
Physical Mathematics 2010: Problems 1 (week 2)

1. Hellenic Calligraphy. Like it or not, Greek letters are very popular in physics. It will be
easier to follow what is going on in the course if you know how they are pronounced.

lower name upper
case case
α alpha A
β beta B
γ gamma Γ
δ delta ∆
ε, ε epsilon E
ζ zeta Z
η eta H
θ, ϑ theta Θ

lower name upper
case case
ι iota I
κ kappa K
λ lambda Λ
µ mu M
ν nu N
ξ xi Ξ
o omicron O
π, $ pi Π

lower name upper
case case
ρ, % rho P
σ, ς sigma Σ
τ tau T
υ upsilon Υ
φ, ϕ phi Φ
χ chi X
ψ psi Ψ
ω omega Ω

2. Trig identities: Using
eiθeiφ = ei(θ+φ)

and
eiθ = cos θ + i sin θ

prove that

(a) cos(A+B) = cosA cosB − sinA sinB

(b) cos(A−B) = cosA cosB + sinA sinB

(c) sin(A+B) = sinA cosB + cosA sinB

(d) sin(A−B) = sinA cosB − cosA sinB

(e) 2 cosA cosB = cos(A+B) + cos(A−B)

(f) 2 sinA cosB = sin(A+B) + sin(A−B)

(g) 2 sinA sinB = − cos(A+B) + cos(A−B)

(h) 2 cosA sinB = sin(A+B)− sin(A−B)

(i) cos 2θ = 1− 2sin2θ

(j) sin 2θ = 2 sin θ cos θ

3. Travelling and standing waves

(a) Explain why cos(kx− ωt) is a travelling wave

ANSWER:
Location of fixed phase (e.g. peak) of wave travels as defined by

kx− ωt = const

so wave travels towards positive x.

x =
const + ωt

k

(b) Explain why cos(kx) cos(ωt) is a standing wave

ANSWER:
This has a time independent profile in x, but time dependent amplitude.

(c) Write cos(kx− ωt) as a sum of standing waves

(d) Write cos(kx) cos(ωt) as sum of travelling waves



4. Trig differentiation Differentiate

(a) sin 3x

ANSWER:
3 cos 3x

(b) sin(cos 4x)

ANSWER:
−4 cos(cos 4x) sin 4x

(c) sin(5 cos 4x)

ANSWER:
−20 cos(5 cos 4x) sin 4x

(d) eax

ANSWER:
aeax

(e) eiax

ANSWER:
iaeiax

(f) eiax2

ANSWER:
2iaxeiax2

(g) By differentiating eikx and considering real and imaginary parts find the deriva-
tives of cos kx and sin kx

ANSWER:
d
dx

cos kx+ i d
dx

sin kx = ikeikx = −k sin kx+ ik cos kx, and equate real and imagi-
nary parts seperately.

5. Trig integration Integrate

(a) sin 3x

ANSWER:
− cos 3x

3

(b) cos 5x

ANSWER:
sin 5x

5

(c) cos 5x sin 3x

ANSWER:
1
16

cos 8x− 1
4
cos 2x

(d) cos 2x cos 8x

ANSWER:
1
20

sin 10x+ 1
12

sin 6x

(e) sin x sin 3x

ANSWER:
1
4
sin 2x− 1

8
sin 4x

(f) 2x cosx2

ANSWER:
sin x2



(g) eax

ANSWER:
1
a
eax

(h) eiax

ANSWER:
1
ia
eiax

6. Orthogonality

for kn = n π
L
, km = m π

L
, show

(a)
∫ L

−L
sin knx sin kmx = Lδmn

(b)
∫ L

−L
cos knx cos kmx =

{
Lδmn n 6= 0
2Lδmn n = 0

(c)
∫ L

−L
sin knx cos kmx = 0

(d) For each case draw a graph explaining why.

ANSWER:
The sin cos integral is zero as it is an odd integrand.
Use double angle formulae to transform integrand to simple sines and cosines
e.g. ∫ L

−L

cos knx cos kmx =
1

2

∫ L

−L

(cos(kn + km)x+ cos(kn − km)x) dx

=
1

2


[2x]L−L ; m = n = 0[

sin(kn+km)x
kn+km

+ x
]L

−L
; m = n 6= 0[

sin(kn+km)x
kn+km

+ sin(kn−km)x
kn−kn

]L

−L
; m 6= n 6= 0

=


2L ; m = n = 0
L ; m = n 6= 0
0 ; m 6= n 6= 0

Note that sin knL = sinnπ = 0. The sin orthogonality is similar, but the integral
becomes, after use of double angle formula:

1

2

∫ L

−L

(cos(kn − km)x− cos(kn + km)x) dx



7. Integration by parts:

(a)

∫ ∞

0

dx x e−ax .

(b)

∫ ∞

0

dx x2 e−ax .

(c)

∫ π

0

dx x cosx .

(d)

∫ π

−π

dx x sin x .

(e)

∫ 2a

a

dx ln
(x
π

)
. [Hint: substitute u = x/π.]

(f)

∫ y

1

dx x lnx .

(g)

∫ 1

0

dx (1− x) ln(1− x) . [Hint: substitute u = 1− x.]

8. Curve sketching

(a) f(x) =
1

x− a
− 1

x+ a
.

(b) f(x) = sinc x =
sin x

x
.

(c) f(x) =
cosx

x
.

(d) Sketch (and label) f1(x) = xe−x and f2(x) = xe−2x on the same graph

(e) f(x) = x2 e−x for x ≥ 0 .

(f) f(x) = sin(πx)e−x for x ≥ 0 .

(g) Sketch the function f(x) = exp
(
− x2

2σ2

)
, labelling locations of any crossings of the

axes. How would increasing σ change the plot?

Sketch f(x)× cos(πx) for σ ' 3.
Label the value at x = 0 and the position of any nodes (zeros).

(h) f(x) = e−a2x2

cos bx with b > 2πa .

9. Calculate these integrals by integrating by parts. They will be very useful.

(a)

∫ L

−L

dx x sin
mπx

L
.

ANSWER:∫ L

−L

dx x sin
(mπ x

L

)
= 2

(−1)1+m L2

mπ

(b)

∫ L

−L

dx x2 sin
mπx

L
.

ANSWER:
It is zero by symmetry: we are integrating an odd function over an even (i.e.
symmetric) range.



(c)

∫ L

−L

dx x cos
mπx

L
.

ANSWER:
It is zero by symmetry: we are integrating an odd function over an even (i.e.
symmetric) range.

(d)

∫ L

−L

dx x2 cos
mπx

L
.

ANSWER:∫ L

−L

dx x2 cos
(mπ x

L

)
= 4

(−1)m L3

m2π2

Repeat (c) when the lower limit of the integral is 0 rather than −L.

ANSWER:∫ L

0

dx x cos
(mπ x

L

)
=
L2 (−1 + (−1)m)

m2π2

10. l’Hôpital’s Rule

If f(x = c) = g(x = c) = 0 for two functions at some value x = c, then

lim
x→c

[
f(x)

g(x)

]
= lim

x→c

[
f ′(x)

g′(x)

]
,

(a) Evaluate lim
x→0

sinc(ax) where sinc(x) ≡ sin x

x
.

ANSWER:
At x = 0 we have 0

0
which is undefined. This means we need to look more closely

using l’Hôpital’s rule. Differentiating top and bottom we get a cos ax
a

= cos ax
1

and
the limit is 1.

(b) Evaluate lim
x→0

cosx

x
.

ANSWER:
A trick question. At x = 0 we have 1

0
which is divergent. We cannot use l’Hôpital’s

rule: it really is divergent. Whether we get ±∞ depends on the sign of x from
which we approach zero.

(c) Prove l’Hôpital’s Rule by writing f(x) and g(x) as Taylor series expansions around
x = c.

ANSWER:
For x near c: f(x) = f(c)+(x−c)f ′(c)+ 1

2
(x−c)2f ′′(c)+ . . . and we are thinking

about the special case f(c) = 0. Do the same expansion for g(x), cancel a factor
of (x−c) top and bottom in the fraction and then take the limit, remembering that
f ′(c) is the value of the function at a given point and therefore is a constant.

11. In this question we will prove the standard result

I =

∫ ∞

−∞
du e−u2

=
√
π

(a) Write I2 as a double integral. In the first factor, call the dummy variable x and
in the second call it y.



ANSWER:

I2 =

∫ ∞

−∞
dx e−x2

∫ ∞

−∞
dy e−y2

=

∫ ∞

−∞
dx

∫ ∞

−∞
dy exp

(
−(x2 + y2)

)
.

(b) Change to circular polar coordinates (x, y) → (ρ, φ) and evaluate the angular
integral (remember if you change variables correctly, the area of a ring should
enter as 2πrdr).

ANSWER:

I2 =

∫ 2π

0

dφ

∫ ∞

0

dρ ρ exp
(
−ρ2

)
= 2π

∫ ∞

0

dρ ρ exp
(
−ρ2

)
.

(c) Now do the radial integral and obtain an expression for I.

ANSWER:
The differential of the exponent is −2ρ, and we already have such a factor from
the scale factor, so we can do the integral:

I2 = 2π

[
−e

−rho2

2

]∞
0

= π .

Hence the standard result.

(d) Use this to show that the “normalised Gaussian”

f(x) =
1√

2πσ2
e−x2/(2σ2)

really is normalised.

ANSWER:
We want

∫∞
−∞ dx f(x) = 1. Change variables u = x/(σ

√
2). The limits are

unchanged, but dx = du.σ
√

2. Overall, then, the area under the curve is 1/sqrtπ
times the standard integral, so the area is 1 and it really is normalised.

12. Evaluate

∫ ∞

−∞
dx e−ax2−bx, given the standard result

∫ ∞

−∞
dx e−x2

=
√
π.

[Hints: begin by “completing the square” to write ax2 + bx in the form (Ax+B)2 +C]

13. The transverse displacement u(x, t) of a string stretched between x = 0 and x = L and
initially at rest is described by the wave equation

∂2u

∂x2
=

1

c2
∂2u

∂t2

where c is the (constant) wave speed.

Use the method of separation of variables to obtain a solution of this equation in the
form

u(x, t) = (Ak sin kx+Bk cos kx)× (Ck sinωkt+Dk cosωkt) .

Explain clearly the meaning of all the symbols including the relationship between k
and ωk.



Show how the imposition of the boundary and initial conditions restricts the possible
modes of vibration and hence leads to a general solution

u(x, t) =
∞∑

n=1

En sin knx cosωnt

Again, the meanings of all symbols should be clearly explained.

The functions sin knx form an orthogonal set:∫ L

0

dx sin(knx) sin(kmx) = anδnm ,

for some constants an (which you need not evaluate). If the string initially has a
displacement f(x), show that

En =
1

an

∫ L

0

dx f(x) sin knx .

(Aug.07.7)

ANSWER:
No answer: this is a past exam question

What physical role does the constant c play for: (a) travelling waves, and (b) standing
waves?

ANSWER:
For travelling waves, c is the speed of propagation (see later question on this sheet for
more details). For standing waves (i.e. normal mode solutions) c relates the angular
frequency of the wave ω to the wavenumber k via the dispersion relation ω = ck.

14. Sketch each of the following functions and find their Fourier series expansions (i.e.
components an and bn) in the range −L ≤ x ≤ L. Add to your sketch the periodically
extended function described by the Fourier series. For each function, explain why
particular components turn out to be zero.

(a) f(x) = sin
3πx

L
ANSWER:
f(x) is odd, so will be represented just in terms of sine functions (no cosines,
am = 0). Here we are trying to represent a pure sine function in terms of pure
sign functions. Obviously only one term in the series will constribute, so bm = δ3m.
You can show all this mathematically by doing the appropriate integrals.

(b) f(x) = signum x ≡ x

|x|
≡

{
+1 if x > 0

−1 if x < 0

ANSWER:
This is discussed in the lecture notes.

(c) f(x) = x

ANSWER:

The function is odd, so an = 0 and bn =
−2L(−1)n

nπ
(d) f(x) = |x|

ANSWER:

The function is even, so bn = 0 and a0 = L/2 and an>0 =
−2L[1− (−1)n]

n2π2



(e) f(x) = x2

ANSWER:
This is discussed in the lecture notes.

[Hint: for (b), (d) split the integrals into two parts, −L ≤ x < 0 and 0 ≤ x ≤ L.]

15. As seen in lectures, the transverse displacements of a string stretched from x = 0 to
x = L are described by a general solution:

u(x, t) =
∞∑

n=1

(En sin knx sinωnt+ Fn sin knx cosωnt) (1)

with kn = nπ/L and ωn = ckn.

A guitar string is initially plucked gently from the centre such that u̇(x, t = 0) = 0 and

u(x, t = 0) =

{
2px/L 0 ≤ x ≤ L

2

2p(L− x)/L L
2
≤ x ≤ L

Sketch u(x, t = 0) (labelling the maximum value). Why is it important that the string
is plucked “gently”? Find En, Fn. For which n are En and Fn both zero (i.e. this
frequency is not present)? Give a physical explanation. Which frequencies dominate?
Again, give a physical explanation.

ANSWER:
The sketch is a triangle function peaking at x = L/2 with height p.
“Gentle” plucking is needed to have a linear wave equation (as discussed in lectures).
Initially the string is at rest, so all Fn turn out to be zero.
We calculate En in a similar way to in lectures.

En =
2

L

∫ L

0

dx sin
nπx

L
u(x, t = 0)

=
4p

L2

∫ L/2

0

dx x sin
nπx

L
+

4p

L2

∫ L

L/2

dx (L− x) sin
nπx

L

The smart thing to do here is make substitutions y = nπx/L in the first integral and
y = nπ(L− x)/L in the second:

En =
4p

L2

∫ nπ/2

0

Ldy

nπ

Ly

nπ
sin y +

4p

L2

∫ 0

nπ/2

−Ldy
nπ

Ly

nπ
sin(nπ − y)

=
4p

n2π2

∫ nπ/2

0

dy y sin y +
4p

n2π2

∫ nπ/2

0

dy y sin(nπ − y)

In the second integral, we used the minus sign from the scale factor to switch the
integration limits. Now we notice that if n is even (say n = 2m), sin(nπ − y) =
sin(2mπ − y) = sin(−y) = − sin(y) and, if n is odd (say n = 2m + 1), sin(nπ − y) =
sin(2mπ + π − y) = sin(π − y) = sin y. Overall, then sin(nπ − y) = −(−1)n sin y, and
the second integral looks just like the first:

En =
4p[1− (−1)n]

n2π2

∫ nπ/2

0

dy y sin y

=
4p[1− (−1)n]

n2π2
[−y cos y + sin y]nπ/2

0

=
4p[1− (−1)n]

n2π2

(
sin

nπ

2
− nπ

2
cos

nπ

2

)



O.K. From the [1− (−1)n] we know that the expression is only non-zero when n is odd,
whereas cosnπ/2 is only non-zero when n is even. So, we can ignore the second term.
Similarly, sinnπ/2 is only non-zero when n is odd, in which case [1− (−1)n] is always
2, so we just replace it by that value to get:

En =
8p

n2π2
sin

nπ

2

So the only frequencies present are odd n i.e. ones where the wave is symmetric about
the midpoint of the string. Those antisymmetric about the midpoint (even n) are not
present. This makes sense: our initial conditions were symmetric about the midpoint.
The amplitudes En ∝ 1/n2, so low frequencies dominate. This makes sense: the initial
condition was triangular in shape, which looks a lot like the n = 1 sine wave, so it is
natural that low frequency modes should have greater amplitudes.

16. Sketch the following function and express it as a real Fourier series, finding its Fourier
components, an and bn:

f(x) =

{
(x+ π)h −π ≤ x ≤ 0

(π − x)h 0 ≤ x ≤ π
(2)

where h is a constant. Why are bn = 0? Comment on the relative sizes of the non-zero
components. Use the series to find a series expression for π (hint: note that f(0) = π
if h = 1). Add the first few terms of the series to see how well it does.

ANSWER:
The sketch is triangle with corners at (x, y) = (−π, 0), (0, π), (π, 0).
Fourier component: a0 = πh/2, an>0 = 2h(1− (−1)n)/(n2π) and bn = 0.
bn are zero because we are expanding an even function, and the φn(x) basis functions
are odd.
The function is not smooth, with discontinuities in the first derivative (gradient) at
x = 0, ±π, so we expect the Fourier components to reduce as 1/n2 in the limit of large
n. In fact, in this case they have this dependence for all n.



17. Reduce the 1-dimensional Schrödinger Equation to separated form

− h̄2

2m

∂2ψ(x, t)

∂x2
+ V (x) ψ(x, t) = ih̄

∂ψ(x, t)

∂t

Also:

(a) What is the physical interpretation of the separation constant?

ANSWER:
It is the energy.

(b) What physical significance is attached to the normal modes?

ANSWER:
These are the eigenfunctions of the Schrödinger operator. They are the pure
quantum states of well defined energy. If we measure the energy for a general
wavefunction, the wavefunction then collapses to be one of the normal modes.

(c) What changes (if anything) if the potential is time dependent i.e. V (x) → V (x, t)?

ANSWER:
In general, the equation is no longer separable, so we can’t solve the equation
by assuming solutions of separated form. The only exception is if V (x, t) can
be written as the sum of a function of x and another function of t: V (x, t) =
Vx(x)+Vt(t). This is still separable: we keep Vx(x) on the LHS and move Vt(t) to
the RHS. Such a separable potential is quite artificial and rarely seen in practice.

(d) For the infinite square well, explain why the normal modes look (at least spatially)
like Fourier basis functions

ANSWER:
The spatial function X(x) has a harmonic solution of sines and cosines. The BCs
are that the wavefunction is matched across boundaries. The wavefunction must
be zero outside the infinite square well, so our BCs are that ψ(x, t) = 0 at x = −L
and x = L (for instance). This quantises the allowed wavenumbers k, just as for
waves on a string.

18. Reduce the 2-dimensional Schrödinger Equation to separated form when the potential
has the form V (x, y) = V (x) + V (y)

− h̄2

2m

∂2ψ(x, t)

∂x2
− h̄2

2m

∂2ψ(x, t)

∂y2
+ [V (x) + V (y)] ψ(x, t) = ih̄

∂ψ(x, t)

∂t

How could you proceed if V (x, y) = V (x+ y) + V (x− y)?

19. Rectangular drumskin

The wave equation of a square drumskin (defined by x ∈ [0, L], y ∈ [0, L]) is

∂2u

∂x2
+
∂2u

∂y2
=

1

c2
∂2u

∂t2

Substitute a separable solution of the form X(x)Y (y)T (t) and derive the separate
ODE’s for X, Y , and (t).

Apply the boundary conditions

u(x, L, t) = u(L, y, t) = u(x, 0, t) = u(0, y, t) = 0



to x and y and find the allowed values for the separation constants governing the X,
Y and T differential equations.

Suppose that initially the velocity

∂u(x, y, t = 0)

∂t
= 0

and
u(x, y, t = 0) = x(L− x)y(L− y).

Find the motion for all later times.

20. The Fourier modes are defined (for integer n) as

ψn(x) =

{
1 for n = 0 ,

cos
nπx

L
for n ≥ 1 ,

and φn(x) = sin
nπx

L
for n ≥ 1 .

(a) Explain what it means to say {ψn≥0(x), φn>0(x)} form an orthogonal set of func-
tions on the interval −L ≤ x ≤ L.

ANSWER:
Define an inner product f · g ≡

∫ L

−L
dx f(x)∗ g(x). An orthogonal set of functions

is one where the inner product of any two different functions is zero i.e. ψn ·ψm ∝
δmn, φn · φm ∝ δmn, ψn · φm = 0.

(b) Prove (by evaluating appropriate integrals) that they do indeed form an orthog-
onal set.

ANSWER:
The formulæ Eqn. (2.3) from the notes are useful here. Remember to trat the
m = n and m 6= n cases separately.

(c) Explain what we mean by an orthonormal set of functions, and how we convert
an orthogonal set into an orthonormal one.

ANSWER:
An orthonormal set of functions is an orthogonal set but where we have also
arranged that ψn · ψn = φn · φn = 1. Given a set of un-normalised functions, we
can create a normalised set by dividing each function by its “length”: ψn(x) →
ψn(x)/

√
ψn · ψn, ψn(x) → φn(x)/

√
φn · φn.

(d) Derive an orthonormal set of functions {ψ̂n≥0(x), φ̂n>0(x)} from the Fourier modes
defined above.

ANSWER:
ψ0(x) → ψ0(x)/

√
2L, ψn≥1(x) → ψn≥1(x)/

√
L, φn(x) → φn(x)/

√
L.

(e) By analogy with vectors, explain what is meant by a basis set in function space.
Does such a basis set have to be complete?

ANSWER:
A general function can be written as a linear combination of basis functions, if the
basis set is a complete set of functions. Yes, it has to be complete, or we cannot
do this.



(f) Express the function f(x) = sin2 2πx

L
as a Fourier series, preferably (for your

sake) without doing any integrals.

ANSWER:
The aim of a Fourier series is to express a function as a sum of sines and cosines
(inside a finite range). To do this, we need to find the Fourier components an, bn.
One way to find them is by projection: taking the inner product of a basis function
with the function we want to expand. But ultimately, all we want to do is find the
values of the unknown coefficients and if there is an easier way to do this, we are
free to do that instead. In this case we can use a trig. identity to rewrite f(x) in
terms of sines and cosines directly: f(x) = 1

2
− 1

2
cos

(
4πx
L

)
= 1

2
ψ0 + (−1

2
)ψ4(x).

Comparing with the generic Fourier expansion, all the bn are zero (there are no
sines), the constant is a0 = 1

2
and all the an>0 are zero except a4 = −1

2
.

These are the components using the unnormalised basis.

21. Write down the Fourier series for a general function f(x) between [−L,L], and then
both differentiate it and integrate with respect to x.

Fourier Transforms

22. Define the Fourier transform of a function and the inverse relation that specifies how
that function is represented in terms of its Fourier transform.

23. Complex Fourier series Write down the complex Fourier series for a function f(x)
which is defined on the interval −L ≤ x ≤ L and give an expression for the coefficients.

Consider the complex Fourier series for a real function f(x). How are the coefficient
cn and c−n related.

Explain briefly how the Fourier transform F (k) is obtained from the Fourier series
and state the equations which relate F (k) and f(x), along with an expression for the
wavenumber k.

If f(x) is real, how are F (k) and F (−k) related?

ANSWER:
The limit L → ∞ is discussed in the lecture notes. Make sure you understand in
particular the relation between Cn and F (k).

24. The top-hat function is defined to be zero everywhere, save in a region of width a
centred at x = 0. Within this region, the function takes a constant value such that the
total area under the function is unity.

Obtain the Fourier transform of the top hat function, and comment on the relative
widths of the function (in x-space) and its Fourier transform (in k-space). Make sure
you provide some justification for your comments.

ANSWER:
This was done in the lecture notes. It is a common exam question, so make sure you
can reproduce the arguments and the conclusion.

25. Write down the Fourier transform for a general function f(x) between [−∞,∞], and
then both differentiate it and integrate with respect to x.



26. Find the Fourier transforms

F (k) ≡ 1√
2π

∫ ∞

−∞
dx f(x) eikx

of the following functions

(a) f(x) = e−a|x| for positive a. [Hint: consider x ≥ 0 (with f(x) = e−ax) and x < 0
(with f(x) = eax) separately.]

ANSWER:

F (k) =
1√
2π

(∫ 0

−∞
dx ex(ik+a) +

∫ ∞

0

dx ex(ik−a)

)
=

2a

(k2 + a2)
√

2π

(b) The normalised Gaussian:

f(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
.

ANSWER:
This was discussed in the lecture notes. Complete the square in the exponent, and
then change variables to exploit the standard result∫ ∞

−∞
du e−u2

=
√
π.

Dirac δ

27. (a) Explain how the Fourier transform is used to obtain the far field diffraction pat-
tern for collimated light normally incident on a single slit of width a. Your
explanation should include a labelled diagram, and you should carefully define all
mathematical symbols.

(b) In the limit a → 0, the top hat function approaches the Dirac delta function.
Discuss briefly the properties that make this true. By considering the integral
of the product of an arbitrary function with the top-hat in this limit, derive the
“sifting property” of the Dirac delta function. (You may find it convenient to
exploit the smallness of a and Taylor expand around x = 0.)

ANSWER:
This is discussed in the lecture notes.

(c) What is the convolution of an arbitary function h(x) with δ(x−b)? Explain, with
a sketch graph, the geometric significance of this particular convolution operation.

ANSWER:
h(x)∗δ(x−b) = h(x−b). You need to work this out explicitly. Remember the trick
given in the lecture notes to make it easier. The function h is displaced distance
b in the direction of increasing x. Draw a sketch of a random function with some
feature (e.g. a peak) at x = 0. Label the horizontal axis x, and the function
h(x). Then draw the function again, displaced to the right with the position of the
feature now marked as x = b. Label this as h(x− b).

28. Use the sifting property of the Dirac delta function∫ ∞

−∞
dx f(x)δ(x) = f(0) . (3)

to prove the properties of the Dirac delta function given in the lecture notes:



(a) δ(ax) = δ(x)/|a| with special case a = −1: δ(−x) = δ(x). [Hint: consider∫ ∞

−∞
dx f(x)δ(ax) ,

substitute y = ax and compare with Eqn. (3). You will need to consider positive
and negative a separately — in the latter case use y = −|a|x.]
ANSWER:
For positive a:∫ ∞

−∞
dx f(x)δ(ax) =

∫ ∞

−∞

dy

a
f

(y
a

)
δ(y) =

f(0)

a
=
f(0)

|a|
.

Comparing with Eqn. (3), δ(ax) = δ(x)/|a|.
For negative a = −|a|:∫ ∞

−∞
dx f(x)δ(ax) =

∫ −∞

∞

dy

−|a|
f

(
− y

|a|

)
δ(y) =

∫ ∞

−∞

dy

|a|
f

(
− y

|a|

)
δ(y) =

f(0)

|a|
.

and again δ(ax) = δ(x)/|a|.
(b) x δ(x) = 0. [Hint: consider Eqn. (3) for f(x) = x. By looking at which points

could contribute to the integral you can then say something about the integrand.]

ANSWER: ∫ ∞

−∞
dx x δ(x) = x|x=0 = 0 .

The integrand is clearly zero for all |x| > 0, so the only way we can get zero for
the integral is if the integrand is also zero at x = 0.

(c) δ(x2 − a2) = [δ(x− a) + δ(x+ a)]/(2|a|). Use the result that

δ(g(x)) =
∑

n

δ(x− xn)

|g′(xn)|
(4)

where x = xn are the zeros of the function g(x).

ANSWER:
The zeros of g(x) = x2 − a2 occur at x1, 2 = ±a, where |g′| = 2a. Summing over
n = 1, 2 we get the result.

(d) A bit harder. Prove Eqn. (4) using the following method:

i. Consider

I =

∫ ∞

−∞
dx δ(g(x)) :

the only contributions are going to come when g(x) = 0. Why?
ANSWER:
Everywhere else the delta function must be zero.

ii. Split the integration up into small regions around the zeros of width ε. Why
do we get

I =
∑

n

∫ xn+ε

xn−ε

dx δ(g(x)) ?

ANSWER:
In the regions in between the integrand is zero.



iii. Define y = x − xn and Taylor expand g(x) for small y. If ε is small enough
that we can ignore terms of order ε2 and above, show that

I =
∑

n

∫ ε

−ε

dy δ(yg′(xn)) .

ANSWER:
g(x) = g(xn + y) = g(xn) + yg′(xn) +O(y2) and g(xn) = 0.

iv. Make a substitution z = yg′(xn) and explain why

I =
∑

n

∫ ∞

−∞

dz

|g′(xn)|
δ(z) .

In particular, make sure you explain the modulus sign, and why the integra-
tion range has been expanded.
ANSWER:
Use the result for δ(ay) with a = g′(xn). By linearising (dropping terms of
ordery2), we enforce that the argument of the delta function only has one
zero. So we can expand the integration range.

v. Evaluate I, and compare with Eqn. (3) to obtain the result.

29. Prove that x d
dx
δ(x) = −δ(x). [Hint: integrate the LHS over all x, and then integrate

by parts.]

ANSWER:∫ ∞

−∞
dx x

d

dx
δ(x) = [xδ(x)]∞−∞ −

∫ ∞

−∞
dxδ(x) = −

∫ ∞

−∞
dxδ(x)

which therefore tells us the identity must hold for the integrands.

30. Find the Fourier transforms of the following functions1

(a) f(x) = δ(x− d) for some fixed d

ANSWER:
This is discussed in the lecture notes.

(b) f(x) = δ(x+ d) + δ(x− d)

ANSWER:

F (k) =
1√
2π

(eikd + e−ikd) =

√
2

π
cos(kd)

(c) f(x) =
N∑

n=−N

δ(x− nd) for integer N .

ANSWER:

F (k) =
1√
2π

N∑
n=−N

eikdn =
1√
2π

[
1 +

N∑
n=1

(eikdn + e−ikdn)

]

=
1√
2π

[
1 + 2

N∑
n=1

cos(kdn)

]

1If you look back through old exam papers (http://www.lib.ed.ac.uk/resources/collections/
exams.shtml), this and last week’s lists cover almost every Fourier transform that has been recently asked.

http://www.lib.ed.ac.uk/resources/collections/exams.shtml
http://www.lib.ed.ac.uk/resources/collections/exams.shtml


(d) f(x) = eiqx

ANSWER:
This is discussed in the lecture notes.

(e) f(x) = cos(ax). Comment on your answer.

ANSWER:

F (k) =

√
2

π

∫ ∞

−∞
dx (ei(k+a)x + ei(k−a)x) =

√
2

π
× 2π(δ(k + a) + δ(k − a))

using Eqn.(10.24) from the notes. Note only the frequencies k = ±a contribute.

(f) f(x) = sin(ax). Comment on your answer.

ANSWER:

F (k) =

√
2

π
× i

∫ ∞

−∞
dx (ei(k+a)x − ei(k−a)x) =

√
2

π
× 2πi(δ(k + a)− δ(k − a))

as above. Again, only frequencies k = ±a contribute.

For what optical systems would (a), (b) and (c) be transmission functions?
For what optical systems would the transmission functions be given by the convolutions
of a top hat with (a), with (b) or with (c)?

ANSWER:
(a): 1 infinitely narrow slit; (b): 2 infinitely narrow slits, separation 2d; (c): a grating
consisting of 2N + 1 infinitely narrow slits, separation d; (g)*(a,b,c): as before, but in
each case the slits have finite width 2a.

Convolution

31. (a) Define the convolution of f(x) and g(x).

(b) State and prove the convolution theorem for f(x) ∗ g(x)
(c) The normalised Gaussian is:

f(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
.

Evaluate the Fourier transform of the Gaussian.
Evaluate the convolution of two Gaussians of width σ1 and σ2 using the convolu-
tion theorem
Interpret your result

32. Show that the convolution of f(x), the top-hat function of width 2a centred at the
origin, with itself is a triangle-shaped function of width 4a. [Hint: if y is the dummy
variable in the convolution, consider in what range of x functions f(y) and f(x − y)
are non-zero. Split the integral into 4 regions: x < −2a, −2a ≤ x ≤ 0, 0 ≤ x ≤ 2a
and x > 2a.]

ANSWER:
Sketch a graph with the dummy index y along the horizontal axis. Sketch f(y), a top-hat
extending from y = −a to y = a. Choose a value of x. Sketch a (reflected) top-hat
centred at this point. Now consider the region of y in which the two top-hats ovelap.
For |x| > 2a there is no overlap, and the convolution is zero for these values of x. For



0 ≤ x ≤ 2a, the overlap extends from y = x − a (the LHS of the shifted top-hat) to
y = a (the RHS of the unshifted top-hat). So, the integral over y reduces to:

(f ∗ f)(x) =

∫ a

x−a

dy h2 = h2[y]ax−a = h2(a− (x− a)) = h2(2a− x)

where h is the height of the top-hat.
If −2a ≤ x ≤ 0, the overlap is from y = −a to y = x+a, giving (f ∗f)(x) = h2(2a+x).
Combining these 4 results, we get the triangle of base 4a and height 2ah2:

(f ∗ f)(x) =


0 x ≤ −2a

h2(2a+ x) −2a ≤ x ≤ 0

h2(2a− x) 0 ≤ x ≤ 2a

0 2a ≤ x

This function is continuous (i.e. joined up) but not smooth (i.e. it has kinks at x =
0, ± 2a.

The convolution operation is commutative: f ∗ g = g ∗ f . Use this property to sketch
f(x) ∗ [δ(x+ b) + δ(x− b)] ∗ f(x) for b > 2a.

ANSWER:
Use the commutativity to rearrange this to (f ∗ f)(x) ∗ [δ(x+ b) + δ(x− b)]. The first
convolution gives us the triangle above. When we convolve with a δ-function, it just
shifts the function. When we convolve with a sum of delta-functions, we get multiple,
shifted copies. So we end up with two triangles, base 4a centred at x = b and x = −b.
The condition b > 2a tells us the triangles do not overlap.

33. The following questions verify some expressions from the lecture notes

(a) Slightly harder: Show that the convolution operation is commutative i.e. the
result does not depend on the order: f ∗ g = g ∗ f . [Hint: change variable
y → z = x− y.]

Show the convolution operation is associative i.e. we can combine convolutions in
any order: (f∗g)∗h = f∗(g∗h). [Hint: (f∗g)∗h =

∫
dy

∫
dx f(x) g(y−x) h(z−y)

and change variables (x, y) → (u = y − x, v = z − x). Recognise that we have
(g ∗ h) convolved with f .]

PDE’s

34. In this question, we’ll see how to use Fourier transforms to solve the wave equation

∂2u(x, t)

∂x2
=

1

c2
∂2u(x, t)

∂t2

for an infinitely long string.

(a) First Fourier transform both sides to show that

−(ck)2 U(k, t) =
∂2U(k, t)

∂t2

where U(k, t) is the (spatial) F.T. of u(x, t).

ANSWER:
This uses the relation that FT (f ′) = (ik)FT (f), proved in the lecture notes.



(b) For fixed k, solve this ODE and show that the general solution is

U(k, t) = U0(k) cos(ckt) +
V0(k)

ck
sin(ckt)

where U0(k) ≡ U(k, t = 0) and V0(k) ≡ ∂U(k,t)
∂t

∣∣∣
t=0

.

ANSWER:
Solve the second-order ODE, then apply the initial conditions to identify the un-
known constants.

(c) The string is initially at rest and bent into the shape u(x, t = 0) = sin(3πx
L

)
where L is just a parameter. Find the solution for U(k, t) and hence u(x, t), given
these initial conditions. How does this compare to a similar problem of a string
stretched between x = 0 and x = L? Why?

ANSWER:
u(x, t = 0) = sin(3πx

L
), so we can F.T. to get U(k, t = 0) =

[
δ(k + 3π

L
− δ(k − 3π

L

]
·

√
2π
2i

. Substitute this is into the above general result for U(k, t).
So, we start with a pure sine wave, and we have just those frequencies present for
all times i.e. the spectrum is just a pair of Dirac delta functions.
This is just the same as waves on a string. The period of our initial condition
divides the interval L exactly, so the wave just repeats periodically the behaviour
inside 0 ≤ x ≤ L. This is the same as the periodic extension that we get outside
the range for Fourier series.

(d) A similar string is also initially at rest, but is instead bent into the shape

u(x, t = 0) =

{
sin(3πx

L
) for − L ≤ x ≤ L ,

0 otherwise.

Find the solution for U(k, t) and comment on the difference between this and the
previous case.

ANSWER:
U(k, t = 0) = L√

2π
[sinc(kL+ 3π)− sinc(kL− 3π)]. This is more complicated,

being a pair of sinc functions centred on k = ±3π
L

. These centre frequencies
contribute most, but all frequencies are now present (aside from the zeros of the
sinc function), compared to just the centre frequencies k = ±3π

L
in the previous

case.
If we represent a periodic function using a F.T., we only need a limited number of
frequencies (i.e. the F.T. simplifies to become a Fourier Series). If the function
to be expanded is aperiodic, we will need to include all frequencies (apart from
accidental zeros that are specific to the function we are expanding).


