
Physical Mathematics 2010: Problems 1 (week 2)

1. Hellenic Calligraphy. Like it or not, Greek letters are very popular in physics. It will be
easier to follow what is going on in the course if you know how they are pronounced.

lower name upper
case case
α alpha A
β beta B
γ gamma Γ
δ delta ∆
ε, ε epsilon E
ζ zeta Z
η eta H
θ, ϑ theta Θ

lower name upper
case case
ι iota I
κ kappa K
λ lambda Λ
µ mu M
ν nu N
ξ xi Ξ
o omicron O
π, $ pi Π

lower name upper
case case
ρ, % rho P
σ, ς sigma Σ
τ tau T
υ upsilon Υ
φ, ϕ phi Φ
χ chi X
ψ psi Ψ
ω omega Ω

2. Trig identities: Using
eiθeiφ = ei(θ+φ)

and
eiθ = cos θ + i sin θ

prove that

(a) cos(A+B) = cosA cosB − sinA sinB

(b) cos(A−B) = cosA cosB + sinA sinB

(c) sin(A+B) = sinA cosB + cosA sinB

(d) sin(A−B) = sinA cosB − cosA sinB

(e) 2 cosA cosB = cos(A+B) + cos(A−B)

(f) 2 sinA cosB = sin(A+B) + sin(A−B)

(g) 2 sinA sinB = − cos(A+B) + cos(A−B)

(h) 2 cosA sinB = sin(A+B)− sin(A−B)

(i) cos 2θ = 1− 2sin2θ

(j) sin 2θ = 2 sin θ cos θ

3. Travelling and standing waves

(a) Explain why cos(kx− ωt) is a travelling wave

(b) Explain why cos(kx) cos(ωt) is a standing wave

(c) Write cos(kx− ωt) as a sum of standing waves

(d) Write cos(kx) cos(ωt) as sum of travelling waves



4. Trig differentiation Differentiate

(a) sin 3x

(b) sin(cos 4x)

(c) sin(5 cos 4x)

(d) eax

(e) eiax

(f) eiax2

(g) By differentiating eikx and considering real and imaginary parts find the deriva-
tives of cos kx and sin kx

5. Trig integration Integrate

(a) sin 3x

(b) cos 5x

(c) cos 5x sin 3x

(d) cos 2x cos 8x

(e) sin x sin 3x

(f) 2x cosx2

(g) eax

(h) eiax

6. Orthogonality

for kn = n π
L
, km = m π

L
, show

(a)
∫ L

−L
sin knx sin kmx = Lδmn

(b)
∫ L

−L
cos knx cos kmx =

{
Lδmn n 6= 0
2Lδmn n = 0

(c)
∫ L

−L
sin knx cos kmx = 0

(d) For each case draw a graph explaining why.



7. Integration by parts:

(a)

∫ ∞

0

dx x e−ax .

(b)

∫ ∞

0

dx x2 e−ax .

(c)

∫ π

0

dx x cosx .

(d)

∫ π

−π

dx x sin x .

(e)

∫ 2a

a

dx ln
(x
π

)
. [Hint: substitute u = x/π.]

(f)

∫ y

1

dx x lnx .

(g)

∫ 1

0

dx (1− x) ln(1− x) . [Hint: substitute u = 1− x.]

8. Curve sketching

(a) f(x) =
1

x− a
− 1

x+ a
.

(b) f(x) = sinc x =
sin x

x
.

(c) f(x) =
cosx

x
.

(d) Sketch (and label) f1(x) = xe−x and f2(x) = xe−2x on the same graph

(e) f(x) = x2 e−x for x ≥ 0 .

(f) f(x) = sin(πx)e−x for x ≥ 0 .

(g) Sketch the function f(x) = exp
(
− x2

2σ2

)
, labelling locations of any crossings of the

axes. How would increasing σ change the plot?

Sketch f(x)× cos(πx) for σ ' 3.
Label the value at x = 0 and the position of any nodes (zeros).

(h) f(x) = e−a2x2

cos bx with b > 2πa .

9. Calculate these integrals by integrating by parts. They will be very useful.

(a)

∫ L

−L

dx x sin
mπx

L
.

(b)

∫ L

−L

dx x2 sin
mπx

L
.

(c)

∫ L

−L

dx x cos
mπx

L
.

(d)

∫ L

−L

dx x2 cos
mπx

L
.

Repeat (c) when the lower limit of the integral is 0 rather than −L.



10. l’Hôpital’s Rule

If f(x = c) = g(x = c) = 0 for two functions at some value x = c, then

lim
x→c

[
f(x)

g(x)

]
= lim

x→c

[
f ′(x)

g′(x)

]
,

(a) Evaluate lim
x→0

sinc(ax) where sinc(x) ≡ sin x

x
.

(b) Evaluate lim
x→0

cosx

x
.

(c) Prove l’Hôpital’s Rule by writing f(x) and g(x) as Taylor series expansions around
x = c.

11. In this question we will prove the standard result

I =

∫ ∞

−∞
du e−u2

=
√
π

(a) Write I2 as a double integral. In the first factor, call the dummy variable x and
in the second call it y.

(b) Change to circular polar coordinates (x, y) → (ρ, φ) and evaluate the angular
integral (remember if you change variables correctly, the area of a ring should
enter as 2πrdr).

(c) Now do the radial integral and obtain an expression for I.

(d) Use this to show that the “normalised Gaussian”

f(x) =
1√

2πσ2
e−x2/(2σ2)

really is normalised.

12. Evaluate

∫ ∞

−∞
dx e−ax2−bx, given the standard result

∫ ∞

−∞
dx e−x2

=
√
π.

[Hints: begin by “completing the square” to write ax2 + bx in the form (Ax+B)2 +C]

13. The transverse displacement u(x, t) of a string stretched between x = 0 and x = L and
initially at rest is described by the wave equation

∂2u

∂x2
=

1

c2
∂2u

∂t2

where c is the (constant) wave speed.

Use the method of separation of variables to obtain a solution of this equation in the
form

u(x, t) = (Ak sin kx+Bk cos kx)× (Ck sinωkt+Dk cosωkt) .

Explain clearly the meaning of all the symbols including the relationship between k
and ωk.

Show how the imposition of the boundary and initial conditions restricts the possible
modes of vibration and hence leads to a general solution

u(x, t) =
∞∑

n=1

En sin knx cosωnt



Again, the meanings of all symbols should be clearly explained.

The functions sin knx form an orthogonal set:∫ L

0

dx sin(knx) sin(kmx) = anδnm ,

for some constants an (which you need not evaluate). If the string initially has a
displacement f(x), show that

En =
1

an

∫ L

0

dx f(x) sin knx .

(Aug.07.7)

What physical role does the constant c play for: (a) travelling waves, and (b) standing
waves?

14. Sketch each of the following functions and find their Fourier series expansions (i.e.
components an and bn) in the range −L ≤ x ≤ L. Add to your sketch the periodically
extended function described by the Fourier series. For each function, explain why
particular components turn out to be zero.

(a) f(x) = sin
3πx

L

(b) f(x) = signum x ≡ x

|x|
≡

{
+1 if x > 0

−1 if x < 0

(c) f(x) = x

(d) f(x) = |x|
(e) f(x) = x2

[Hint: for (b), (d) split the integrals into two parts, −L ≤ x < 0 and 0 ≤ x ≤ L.]

15. As seen in lectures, the transverse displacements of a string stretched from x = 0 to
x = L are described by a general solution:

u(x, t) =
∞∑

n=1

(En sin knx sinωnt+ Fn sin knx cosωnt) (1)

with kn = nπ/L and ωn = ckn.

A guitar string is initially plucked gently from the centre such that u̇(x, t = 0) = 0 and

u(x, t = 0) =

{
2px/L 0 ≤ x ≤ L

2

2p(L− x)/L L
2
≤ x ≤ L

Sketch u(x, t = 0) (labelling the maximum value). Why is it important that the string
is plucked “gently”? Find En, Fn. For which n are En and Fn both zero (i.e. this
frequency is not present)? Give a physical explanation. Which frequencies dominate?
Again, give a physical explanation.

16. Sketch the following function and express it as a real Fourier series, finding its Fourier
components, an and bn:

f(x) =

{
(x+ π)h −π ≤ x ≤ 0

(π − x)h 0 ≤ x ≤ π
(2)



where h is a constant. Why are bn = 0? Comment on the relative sizes of the non-zero
components. Use the series to find a series expression for π (hint: note that f(0) = π
if h = 1). Add the first few terms of the series to see how well it does.

17. Reduce the 1-dimensional Schrödinger Equation to separated form

− h̄2

2m

∂2ψ(x, t)

∂x2
+ V (x) ψ(x, t) = ih̄

∂ψ(x, t)

∂t

Also:

(a) What is the physical interpretation of the separation constant?

(b) What physical significance is attached to the normal modes?

(c) What changes (if anything) if the potential is time dependent i.e. V (x) → V (x, t)?

(d) For the infinite square well, explain why the normal modes look (at least spatially)
like Fourier basis functions

18. Reduce the 2-dimensional Schrödinger Equation to separated form when the potential
has the form V (x, y) = V (x) + V (y)

− h̄2

2m

∂2ψ(x, t)

∂x2
− h̄2

2m

∂2ψ(x, t)

∂y2
+ [V (x) + V (y)] ψ(x, t) = ih̄

∂ψ(x, t)

∂t

How could you proceed if V (x, y) = V (x+ y) + V (x− y)?

19. Rectangular drumskin

The wave equation of a square drumskin (defined by x ∈ [0, L], y ∈ [0, L]) is

∂2u

∂x2
+
∂2u

∂y2
=

1

c2
∂2u

∂t2

Substitute a separable solution of the form X(x)Y (y)T (t) and derive the separate
ODE’s for X, Y , and (t).

Apply the boundary conditions

u(x, L, t) = u(L, y, t) = u(x, 0, t) = u(0, y, t) = 0

to x and y and find the allowed values for the separation constants governing the X,
Y and T differential equations.

Suppose that initially the velocity

∂u(x, y, t = 0)

∂t
= 0

and
u(x, y, t = 0) = x(L− x)y(L− y).

Find the motion for all later times.

20. The Fourier modes are defined (for integer n) as

ψn(x) =

{
1 for n = 0 ,

cos
nπx

L
for n ≥ 1 ,

and φn(x) = sin
nπx

L
for n ≥ 1 .



(a) Explain what it means to say {ψn≥0(x), φn>0(x)} form an orthogonal set of func-
tions on the interval −L ≤ x ≤ L.

(b) Prove (by evaluating appropriate integrals) that they do indeed form an orthog-
onal set.

(c) Explain what we mean by an orthonormal set of functions, and how we convert
an orthogonal set into an orthonormal one.

(d) Derive an orthonormal set of functions {ψ̂n≥0(x), φ̂n>0(x)} from the Fourier modes
defined above.

(e) By analogy with vectors, explain what is meant by a basis set in function space.
Does such a basis set have to be complete?

(f) Express the function f(x) = sin2 2πx

L
as a Fourier series, preferably (for your

sake) without doing any integrals.

21. Write down the Fourier series for a general function f(x) between [−L,L], and then
both differentiate it and integrate with respect to x.

Fourier Transforms

22. Define the Fourier transform of a function and the inverse relation that specifies how
that function is represented in terms of its Fourier transform.

23. Complex Fourier series Write down the complex Fourier series for a function f(x)
which is defined on the interval −L ≤ x ≤ L and give an expression for the coefficients.

Consider the complex Fourier series for a real function f(x). How are the coefficient
cn and c−n related.

Explain briefly how the Fourier transform F (k) is obtained from the Fourier series
and state the equations which relate F (k) and f(x), along with an expression for the
wavenumber k.

If f(x) is real, how are F (k) and F (−k) related?

24. The top-hat function is defined to be zero everywhere, save in a region of width a
centred at x = 0. Within this region, the function takes a constant value such that the
total area under the function is unity.

Obtain the Fourier transform of the top hat function, and comment on the relative
widths of the function (in x-space) and its Fourier transform (in k-space). Make sure
you provide some justification for your comments.

25. Write down the Fourier transform for a general function f(x) between [−∞,∞], and
then both differentiate it and integrate with respect to x.

26. Find the Fourier transforms

F (k) ≡ 1√
2π

∫ ∞

−∞
dx f(x) eikx

of the following functions

(a) f(x) = e−a|x| for positive a. [Hint: consider x ≥ 0 (with f(x) = e−ax) and x < 0
(with f(x) = eax) separately.]



(b) The normalised Gaussian:

f(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
.

Dirac δ

27. (a) Explain how the Fourier transform is used to obtain the far field diffraction pat-
tern for collimated light normally incident on a single slit of width a. Your
explanation should include a labelled diagram, and you should carefully define all
mathematical symbols.

(b) In the limit a → 0, the top hat function approaches the Dirac delta function.
Discuss briefly the properties that make this true. By considering the integral
of the product of an arbitrary function with the top-hat in this limit, derive the
“sifting property” of the Dirac delta function. (You may find it convenient to
exploit the smallness of a and Taylor expand around x = 0.)

(c) What is the convolution of an arbitary function h(x) with δ(x−b)? Explain, with
a sketch graph, the geometric significance of this particular convolution operation.

28. Use the sifting property of the Dirac delta function∫ ∞

−∞
dx f(x)δ(x) = f(0) . (3)

to prove the properties of the Dirac delta function given in the lecture notes:

(a) δ(ax) = δ(x)/|a| with special case a = −1: δ(−x) = δ(x). [Hint: consider∫ ∞

−∞
dx f(x)δ(ax) ,

substitute y = ax and compare with Eqn. (3). You will need to consider positive
and negative a separately — in the latter case use y = −|a|x.]

(b) x δ(x) = 0. [Hint: consider Eqn. (3) for f(x) = x. By looking at which points
could contribute to the integral you can then say something about the integrand.]

(c) δ(x2 − a2) = [δ(x− a) + δ(x+ a)]/(2|a|). Use the result that

δ(g(x)) =
∑

n

δ(x− xn)

|g′(xn)|
(4)

where x = xn are the zeros of the function g(x).

(d) A bit harder. Prove Eqn. (4) using the following method:

i. Consider

I =

∫ ∞

−∞
dx δ(g(x)) :

the only contributions are going to come when g(x) = 0. Why?

ii. Split the integration up into small regions around the zeros of width ε. Why
do we get

I =
∑

n

∫ xn+ε

xn−ε

dx δ(g(x)) ?



iii. Define y = x − xn and Taylor expand g(x) for small y. If ε is small enough
that we can ignore terms of order ε2 and above, show that

I =
∑

n

∫ ε

−ε

dy δ(yg′(xn)) .

iv. Make a substitution z = yg′(xn) and explain why

I =
∑

n

∫ ∞

−∞

dz

|g′(xn)|
δ(z) .

In particular, make sure you explain the modulus sign, and why the integra-
tion range has been expanded.

v. Evaluate I, and compare with Eqn. (3) to obtain the result.

29. Prove that x d
dx
δ(x) = −δ(x). [Hint: integrate the LHS over all x, and then integrate

by parts.]

30. Find the Fourier transforms of the following functions1

(a) f(x) = δ(x− d) for some fixed d

(b) f(x) = δ(x+ d) + δ(x− d)

(c) f(x) =
N∑

n=−N

δ(x− nd) for integer N .

(d) f(x) = eiqx

(e) f(x) = cos(ax). Comment on your answer.

(f) f(x) = sin(ax). Comment on your answer.

For what optical systems would (a), (b) and (c) be transmission functions?
For what optical systems would the transmission functions be given by the convolutions
of a top hat with (a), with (b) or with (c)?

Convolution

31. (a) Define the convolution of f(x) and g(x).

(b) State and prove the convolution theorem for f(x) ∗ g(x)
(c) The normalised Gaussian is:

f(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
.

Evaluate the Fourier transform of the Gaussian.
Evaluate the convolution of two Gaussians of width σ1 and σ2 using the convolu-
tion theorem
Interpret your result

1If you look back through old exam papers (http://www.lib.ed.ac.uk/resources/collections/
exams.shtml), this and last week’s lists cover almost every Fourier transform that has been recently asked.

http://www.lib.ed.ac.uk/resources/collections/exams.shtml
http://www.lib.ed.ac.uk/resources/collections/exams.shtml


32. Show that the convolution of f(x), the top-hat function of width 2a centred at the
origin, with itself is a triangle-shaped function of width 4a. [Hint: if y is the dummy
variable in the convolution, consider in what range of x functions f(y) and f(x − y)
are non-zero. Split the integral into 4 regions: x < −2a, −2a ≤ x ≤ 0, 0 ≤ x ≤ 2a
and x > 2a.]

The convolution operation is commutative: f ∗ g = g ∗ f . Use this property to sketch
f(x) ∗ [δ(x+ b) + δ(x− b)] ∗ f(x) for b > 2a.

33. The following questions verify some expressions from the lecture notes

(a) Slightly harder: Show that the convolution operation is commutative i.e. the
result does not depend on the order: f ∗ g = g ∗ f . [Hint: change variable
y → z = x− y.]

Show the convolution operation is associative i.e. we can combine convolutions in
any order: (f∗g)∗h = f∗(g∗h). [Hint: (f∗g)∗h =

∫
dy

∫
dx f(x) g(y−x) h(z−y)

and change variables (x, y) → (u = y − x, v = z − x). Recognise that we have
(g ∗ h) convolved with f .]

PDE’s

34. In this question, we’ll see how to use Fourier transforms to solve the wave equation

∂2u(x, t)

∂x2
=

1

c2
∂2u(x, t)

∂t2

for an infinitely long string.

(a) First Fourier transform both sides to show that

−(ck)2 U(k, t) =
∂2U(k, t)

∂t2

where U(k, t) is the (spatial) F.T. of u(x, t).

(b) For fixed k, solve this ODE and show that the general solution is

U(k, t) = U0(k) cos(ckt) +
V0(k)

ck
sin(ckt)

where U0(k) ≡ U(k, t = 0) and V0(k) ≡ ∂U(k,t)
∂t

∣∣∣
t=0

.

(c) The string is initially at rest and bent into the shape u(x, t = 0) = sin(3πx
L

)
where L is just a parameter. Find the solution for U(k, t) and hence u(x, t), given
these initial conditions. How does this compare to a similar problem of a string
stretched between x = 0 and x = L? Why?

(d) A similar string is also initially at rest, but is instead bent into the shape

u(x, t = 0) =

{
sin(3πx

L
) for − L ≤ x ≤ L ,

0 otherwise.

Find the solution for U(k, t) and comment on the difference between this and the
previous case.


