fourier Series

Some common themes have run through the course so far. We have solved wave and diffusion
equations in a variety of numbers of dimensions and using a variety of coordinate sets. In
each case we have found the solution as a superposition of normal modes, and found that we
can define an inner product so that these normal modes are orthogonal. In some cases this
inner product has needed a weight function (e.g. a factor of r [or ρ] for Bessel functions).
We have also used without proof the statement that the normal modes form a complete set
of functions.

It turns out that these common themes are not coincidental, and Sturm-Liouville theory
explains why not. Sturm–Liouville theory was originally developed to describe waves on
a string of variable density, but it applies to a far wider class of physical problems. The
beauty of it is that it looks at properties of the differential equation and predicts properties
of the normal modes (like orthogonality and completeness) before we even start to solve the
equation. It also tells us exactly how to define our inner product (i.e. what weight function
to include) in each case so we get the orthogonality that is essential if we are to project out
the expansion coefficients in the normal mode expansion.

2.11.1 The Sturm-Liouville problem

Sturm-Liouville (S-L) theory makes predictions for a set of 1-dimensional Ordinary Differ-
ential Equations, such as we might obtain after separation of a multidimensional Partial
Differential Equation in a particular choice of coordinate set.

Sturm-Liouville theory tells us that if our differential equation can be rearranged to have a
certain form, then we are guaranteed that the solutions will have some useful properties.

We require that our differential equation can be written in the form[
d

dx

(
P (x)

d

dx

)
+Q(x)

]
φi(x) = −λi ρ(x) φi(x) (11.1)

and that we are solving for functions φi(x) in the region a ≤ x ≤ b. We can think of i as
labelling the different normal modes of our system.

The exact forms of the functions ρ(x) (known as the weight function), P (x) and Q(x) depend
on the problem that we are studying, and our choice of coordinate set. Our choice of BCs will
be dictated by the physics of the problem, which also influences our choice of coordinate set.
S-L theory only addresses problems for which the following conditions are met. Fortunately,
this covers most common physical systems.

The necessary conditions are:

1. ρ(x), P (x) and Q(x) should be real functions

2. Neither ρ(x) nor P (x) should change sign in the interval a ≤ x ≤ b

3. The Boundary Conditions at x = a and x = b should lead to[
P (x)

(
φ∗i
dφj
dx

− φj
dφ∗i
dx

)]b
a

= 0 (11.2)
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(i.e. [...] evaluated at x = b minus [...] evaluated at x = a) for all combinations of i
and j.

If these conditions are satisfied, S-L theory predicts (even before we try and solve the differ-
ential equation) that the solutions will have the following properties:

1. The eigenvalues λi are real (and there are an infinite number)

2. The set of eigenfunctions { φi(x) } is orthogonal: φi · φj ∝ δij

3. The inner product should be defined as f · g ≡
∫ b
a
dx ρ(x) f(x)∗ g(x)

4. The eigenfunctions form a complete set.
So we can expand a general function f(x) in the interval a ≤ x ≤ b:

f(x) =
∑
i

ai φi(x) ⇒ ai =
φi · f
φi · φi

Note that S-L theory tells us nothing about the normalisation of φi(x); this is our choice. It
also doesn’t tell us that φi are real functions; in many cases they are not.

Example 1: waves on a string

To avoid confusion with the square root of −1, let’s temporarily use n instead of i. For
waves on a string 0 ≤ x ≤ L, we solved a spatial equation

d2X

dx2
= −k2X(x) .

Comparing to Sturm-Liouville form, P (x) = 1, Q(x) = 0, ρ(x) = 1 with a = 0, b = L.
The solutions were X(x) = φn(x) = sin nπx

L
(i.e. normal modes labelled by n), with λn =

k2
n = (nπ/L)2. Our boundary conditions were that φn(x = 0) = φn(x = L) = 0, which

automatically satisfies Eqn. (11.2) because (...) = 0 at both a and b, so their difference is
zero.

S-L theory predicts orthogonality∫ b

a

dx ρ(x)φm(x)∗φn(x) =

∫ L

0

dx sin
mπx

L
sin

nπx

L
∝ δmn

which we have already shown explicitly in this course.

Example 2: Bessel’s equation

In circular polar coordinates, our radial equation becomes (after rearrangement)

d

dr

(
r
dR

dr

)
− n2

r
R = −k2rR .
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Instead of x we are using radial coordinate r. For a circular drum of radius r0 (to avoid
“a-confusion”), the BC was R(r = r0) = 0 which led to solutions

R(r) = φm(r) = Jn

(
αnmr

r0

)
.

So, comparing all this to S-L form: P (r) = r, Q(r) = −n2/r, ρ(r) = r with a = 0, b = r0.
The solutions are labelled by m instead of i, with λm = k2

m = (αnm/r0)
2.

Eqn. (11.2) is satisfied by (...) being 0 at r = b = r0 and by P (r) = 0 at r = a = 0, so their
difference is zero.

S-L theory predicts orthogonality∫ b

a

dr ρ(r)φm(r)∗φl(r) =

∫ r0

0

dr r Jn

(
αnmr

r0

)
Jn

(
αnlr

r0

)
∝ δml

which we have already seen in this course.

ASIDE: At r = 0 we have P (r) = 0, but to satisfy Eqn. (11.2) we also need (. . .) finite. This
is why we rejected solution Yn(kr).

2.11.2 Boundary condition choices

Our choice of spatial BCs is dictated by the physics of the problem that we are studying,
but in most cases they are one of the following set. In each case, these BCs are sufficient to
satisfy Eqn. (11.2) and allow us to make use of the powerful predictions from S-L theory.

1. Fixed BCs (a.k.a. Dirichlet BCs):
φi(x = a) = φi(x = b) = 0 for all modes labelled by different i.
e.g. a drumskin fixed at its edge

2. Open BCs (a.k.a. Neumann BCs):
dφi
dx

∣∣∣∣
x=a

=
dφi
dx

∣∣∣∣
x=b

= 0

e.g. no ink flows out of the edge of a water tank i.e. no concentration gradient.

3. Mixed BCs:(
φi + c

dφi
dx

)∣∣∣∣
x=a

=

(
φi + c

dφi
dx

)∣∣∣∣
x=b

= 0

For some real value of c. Not so common.

4. Periodic BCs:

φi(x = b) = φi(x = a),
dφi
dx

∣∣∣∣
x=b

=
dφi
dx

∣∣∣∣
x=a

and P (x = a) = P (x = b).

e.g. where x is an angular variable and a = 0, b = 2π.

N.B. For cases (1)-(3), we can make different choices of BCs et each end and still satisfy the
S-L condition. So we might talk about Fixed-Open or Dirichlet-Neumann BCs, for instance.

The remainder of this section is more mathematical, and proves some of the properties that
we have quoted above. Still, these proofs are a favourite examination question, so you should
make sure you know how to do it.
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2.11.3 Showing the S-L operator is Hermitian

We define a S-L operator

L(x) =

[
d

dx

(
P (x)

d

dx

)
+Q(x)

]
.

The S-L operator is said to be Hermitian or self-adjoint. By this we mean that if we
define a matrix element

Mij ≡
∫ b

a

dx φ∗i (x) L(x) φj(x)

then Mij = (Mji)
∗ (just like we would say for a Hermitian matrix), or∫ b

a

dx φ∗iLφj =

(∫ b

a

dx φ∗jLφi
)∗

=

∫ b

a

dx φjL∗φ∗i

Proof: The proof is quite easy. We show below that∫ b

a

dx φ∗i L φj =

∫ b

a

dx φj L φ∗i +

[
P (x)

(
φ∗i
dφj
dx

− φj
dφ∗i
dx

)]b
a

(11.3)

So, when we reorder the functions, we get an extra term. This is called a surface term
because its value depends only on the value of [...] evaluated at the two boundaries of the
problem. The points x = a, b form the zero-dimensional surface of the 1-dimensional line
element a ≤ x ≤ b.

The surface term that we get is precisely that in Eqn. (11.2). So, the S-L restriction on BCs
is exactly so that we set the surface term to zero, and we then have∫ b

a

dx φ∗i L φj =

∫ b

a

dx φj L φ∗i =

∫ b

a

dx φj L∗ φ∗i

because S-L theory only works if P and Q are real, so L = L∗.

This proves the S-L is Hermitian (and explains some of the restrictions we made earlier).

Aside: proving the reordering relation

In this section we prove Eqn. (11.3).

The integrals are linear in L, so we can break L into its two parts that we integrate separately.
First the part Q(x): ∫ b

a

dx φ∗iQ(x)φj =

∫ b

a

dx φjQ(x)φ∗i (11.4)

by simple rearrangement (Q(x) is just a function).

The term in P (x) is more complicated, as it contains derivatives and we cannot just take
functions in and out of these. Instead:∫ b

a

dx φ∗i
d

dx

(
P (x)

dφj
dx

)
=

[
φ∗iP (x)

dφj
dx

]b
a

−
∫ b

a

dx
dφ∗i
dx

P (x)
dφj
dx

.



CHAPTER 2. GENERALISED FOURIER SERIES & SPECIAL FUNCTIONS 56

To do this, we have integrated by parts, identifying u = φ∗i and dv = d
dx

(
P (x)

dφj

dx

)
(so

v = P (x)
dφj

dx
).

Now we integrate by parts again, identifying this time u =
dφ∗i
dx
P (x) and dv =

dφj

dx
(so v = φj).

This gives∫ b

a

dx φ∗i
d

dx

(
P (x)

dφj
dx

)
=

[
φ∗iP (x)

dφj
dx

]b
a

−
[
dφ∗i
dx

P (x)φj

]b
a

+

∫ b

a

dx
d

dx

(
dφ∗i
dx

P (x)

)
φj

=

∫ b

a

dx φj
d

dx

(
P (x)

dφ∗i
dx

)
+

[
P (x)

(
φ∗i
dφj
dx

− φj
dφ∗i
dx

)]b
a

(11.5)

In the final line, we have just rearranged stuff, but without changing what the derivatives
act upon. Adding Eqns. (11.4) and (11.5), we get Eqn. (11.3).

More technical aside

We do not need to use the eigenfunctions to define the matrix elements of an operator H(x).
In general we can use any complete set of functions. Call them ψi(x). The matrix elements
are

Mij =

∫ b

a

dx ψ∗i (x) H(x) ψj(x)

The actual value of a given matrix element (i.e. specific values for i and j) is basis dependent
and will change if we use a different set of basis functions.

Nonetheless, if we can show that an operator is Hermitian in one basis, we know it will be
true in all bases.

If we choose as our basis the normalised eigenfunctions ofH, it is easy to show thatMij ∝ δij.

All of this is very analogous to matrix manipulations.

2.11.4 S-L as an eigenvalue problem

S-L theory tells us about the properties of solutions to L(x)φi(x) = −λiρ(x)φi(x). This
is a generalised eigenvalue problem, with λi the eigenvalues and φi(x) the eigenfunctions
(equivalent of eigenvectors). The extra ρ function is why we call this “generalised”.

We have shown that L is Hermitian. In this section we’ll show that this ensures both that
the eigenvalues are real and that the eigenfunctions form a complete set.

Different solutions to the S-L problem are labelled by different i values. Let’s choose two
solutions, one labelled by some specific value i and the other by some specific value j:

L(x) φi(x) = −λi ρ(x) φi(x) (11.6)

L(x) φj(x) = −λj ρ(x) φj(x) (11.7)

If we complex conjugate the first, Eqn. (11.6) we get (remembering L∗ = L)

L(x) φ∗i (x) = −λ∗i ρ(x) φ∗i (x) (11.8)
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Now, pre-multiply (i.e. “multiply on the LHS”) both sides of Eqn. (11.7) by φ∗i , and pre-
multiply Eqn. (11.8) by φj. Integrate both sides of both equations from x = a to x = b to
give (respectively): ∫ b

a

dx φ∗i (x) L(x) φj(x) = −λj
∫ b

a

dx ρ(x) φ∗i (x) φj(x)∫ b

a

dx φj(x) L(x) φ∗i (x) =

∫ b

a

dx φ∗i (x) L(x) φj(x) = −λ∗i
∫ b

a

dx ρ(x) φ∗i (x) φj(x)

We have used the Hermiticity of L (that we proved above) to rearrange the LHS of the
second equation. The LHSs of the two equations are now the same, so we can subtract one
equation from the other to give:

(λj − λ∗i )

∫ b

a

dx ρ(x) φ∗i (x) φj(x) = 0 .

We are free to choose i and j as we please. There are two cases:

1. i = j:
In general,

∫ b
a
dx ρ φ∗i φj 6= 0, as otherwise the eigenfunctions would not be normalis-

able (which is unphysical). So

λi = λ∗i implying the eigenvalues are real

2. i 6= j:
In general λi 6= λj so ∫ b

a

dx ρ(x) φ∗i (x) φj(x) ≡ φi(x) · φj(x) = 0

and the eigenfunctions are orthogonal.

ASIDE: there is the additional case i 6= j but λi = λj, in this case we are are not guaranteed
that φi · φj = 0. We are guaranteed, however, that we can pick two linear combinations of
φi and φj that are orthogonal to each other and all other eigenfunctions. So, we can always
arrange orthogonality.

Hermiticity also guarantees that the eigenfunctions { φi(x) } form a complete set of functions
in the interval a ≤ x ≤ b, but we will not prove that here.

In the remainder of this course, we will use the results of Sturm-Liouville theory quite a lot.

2.11.5 Orthogonality of normal modes

Physicists tend to be somewhat lazy (or perhaps unclear?) about decomposing general
functions into eigenfunctions of a given differential operator.

Sturm–Liouville theory describes a class of problem and gives some useful results. We will not
go into a complete discussion of Sturm-Liouville problems, but note that the ODE equations
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we consider in this course in fact satisfy the Sturm-Liouville conditions. We summarise some
of the precise statements made possible.

Suppose X1 and X2 are eigenfunctions of d2

dx2 , with eigenvalues −λ1 and −λ2, and satisfy
some BCs at x = a and x = b.

Ẍ1 = −λ1X1

Ẍ2 = −λ2X2

Observe:
d

dx
(Ẋ1X2 −X1Ẋ2) = Ẍ1X2 −X1Ẍ2

Thus,

b∫
a

(
Ẍ1X2 −X1Ẍ2

)
dx =

[
Ẋ1X2 −X1Ẋ2

]b
a

= (λ2 − λ1)

b∫
a

X1X2dx (11.9)

Now, for many standard boundary conditions the Wronskian
[
Ẋ1X2 −X1Ẋ2

]b
a

= 0, for

example:

Dirichlet X1(a) = X1(b) = X2(a) = X2(b) = 0

Neumann Ẋ1(a) = Ẋ1(b) = Ẋ2(a) = Ẋ2(b) = 0

Periodic Ẋ1(a) = Ẋ1(b) ; Ẋ2(a) = Ẋ2(b) ;X1(a) = X1(b) ;X2(a) = X2(b)

In these boundary conditions, eigenfunctions with distinct eigenvalues are orthogonal under
the scalar (dot) product defined by:

X1 ·X2 =

b∫
a

X1X2dx

If λ1 = λ2, then we are not guaranteed orthogonality, however, if X1 and X2 are genuinely
different (linearly independent) then the Gramm-Schmidt procedure in section ?? allows us
to construct an orthonormal basis in any case.

2.11.6 Completeness of normal modes

Proof of completeness is beyond the scope of this course. However, we can state two theorems
regarding different meanings of “completeness”:
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Uniform convergence:

if a function f has continuous first and second derivatives on [a, b] and f satisfies the boundary
conditions then f can be exactly represented by a sum of eigenmodes: it will match at every
point.

That is the maximum deviation between f(x) and the sum S(x) =
∑
n

anXn of eigenmodes

becomes zero as the number of modes included tends to ∞.

max
x∈a,b

|f(x)− S(x)|2;→ 0 (11.10)

Any solution of the differential equation satisfying the boundary conditions can be written
as a sum of eigenmodes.

L2 convergence:

If the function f(x) has
b∫
a

|f(x)|2dx finite it can be approximated by a sum S(x) =
∑
n

anXn

of eigenmodes in the weaker sense

b∫
a

|f(x)− S(x)|2dx→ 0 (11.11)

(11.11) means that the sum S(x) can deviate from f(x) at certain points, and the maximum
error can remain non-zero. However, not for anything other than an inifinitessimal distance
asotherwise it would contribute something to the integral.

Thus the basis is complete it can describe and only differs infinitessimally close to disconti-
nuities and violations of the boundary conditions.

any bounded function on the interval [a, b] can be described away from discontinuities & boundaries
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2.12 Generating functions and Ladder operators

Introduce some generating functions and ladder operators
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3.1 Probability distributions

In this part of the course we will consider the analysis and fitting of data. This requires a
foundation in the study of probability and statistics. We shall see that Gaussian distributions
play a particular role in this study.

3.1.1 Random variables

A random variable X is a measurent or process that gives you a different result each time.
The results are distributed randomly according to a probability density PX .

PX(x)dx

is the probability that any measurement of variable X will have a value between x and x+dx.

As all measurements return a value between −∞ and ∞ we have

∞∫
−∞

PX(x)dx = 1

The average, or mean, value is the first moment of this distribution

X̄ =

∞∫
−∞

xPX(x)dx

The variance is the mean squared deviation from the mean

Var(X) =

∞∫
−∞

(x− X̄)2PX(x)dx

3.1.2 Zero mean, unit variance

Any random variable X can be brought into convenient zero mean, unit variance form by
considering in its place the scaled and shifted variable

X ′ = b(X − a)

where a = X̄, and b = 1√
VarX

. Then X ′ has zero mean, and unit variance.

3.1.3 Independent random variables

Two random variables are independent if the value obtained from one does not affect the
value obtained from another.
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For example, when tossing coins, even if you have already obtained five heads in a row. you
are equally likely to obtain heads or tails on the sixth try. If you collect statistics on the
number of heads, each attempt is independent.

In contrast, if you are drawing cards from a single deck these are not independent as once
the Ace of Spades is drawn, all players are very unlikely to receive another (unless you are
in an establishment of particularly ill-repute).

3.1.4 Adding random variables

We consider adding two independent random variables X and Y together. This is a key
to understanding the process of averaging results. Because the variables (measurements)
are independent, we can consider measuring one first without affecting the distribution of
the other. The probability distribution of the sum sxy is just the convolution of the two
probability distributions.

PX+Y (sxy) =

∞∫
−∞

PX(x)PY (sxy − x)dx

This can be seen by noting that the probability for variable X to give a result in band
x→ x+dx is PX(x)dx. The probability density in the sum sxy = x+y that variable Y then
gives a value between value y = sxy − x and y = sxy − x+ ds is PY (sxy − x).

This can be repeated, adding a third random variable gives

PX+Y+Z(sxyz) =

∞∫
−∞

∞∫
−∞

PX(x)PY (sxy − x)PZ(sxyz − sxy)dxdsxy

and so on.

3.1.5 Scaling random variables

If we scale the random variable by a constant C, the probability of having a result between
u = Cx and u + du = Cx + Cdx must equal the orginal probability between x and x + dx.
Thus

PCX(u)du = PCX(Cx)Cdx = PX(x)dx

so that

PCX(u) =
1

C
PX(

u

c
).

3.1.6 Some examples

Now let’s add something simple like the top function to itself a number of times. It is
well known, and easy to show that performing this operation once produces a triangular
function. Beyond this gets tricky due to the piecewise bounds on integrations. However, we
can continue to make progress using Mathematica to illustrate our point:



CHAPTER 3. STATISTICAL ANALYSIS AND FITTING DATA 64

h[x] = PieceWise[ {0,x < -0.5}, {1, -0.5<=x<=0.5}, {0,x>0.5}]

Plot[ h[x] , {x,-3,3}]
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1.0

Plot[ Convolve[ h[y],h[y],y,x]], {x,-3,3}]
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Plot[ Convolve[Convolve[ h[y],h[y],y,z],h[z],z,x]], {x,-3,3}]
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Plot[ Convolve[Convolve[Convolve[ h[y],h[y],y,z],h[z],z,w],h[w],w,x], {x,-3,3}]
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0.5

0.6

A curious thing happens to the distribution of the average. It is looking more and more bell
shaped!
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3.2 Gaussian distributions

A particularly common form of distribution is the Gaussian, or normal distribution N

PN (x) =
1√
2πσ

e−
x2

2σ2

The Gaussian curve is also known as the bell-shaped or normal curve.

Sketch of normalised Gaussians. The intercepts are PN (0) = 1√
2πσ2

.

In order to check this probability is indeed normalised we must evaluate a Gaussian integral.
Under a change of variables to x̃ = x√

2σ
the integrated probability becomes.

∞∫
−∞

PN (x)dx =
1√
π

∞∫
−∞

e−x̃
2

dx̃

3.2.1 Gaussian integral

Gaussian integrals occur regularly in physics. We are interested in

I =

∫ ∞

−∞
exp−x2dx
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This can be solved via a trick in polar coordinates: observe

I2 =

∫ ∞

−∞
exp−x2dx

∫ ∞

−∞
exp−y2dy

=

∫ ∞

−∞
dx

∫ ∞

−∞
dy exp−(x2 + y2)

=

∫ ∞

0

dr2πr exp−r2

= π

∫ ∞

0

du exp−u

= π [− exp−u]∞0
= π

Thus,

I =

∫ ∞

−∞
exp−x2dx =

√
π

Thus, we see
∞∫

−∞

PN (x)dx = 1

3.2.2 Cumulative distribution, and the error function

We are often interested in the probability of having a result deviating from its mean by some
amount. The question of “what was the chance of that” is measured by the cumulative
probability to have a result deviating by an amount measured in standard deviations a = x

σ

from its mean and is given by the error function

erf(
a√
2
) =

1√
2π

a∫
−a

e
−x2

2 dx

=
1√
2π

a√
2∫

− a√
2

e−x̃
2

dx̃

where x̃ = x√
2
. We generally have to look up this function in tables, or use numerical software

to evaluate.

You will notice, unfortunately, there is a 1√
2

factor between the argument of erf( a√
2
) and

the deviation from the mean a measured in standard deviations. Thus, the probability of
deviating by less than 1σ is erf(0.707) ∼ 68%.

Deviation less than Percent
1σ erf(0.707) 68%
2σ erf(1.414) 95%
3σ erf(2.12) 99.7%
4σ erf(2.83) 99.992%
5σ erf(2.12) 99.99993%
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The process of integrating a probability distribution function (PDF), such as the Gaussian,
to find the total probability of having a deviation below the observed deviation is common
and useful to estimate the likelihood of our having observed something.

This integrated version of the probability, as a function of this threshold, is known as the
cumulative distribution function (CDF).

• erf(x) is the CDF corresponding to the Gaussian PDF.

• 1, 2, 3σ correspond to 68%, 95%, 99.7%

– Enshrined/rote learned as the “68-95-99.7” rule in statistics

• Warning: conventions vary w.r.t. the CDF being integrated from [−a, a] or from
[−∞, a].

Life and death safety margins (3σ)

Under EU law, rock climbing carabiners are tested to ensure they can withstand a load of
around 21KN (around 2 tonnes) with a 3 sigma margin.

This means, worryingly that around 3 in every 1000 cannot withstand the 2 tonne rating,
however the σ for the distribution is never disclosed to the climbers. Your lecturer very much
hopes that a 5σ bound that includes even these weak ones is still more than fit for purpose!

Experimental discovery standards (5 σ)

Another example is that standards to which particle physics adheres for particle discovery.
When new particles, such as the Higgs boson, are discovered, it no longer always possible to
simply “spot it” as a particle track because they decay so quickly.

Rather the theoretical prediction for their contributions to decays must be compared to
experimental observation, involving fitting mathematical expressions to data.

The significance of the contribution from a Higgs boson, compared to not having the Higgs
boson is critically important. Particle Physicists hold themselves to a 5σ criterion, which
means that there can only be a 0.00007% chance they were simply fooled by luck if or when
they claim LHC has “discovered” the Higgs boson.
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3.2.3 Fourier transform of gaussian

A function f(x) and its Fourier transform F (k) are related by:

F (k) =
1√
2π

∫ ∞

−∞
dx f(x) eikx , (2.1)

f(x) =
1√
2π

∫ ∞

−∞
dk F (k) e−ikx . (2.2)

The FT of the Gaussian is

P̃N (k) =
1√
2π

∫ ∞

−∞
dxPN (x)eikx

=
1√
2π

∫ ∞

−∞
dx

1√
2πσ

exp

(
− x2

2σ2

)
eikx

=
1√
2π

exp

(
−k

2σ2

2

)
,

i.e. the FT of a Gaussian is another Gaussian (this time as a function of k).

Deriving the FT For notational convenience, let’s write a = 1
2σ2 , so

P̃N (k) =
1√
2πσ

1√
2π

∫ ∞

−∞
dx exp

(
−
[
ax2 − ikx

])
Now we can complete the square inside [. . .]:

−ax2 + ikx = −
(
x
√
a− ik

2
√
a

)2

− k2

4a

giving

P̃N (k) =
1

2πσ
e−k

2/4a

∫ ∞

−∞
dx exp

(
−
[
x
√
a− ik

2
√
a

]2
)
.

We then make a change of variables:

u = x
√
a− ik

2
√
a
.

This does not change the limits on the integral, and the scale factor is dx = du/
√
a, giving

P̃N (k) =
1

2πσ

1√
a
e−k

2/4a

∫ ∞

−∞
du e−u

2

=
1

2
√
πσ

1√
a
· e−k2/4a . (2.3)

Finally, we change back from a to σ.
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3.2.4 Convolution of Gaussians

We can use the convolution theorem to convolve together two Gaussians PN1(x) and PN2(x)
of width σ1 and σ2 to represent the distribution of the sum using the convolution theorem:

PN1(x) ∗ PN2(x) =
√

2π

(
1√
2π

∫ ∞

−∞
dkP̃N1(k)P̃N2(k)e

−ikx
)

PN1(x) ∗ PN2(x) =
√

2π
1√
2π

∫ ∞

−∞
dke−ikx

1√
2π
e−

k2σ2
1

2
1√
2π
e−

k2σ2
2

2

=
1√
2π

∫ ∞

−∞
dke−ikx

1√
2π
e−

k2(σ2
1+σ2

2)

2

Which we can recognise from Eq. 2.3 as a normalised Gaussian of width σ2 = σ2
1 + σ2

2.

• This is important - Gaussian distributed random variables remain Gaussian distributed
under addition (also their widths add in quadrature).

• Further, we just saw in a handwaving sense that random variables of other distributions
become more Gaussian-like after addition.

It appears that the Gaussian distribution “attracts” all other distributions under the aver-
gaing process, and we shall see in the next section that this is indeed true.



CHAPTER 3. STATISTICAL ANALYSIS AND FITTING DATA 70

3.3 Central limit theorem

The Central Limit Theorem (CLT) is of fundamental importance to almost all experimental
science.

Take X as a zero mean, unit variance random variable with any distribution PX(x).

The random variable for the average of N of these random variables

SN =
1

N
(X1 +X2 + . . . XN)

and in the limit of large N , this is distributed according to

lim
N→∞

PSN
(x) →

√
N√
2π
e−

Nx
2

Proof

The key point is that the average of many measurements becomes increasingly dominated
by the lowest frequencies in the probability distribution.

In other words, small wiggles in the probability distribution will cancel and not affect the
average of many measurements; sometimes you get lucky, sometimes unlucky, but on average
small wiggles disappear rapidly.

1. First we represent sum of N independent random variables drawn with probability
PX(x) as a convolution.

PNX(x′) =

∞∫
−∞

dx1 . . .

∞∫
−∞

dxN−1PX(x1)PX(x2 − x1)PX(x3 − x2) . . . PX(x′ − xN−1)

2. We can apply the convolution theorem N − 1 times obtaining

PNX(x′) =
1√
2π

(
√

2π)N−1

∞∫
−∞

dke−ikx
′
(
P̃X(k)

)N
dk

3. Taking the factor of 1
N

for the average and applying our scaling rule Section 3.1.5 gives

PSN
(u) = N

1√
2π

(
√

2π)N−1

∞∫
−∞

dke−ikNu
(
P̃X(k)

)N
dk

=
1√
2π

(
√

2π)N−1

∞∫
−∞

dk′e−ik
′u

(
P̃X(

k′

N
)

)N
dk′

4. In the limit of large N , the lowest frequency terms of P̃X( k
′

N
) dominate, and these

correspond to the lowest moments of the distribution.
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We can Taylor expand

P̃X(
k′

N
) =

1√
2π

∞∫
−∞

ei
k′x
N PX(x)dx

=
1√
2π

∞∫
−∞

[
1 +

ik′x

N
− k2x2

2N2
+ . . .

]
PX(x)dx

=
1√
2π

∞∫
−∞

PX(x)dx+
ik′

N

∞∫
−∞

xPX(x)dx− k2x2

2N2

∞∫
−∞

x2PX(x)dx

=
1√
2π

(
1− k2

2N2
+ . . .

)
where we have used the fact that PX(x) is normalised, zero mean, and unit variance.

5. Inserting this into the full expression for PSN
(u) we have

PSN
(u) =

1√
2π

(
√

2π)N−1(
1√
2π

)N
∞∫

−∞

dk′e−ik
′u

(
1− k2

2N

1

N

)N
dk′

=
1

2π

∞∫
−∞

dk′e−ik
′u

(
1− k2

2N

1

N

)N
dk′

6. The final significant step is to note that with b = − k2

2N(
1 +

b

N

)N
=

N∑
r=0

(N !)

r!(N − r)!
br

=
N∑
r=0

N(N − 1) . . . (N − r + 1)

N r

br

r!

→
N∑
r=0

br

r!

→ eb

Thus,

PSN
(u) → 1√

2π

∞∫
−∞

dk′e−ik
′u 1√

2π
e−

k2

2N dk′

which we can recognise from Eq 2.3 as a normalised Gaussian of width σ2
S = 1

N

PSN
(u) =

√
N√
2π
e−

u2N
2

=
1√

2πσS
e
− u2

2σ2
S
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Consequences

This theorem has very important consequences that permeate most of science!

• If we measure something many times, we can assume the average has a Gaussian
distribution.

• If the original non-Gaussian distribution had unit variance, the variance of the average
is 1√

N
.

• If original distribution was not unit variance, the variance of the mean is reduced by
1√
N
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3.4 Analysing data

We now consider how to analyse and/or fit experimental (or numerical) data. Each data
point can be measured a number of times, and the mean and the error on the mean can be
computed as follows.

If we take N -measurements {x1, . . . , xN}, sampled randomly from a (non-Gaussian) proba-
bility distribution PX(x)

The sample mean is

x̄ =
1

N

N∑
i=1

xi

This differs from the true mean

X̄ =

∞∫
−∞

xPX(x)dx

but will become equal in the limit of infinite N .

The sample mean is the best estimate of the mean of the non-Gaussian distribution PX one
can make given the finite number of measurements.

3.4.1 Variance

The variance of the sample is

σ2 =
1

N − 1

N∑
i=1

(xi − x̄)2

This is a best estimate of the variance of the non-Gaussian distribution PX one can make
given the finite number of measurements.

The (N −1) arises from an adjustment to prevent underestimating the variance with a finite
sample size. Practically, if the change from N to (N − 1) makes a worrying difference, your
Lecturer recommends you get more data.

3.4.2 Standard deviation

An important question that arises is how incorrect is the sample mean likely to be. For
a finite sample size, this question cannot be answered without knowing the details of the
original distribution PX(x).

However, if we are prepared to assume that we have sufficiently many measurements that
our finite sample yields a good estimate of variance of PX(x), and that the distributions of
averages will approach its asymptotic Gaussian form we can proceed.

The variance of the Gaussian distributed mean will be 1√
N
σ.
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For moderate N it is more conventional to take the standard error of the mean as

std.err. =

√√√√ 1

N(N − 1)

N∑
i=1

(xi − x̄)2

3.5 χ2/dof and the χ2 distribution

If you roll a dice many times, you are bound to eventually get lucky or unlucky. If we make
a million measurements we expect to see one in a million probability events.

So, when we make many measurements, we should ask how likely we were to have seen a
certain set of deviations: me must ask if, on the balance of probability, is this consistent
with the errors we have calculated for each data point.

• Suppose we take N-samples {xi} from normally distributed variables of unit variance,
zero mean, each with probability PN (x).

We consider these N-samples as be a single sample from a N-dimensional space.

• The probability distribution for this quantity χ2 is determined by the normal distri-
butions of the individual variables.

Since the variables are independent, they probability density for the N-samples is just
the product of the individual variables probabilities:

P (x1, . . . , xN)dx1 . . . dxN = PN (x1) . . . PN (xN)dx1 . . . dxN

• It is simpler to reduce our measurement of the vector {x1, . . . xN} to a single number.
To do this, we define the quantity χ2 to be the sum of the deviations from zero:

χ2 =
∑
i

x2
i

• The expectation value of χ2 is given by

〈χ2〉 =

∫
χ2Pχ2(χ2)d(χ2)

=

∫
(x2

1 + . . .+ x2
N)PN (x1) . . . PN (xN)dx1 . . . dxN

=

∫
x2

1PN (x1)dx1

∫
PN (x2)dx2 . . .

∫
PN (xN)dxN

+

∫
PN (x1)dx1

∫
x2

2PN (x2)dx2 . . .

∫
PN (xN)dxN

. . .

+

∫
PN (x1)dx1

∫
PN (x2)dx2 . . .

∫
x2
NPN (xN)dxN

= 1 + . . .+ 1

= N
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where we have made use of the fact that the distribution PN (x) had unit variance, and
unit total probability.

• The average value for χ2 is N , the number of datapoints.

– A value of χ2/N � 1 will indicate non-Gaussian, or significantly underestimated
errors.

– A value of χ2/N � 1 will indicate significantly overestimated errors.

– One does not expect to be either abnormally lucky, or unlucky and having results
that appear so may indicate other problems in data or model.

3.5.1 Some detail on the distribution of χ2

We wish to obtain the probability distribution PN
χ2(χ2) of χ2 for N variables in more detail

than simply its mean value.

We must use theta functions to evaluate the integral of probability to find χ2 in the spherical
shell corresponding to radius r ≡

√
χ2 between r =

√
χ2 and r + δr =

√
χ2 + δ(χ2) in the

N-dimensional space of deviations {xi}.

We need to do this to identify the 68th percentile in the cumulative distribution of χ2 for
n independent variables (for example). This is critical to estimating the uncertainty in
parameters after a fit.

PN
χ2(χ2)δ(χ2) =

1

(
√

2π)N

∫
θ(|X|2 − χ2)θ(χ2 + δ(χ2)− |X|2)e−

x2
1
2 . . . e−

x2
N
2 dx1 . . . dxN

=
1

(
√

2π)N

∫
θ(|X|2 − χ2)θ(χ2 + δ(χ2)− |X|2)e−

χ2

2 dx1 . . . dxN

=
1

(
√

2π)N
e−

r2

2 SN(r)δr

Here SN(r) is the surface area of an N-dimensional ball of radius r for general dimensions
(without proof here), this is

SN(r) =
NrN−1π

N
2

Γ(N/2 + 1)

Recall, Γ(x) = (x− 1)Γ(x− 1), Γ(N) = (N − 1)!, and Γ(1
2
) =

√
π. It can be easily verified

for two and three dimensions that this produces formulae we know and love!

S2(r) = 2πr

S3(r) = 4πr2

S4(r) = 2π2r3

Note that
δ(χ2) = δ(r2) = 2rδr,

and so

δr =
δχ2

2r
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Thus,

PN
χ2(χ2)δ(χ2) =

1

(
√

2)N
δ(χ2)

2
√
χ2
e−

χ2

2
N(χ2)

N−1
2

Γ(N/2 + 1)

=
(χ2)

N
2
−1

2
N
2 Γ(N/2)

e−
χ2

2 δ(χ2)

The prefactors are painful normalisation. However, the change in the power of χ2 in front
of the exponential as N is varied is much more important as these change the shape of the
χ2 distribution as a function of N .

2 4 6 8 10

0.1

0.2

0.3

0.4

The probability distribution function PN
χ2(χ2) for χ2 as a function χ2 for different numbers

n of random Gaussian variables that are averaged (n = 1, 2, 3, 4).

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

The cumulative distribution function (CDF)

PCDF
χ2 (N,χ2) =

∫ χ2

0

PN
χ2(Q)dQ

for χ2 as a function χ2 for different numbers n of random Gaussian variables that are averaged
(n = 1, 2, 3, 4).

Here (this is not proven)

PCDF
χ2 (N,χ2) =

1

ΓN
2

γ(
N

2
,
χ2

2
)

where γ is the lower imcomplete gamma function

γ(s, x) =

∫ x

0

ts−1e−tdt
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As we expect from our discussion of the mean value of χ2, the cumulative distribution grows
roughly linearly in N .

We will be interested in the value of χ2 that covers 68.3% of fluctuations (or in other words
1σ). This means the value of χ2 for which the cumulative distrubution function has value
0.683. This value is dependent on the number of degrees of freedom.

n 68th percentile χ2

1 1
2 2.3
3 3.5
4 4.7
5 5.9

We can now meaningfully ask how model parameters could be varied while staying within
this bound on χ2.

3.6 χ2 minimisation

The definition of χ2 can now be generalised to the case where the i-th variable has non-zero
mean and non-unit variance in the obvious way.

χ2 =
∑
i

(xi − x̄i)
2

σ2
i

All the earlier results remain applicable because the modified variables x̃ = x−x̄
σ

are normally
distributed with zero mean and unit variance, and our generalised χ2 is just

χ2 =
∑
i

(xi − x̄i)
2

σ2
i

=
∑
i

x̃2
i

In particular, we still expect that the average generalised χ2 should still be the number
variables N .

Thus far we assumed that there was some external, given probability distribution. In the
real world, the true distribution will not be known.

3.6.1 Averaging is fitting to a constant

Suppose the data is distributed as a normal distribution around some unknown mean A, but
all the data has the same width σ.

PX(x) =
1√
2πσ

e−
(x−A)2

2σ2

As we do not know A independent of the data, we must ask what is the probability for having
obtained our set of N results xi, for each possible value of A. This probability is just
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PX(x1)PX(x2) . . . PX(xN) =

(
1√
2πσ

)N
e−

P (xi−A)2

2σ2

Gaussian statistics tells us the probability of data having been produced from some “exter-
nally given” model. The maximum likelihood method involves the reasonable approach of
turning this around: use the the Gaussian probability for the data having been produced for
each possible parameter to distinguish which is the right parameter.

Thus, the most likely value for A is obtained by maximising this probability. This is achieved

by minimising the term in the exponent (xi−A)2

2σ2 , and hence by minimising our χ2.

The minimum of χ2 is found by requiring the derivative wrt A be zero:

0 =
d

dA
χ2 = − 1

σ2

∑
i

2(xi − A)

and so

A =
1

N

∑
i

xi

and unsurprisingly the most likely value for A is the average of the data.

The importance of this very predictable result is that it points the way forward for more
complicated situations.

3.6.2 Weighted Averages

Suppose we have data distributed as a normal distribution around some unknown mean A,
but where each measured data point has a different width σi.

PXi
(xi) =

1√
2πσi

e
− (xi−A)2

2σ2
i

Now, varying A to maximising the probability of the distribution describing our data yields:

0 =
d

dA
χ2 = −2

∑
i

xi − A

σ2
i

and so,

A =

∑
i
xi

σ2
i∑

j
1
σ2

j

This is the (famous) weighted mean for averaging data points with errors.

At the minimum,
d2χ2

dA2
= 2

∑
i

1

σ2
i

We take the variance of the weighted average as

σ2
A =

1∑
j

1
σ2

j
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If we vary A by an amount σA, then the change in χ2 is

∆χ2 =
1

2
· d

2χ2

dA2
σ2
A = 1

If all the σi are the same, this gives our familiar
√
N reduction for the error on the mean.

PDG scale factors

PDG SCALE FACTOR – WHAT TO DO IF χ2 WAS BAD

3.7 General curve fitting

Suppose we have some number Nx of experimental inputs (x-values, {xi}) and experimental
results (y-values, {yi}), each of which has a random error, {σi}.

The random variables are now the co-ordinates yi, and the xi are precisely known ordinates.
We seek to fit a model curve y = f{p}(x)

These which can be plotted on a two dimensional plot, and we have some expected model
function f{p}(x) depending on some set of Np parameters {pi} = {p1, . . . , pNp}.

We expect that, with the “true” parameters,

y = f{p}(x)

will be a curve that well describes the data,

Our expected probability distribution depends on the parameters {p}

PYi
(yi) =

1√
2πσi

e
−

(yi−f{p}(xi))
2

2σ2
i

The definition of χ2 becomes

χ2 =
∑
i

(yi − f{p}(xi))
2

σ2
i

and we seek the parameters p that minimise χ2.

We must find parameters {p} such that for all j

0 =
∂χ2

∂pj
= −2

∑
n

∂f{p}(xn)

∂pj

(yn − f{p}(xn))

σ2
n

For general functions this minimisation has to be performed numerically. This is normally
perfromed using the Marquardt-Levenberg algorithm, which itself is an improvement on
steepest descent.
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3.7.1 Quality of fit

A fit has some number Ndof = Nx−Np of degrees of freedom. For example, if fitting 7 data
points with a 2 parameter function we have dof = 5 = 7− 2.

As discussed above, we expect χ2 ∼ Ndof for any fit after we have determined the most likely
parameters.

For example, a line always fits two data points perfectly and gives zero χ2 after fitting. It is
only once we have three data points for a two parameter linear fit that we gain any measure
of the statistical consistency of the data.

We are interested in the value of χ2 after we have found those parameters that minimise χ2.
If this χ2 is too high, we have not been successful in fitting the data with our model.

If χ2/Ndof is too low, we have unbelievably good fit, and have likely overestimated the errors
on the individual datapoints.

3.7.2 Confidence regions

We can ask how much the fitted parameters are likely to vary.

There is some set of parameters {pmin} that minimise χ2. At this minimum

∂

∂pj
χ2({pmin}) = 0

We define a matrix Mij as the second partial derivative

Mij =
∂2

∂pi∂pj
χ2({pmin}) =

∑
n

2

σ2
n

[
∂f{p}(xn)

∂pi

∂f{p}(xn)

∂pj
−
∂2f{p}(xn)

∂pi∂pj
(yn − f{p}(xn))

]
Mij is symmetric, so for example, M12 = M21. In the region of the minimum we define the
parameter shifts

{p̃} = {p} − {pmin}

we can Taylor expand χ2 in the region of the minimum as

χ2(p̃) = χ2
min +

1

2
p̃TMp̃

Joint parameter distribution

We define our region of confidence by

χ2
min − χ2(p̃) =

1

2
p̃TMp̃ ≤ ∆χ2 (7.4)

The correct approach is to take ∆χ2 to cover the 68th percentile of the cumulative distribu-
tion

PCDF
χ2 (Ndof ,∆χ2) = 0.68

(see table in section 3.5.1).
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It is also fairly common for the ∆χ2 defining the allowed space to be simply taken as the

approximate value
∆χ2

Ndof
= 1 (i.e.∆χ2 = Ndof).

• With one parameter there is an allowed band

1

2
p̃2

1M11 ≤ ∆χ2 = 1

• With two parameters there is an allowed ellipse 1

1

2
[p̃2

1M11 + 2p̃1p̃2M12 + p̃2
2M22] ≤ ∆χ2 = 2.3

General case

With Np parameters we determine an ellipsoid region parameter space. Mij is symmetric

because ∂2

∂i∂j
= ∂2

∂j∂i
. Symmetric matrices are diagonalisable, and thus Mij is diagonalisable

with
Mij = V Tdiag(λ1, . . . , λN)V

where V is a unitary matrix representing a change of basis and whose rows contain the Np

eigenvectors ek of Mij, and these are orthogonal to each other.

Example

For example, for Np = 2 parameters, V must have the form(
cos θ sin θ
− sin θ cos θ

)
In other words, there are rotated parameters

p′1 = cos θp̃1 + sin θp̃2

p′2 = cos θp̃2 − sin θp̃1

for which the equation χ2 = 2.3 gives the simple ellipse

λ1p
′2
1 + λ2p

′2
2 = 2∆χ2

1Recall, general ellipse is ax2 + by2 + cxy = d
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The width of the ellipse (major and minor axes) in the p′1 and p′2 directions are
√

2∆χ2

λ1
and√

2∆χ2

λ2
respectively.

We can expand out M

M =

(
cos θ − sin θ
sin θ cos θ

)(
λ1 0
0 λ2

)(
cos θ − sin θ
sin θ cos θ

)
=

(
cos2 θλ1 + λ2 sin2 θ sin θ cos θ(λ1 − λ2)
sin θ cos θ(λ1 − λ2) sin2 θλ1 + cos2 θλ2

)
and so,

2M12

M11 −M22

=
2 sin θ cos θ

cos2 θ − sin2 θ
= tan 2θ

Further,
λ1 + λ2 = M11 +M12

and

λ1 − λ2 =
M12

sin θ cos θ
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3.7.3 Single parameter errors

Independent standard deviations on correlated fit parameters are somewhat ambiguous as
the parameters do not independently vary.

The rule is that we take the error on the j-th parameter as

σ2
j = 2(M−1)jj

It is common to define a covariance matrix

Cij = 2(M−1)ij

and the error on the j-th parameter is given by

σ2
j = Cjj

Gnuplot will be introduced in the next section. For completeness, Gnuplot prints the corre-
lation matrix

Corrij =
Cij
σiσj

In principle this can be used to connect parameter errors σj to the ellipsoid region of the
joint distribution as given above.

Your lecturer does not believe this is often done in practice because it is involved.

3.7.4 Detail on the single parameter error

We must displace one parameter (p̃1 for example) at a time by an amount σ, while leaving
the other parameters (p̃2 . . . p̃Np) free to take whatever minimises χ2({p̃}.

The error is defined from the 68th percentile of this single degree of freedom χ2 distribution.
That is we find the value of p̃1 leading to δχ2 = 1 (subject to allowing the other parameters
to float to a minimum of χ2).

Pictorially this means we displace p1 as far as we can while satisfying ∆χ2 = 1, and select
the vertical tangent to the ∆χ2 = 1 contour
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Mathematically, we must minimise

χ2(p̃) = χ2
min +

1

2
p̃TMp̃

Subject to the constraint that p̃1 = σ1.

Constrained minimisation: Lagrange multipliers

We introduce a general method for constrained minimisation called the method of Lagrange
multipliers. This is generally useful, and not specific to this context.

To minimise χ2(p̃) over the surface of p̃1 = σ1 by varying p̃1 . . . p̃Np we require that the
components for ∇pχ

2(p̃) parallel to the surface be zero (otherwise, we can reduce χ2 by
moving within the surface).

The normal to this surface is (in our case) n̂ = (1, 0, . . . , 0). 2

This means that at the minimum ∇χ2 must be parallel to the normal and so they are

2for a general surface f(~p) = C, the normal is parallel to ∇f
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proportional with an unknown constant of proportionality λ

∇pχ
2(p̃) = Mij p̃j = λn̂ =


λ
0
...
0


Where λ is an unknown constant called a Lagrange multiplier. Thus,

p̃j = λM−1
j1

Now, we chose our surface to have p̃1 = λM−1
11 = σ1, and so λ = σ1

M−1
11

.

We will then define the value of σ1 by requiring that χ2 hold the value χ2(p̃) = 1, in order
that we obtain the 68th percentile for a single variable χ2 distribution. This means that

∆χ2 = 1 =
1

2
p̃TMp̃

=
1

2

σ2
1

(M−1
11 )2

M−1
1j MjkM

−1
k1

=
1

2M−1
11

σ2
1

and generalising to any parameter pj

σ2
j = 2(M−1)jj

3.8 gnuplot

The common Linux package gnuplot includes an implementation of the Marquardt-Levenberg
algorithm and can plot and fit any function you care to type in.

This is quite useful to demonstrate the topics discussed in this chapter.

First we must prepare our experimental data in a form that gnuplot can read.

1. Use a text editor (emacs or similar) to prepare a file “experiment.dat” containing x, y
σy columns

# x y dy

1 1.01 0.01

2 3.98 0.02

3 9.02 0.03

2. start gnuplot in the same directory as the file

bash$ gnuplot

3. First simply plot the data file. For example:
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gnuplot> plot ’experiment.dat’ using 1:2:3 with yerrorbars

gnuplot> set xrange [0:4]

gnuplot> set yrange [0:10]

gnuplot> replot

4. We can define a fit function as follows

gnuplot> y(x) = A * x*x

gnuplot> A=0.5

gnuplot> replot y(x)

5. We can tell gnuplot to perform a fit as follows:

gnuplot> fit y(x) ’experiment.dat’ using 1:2:3 via A

6. We can replot with the fit results

gnuplot> replot

7. We can save the fit to a postscript file with

gnuplot> set terminal postscript landscape color

gnuplot> set output ’experiment.ps’

gnuplot> replot

 0

 2

 4

 6

 8

 10

 0  0.5  1  1.5  2  2.5  3  3.5  4

’experiment.dat’ u 1:2:3
y(x)

8. We can look at the fitted parameters. Gnuplot prints

After 4 iterations the fit converged.

final sum of squares of residuals : 2.37302

rel. change during last iteration : -1.13084e-11

degrees of freedom (ndf) : 2

rms of residuals (stdfit) = sqrt(WSSR/ndf) : 1.08927

variance of residuals (reduced chisquare) = WSSR/ndf : 1.18651

Final set of parameters Asymptotic Standard Error

======================= ==========================
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A = 1.00071 +/- 0.002911 (0.2909%)

correlation matrix of the fit parameters:

A

A 1.000

This means it obtained A = 1.00071 with σA = 0.0029 (in otherwords A = 1.001(3)).
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