
Physical Mathematics 2010: Problems 2 (week 4)

Curvilinear coordinate systems

1. Find the scale factors for changing volume integrals from Cartesian coordinates (x, y, z)
to the following coordinate sets:

(a) Cylindrical polar coordinates (ρ, φ, z): x = ρ cosφ; y = ρ sinφ; z = z.

(b) Spherical polar coordinates (r, θ, φ): x = r sin θ cosφ; y = r sin θ sinφ; z =
r cos θ.

2. Cylindrical polars

(a) Determine scale factors for cylindrical polar coordinates and the gradient operator
in the er, eφ, ez basis.

(b) Combine this with the divergence formula:

∇ · v =
1

h1h2h3

[
∂h2h3v1

∂ξ1
+
∂h3h1v2

∂ξ2
+
∂h1h2v3

∂ξ3

]
to find the Laplacian in cylindrical polar coordinates.

(c) Seek separable solutions in the cylindrical coordinates:

f(x, y, z) = R(r)Φ(φ)Z(z)

and separate the equation into three ODE’s and separation constants.

(d) Suppose f has boundary conditions in the z-direction such that

f(x, y, 0) = f(x, y, L) = 0

and that
Φ(2π) = Φ(0).

What constraints does this introduce on the allowed separation constants?

Wave equation for light

3. If ∇ · E = 0, ∇ ·B = 0, ∇× E = −∂B
∂t

, and ∇×B = ∂E
∂t

use the “GDMCC” rule for
the vector Laplacian show that E and B satisfy a wave equation.

Method of Froebenius & Special functions

4. Bill and Ted’s excellent misadventure

Bill and Ted have brought Pythagoras to the future and lost him in a night club. We
now live in a world without sin and cos.

To rectify this it is up to you to use the method of Froebenius to rediscover these
precious functions

(a) Substitute the infinite series y(x) =
∞∑

n=0

Cnx
n to the differential equation

y′′ + y = 0

You should end up with two sums.



(b) Relabel the summation using m = n− 2 on the y′′ term

(c) Use a notation where Ci = 0 for i < 0 to sum the y term over the range
∞∑

n=−2

(d) Hence obtain the indicial equation

Cm+2(m+ 1)(m+ 2) = −Cm

This relates every other coefficient in a recurrence relation.

(e) Deduce that C0 can be non-zero even though C−2 = 0, and that C1 can be non-
zero even though C−1 = 0.

We have two independent series, and so two free parameters C0 and C1 as should
be the case for a 2nd order ODE.

(f) Find the series with (a) C0 = 1, C1 = 0 and, (b) C0 = 0, C1 = 1

(g) How would you make up the world’s first table of sinusoids?

(h) Give these two independent series their names to save the world from Bill and
Ted’s misadventure.

5. Exponential: apply the above method to find the exponential function solving the
1st order ODE

y′ = y

fixing the single free parameter via y(0) = 1

6. Bessel bookwork: use the method in the notes to solve Bessel’s equation in the case
n = 0, and k = 1:

r2R′′ + rR′ + r2R = 0

Solve for the first four terms of the series solution that remains finite at r = 0, and
sketch the behaviour of the function.

7. Cauchy’s Equation:
d2R

dr2
+

2

r

dR

dr
− n(n+ 1)

r2
R = 0

Verify (by substitution) that it is solved by solutions of the form R(r) = rp for p = n
or p = −(n + 1). Explain why the general solution is simply a linear combination of
these. [i.e. Why is it a linear combination? Why are there no more functions?]

8. By making the substitutions x = pr, show that the following radial equation for a
function R(r):

r2R′′ + rR′ + (p2r2 − n2)R = 0

can be written in the standard form of Bessel’s Equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − n2)y(x) = 0 . (1)

The solutions to Bessel’s equation for give (fixed) n are y(x) = Jn(x), which are the
Bessel functions of order n.

By substituting into Bessel’s equation, show the following are Bessel functions and find
their order:

(i)
sin x√
x

(ii)
cosx√
x

Explain why these solutions will never be seen in when solving the radial equation in
problems with circular or cylindrical symmetry.



9. A circular membrane has its edge attached to a fixed circular ring centred on the origin
and of radius unity. For small displacements from its equilibrium position u(ρ, φ, t)
perpendicular to the plane of the ring

1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+

1

ρ2

∂2u

∂φ2
=

1

c2
∂2u

∂t2
,

for times t > 0 where 0 ≤ ρ ≤ 1 and 0 ≤ φ < 2π are radial and angular plane-polar
coordinates respectively.

If the motion is axially symmetric, explain why we can solve this differential equation
by considering solutions of separated form u(ρ, φ, t) = R(ρ) T (t).

Show that the radial equation reduces to

d2R

dρ2
+

1

ρ

dR

dρ
+ k2R = 0

where k is a constant.

By making the substitution x = kρ, explain why the solution is R(ρ) = J0(kρ), given
that J0(x) is the only solution of the differential equation

d2y

dx2
+

1

x

dy

dx
+ y = 0

that is finite at the origin.

Apply the boundary conditions to show that the general solution is

u(ρ, φ, t) =
∞∑

n=1

{En J0(λnρ) cos (λnct) + Fn J0(λnρ) sin (λnct)} ,

where En and Fn are unknown constants and the zeros of J0 are located at λn for
n = 1, 2, ..., i.e. J0(λn) = 0.

Initially the membrane is held at rest in the shape of a cone with its centre distance
h above its equilibrium position. If the membrane is then released, show that the
displacement of the point (ρ, φ) of the membrane at a later time is given by

u(ρ, φ, t) =
∞∑

n=1

An cos (λnct) J0(λnρ) ,

where

An =
2h

[J ′0(λn)]2

∫ 1

0

dρ ρ(1− ρ) J0(λnρ) .

[The relation ∫ 1

0

ds s J0(λns) J0(λms) = 1
2
δmn [J ′0(λn)]2

may be assumed without proof, where δmn = 1 for m = n and zero otherwise.]
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10. Quantum square well

The Schroedinger equation in a two dimensional infinite square well defined by

V (x, y) =

{
0 : x, y ∈ [0, L]
∞ otherwise



is

ih̄
∂

∂t
ψ(x, y, t) = − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
ψ(x, y, t) + V (x, y)ψ(x, y, t).

(a) Substitute a separable solution of the form X(x)Y (y)T (t) and derive the separate
ODE’s for X(x), Y (y), and T (t).

(b) Apply the boundary conditions

ψ(x, L, t) = ψ(L, y, t) = ψ(x, 0, t) = ψ(0, y, t) = 0

to x and y and find the allowed values for the separation constants governing the
X, Y and T differential equations.

(c) Suppose
ψ(x, y, t = 0) = x(L− x)y(L− y).

Find the wavefunction ψ for all later times.
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11. Drumskin

a) The displacement u(x, y, t) of a circular drumskin of radius L is described in Carte-
sian coordinates by the two dimensional wave equation

∂2u

∂x2
+
∂2u

∂y2
=

1

c2
∂2u

∂t2
.

In circular polar coordinates (r, θ) the Laplacian is

∇2f =
1

r

∂

∂r
(r
∂f

∂r
) +

1

r2

∂2f

∂θ2

Rewrite the wave equation in circular coordinates, and use the method of separation
of variables to determine separated differential equations in r, θ, and t and define the
separation constants.

b) Solve the θ equation and apply boundary conditions to show that the radial equation
reduces to Bessel’s equation of integral order

r2R′′ + rR′ + (k2r2 − n2)R = 0

Where R(r) is the separated radial dependence, k is a separation constant, and n is
an integer.

c) The solutions are Bessel functions of the form R(r) = Jn(kr).

Apply boundary conditions in the r variable to determine the frequency of the cor-
responding normal mode in terms of αnm, where αnm, is the m-th zero of the Bessel
function Jn.

d) The zeroes of the first two Bessel functions are

J0 J1

α01 = 2.405 α11 = 3.832
α02 = 5.520 α12 = 7.016

.

A drummer strikes the drum somewhere with θ = 0. Considering only these four
modes, where should he hold his other drumstick to excite:
i) only the n = 0,m = 2 mode?
ii) both the n = 1 modes with no n = 0 contributions?
iii) only the n = 1,m = 2 mode?
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12. Hermite Polynomials & and Harmonic Oscillator

The time independent Schrödinger equation for a particle of mass m in a harmonic
oscillator potential V (x) = 1

2
kx2 can be placed in the form

d2

dx2
ψ(x) + (λ− x2)ψ(x) = 0,

where λ = 2E
h̄ω

, E is the energy, and the angular frequency ω =
√

k
m

.

(a) Show that after a substitution ψ(x) = e−
x2

2 H(x) the equation reduces to

H ′′ − 2xH ′ + (λ− 1)H = 0.

(b) Substitute a power series for H(x):

H(x) =
∞∑

n=−∞

cnx
n.

Use the method of Fröbenius to determine a recurrence relation for cn.

(c) Analyse this recurrence relation:

For what values of n can the series begin and terminate?

What is the form of ψ(x) at large x, and how does normalisability constrain λ?

(d) Deduce (unnormalised) eigenfunctions ψ1(x), ψ2(x) ψ3(x) and associated energies
E1, E2, E3 for the first, second and third states.

(e) Consider operators a+ =
(
x− d

dx

)
, and a− =

(
x+ d

dx

)
.

Apply a+ and a− to your solution ψ1.

Show that if ψn is a solution of the equation for λ = λn, then ψn+1 = a+ψn is a
solution for λ = λn + 2.
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