Physical Mathematics 2010: Problems 3 (week 6)

Wave Equation in Spherical polars

It is very beneficial to work through the procedure in the notes by yourself.

1. Follow the procedure in the notes to separate the wave equation

$$
\nabla^{2} u=\underbrace{\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}}_{\text {radial part }}+\underbrace{\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} u}{\partial \phi^{2}}}_{\text {angular part }}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}
$$

into ODEs for $R(r), \Theta(\theta), \Phi(\phi)$ and $T(t)$.
2. Substitute $w=\cos \theta$ to reduce the Θ-equation to the Legendre equation for $m=0$.
3. Use the Method of Frobenius to find the first three Legendre polynomials $P_{0}(\cos \theta)$, $P_{1}(\cos \theta)$ and $P_{2}(\cos \theta)$.
Combine these with your solution for the ϕ equation to form the $Y_{l}^{0}(\theta, \phi)=\Theta(\theta) \Phi(\phi)$ in the following table (up to normalisation factors).

Spherical Harmonics

The low (unnormalized) spherical harmonics are

	$\mathrm{l}=0$	$\mathrm{l}=1$	$\mathrm{l}=2$
$\mathrm{~m}=2$			$Y_{2}^{2}(\theta, \phi)=\sin ^{2} \theta e^{i 2 \phi}$
$\mathrm{~m}=1$		$Y_{1}^{1}(\theta, \phi)=\sin \theta e^{i \phi}$	$Y_{2}^{1}(\theta, \phi)=\sin \theta \cos \theta e^{i \phi}$
$\mathrm{~m}=0$	$Y_{0}^{0}(\theta, \phi)=1$	$Y_{1}^{0}(\theta, \phi)=\cos \theta$	$Y_{2}^{0}(\theta, \phi)=3 \cos ^{2} \theta-1$
$\mathrm{~m}=-1$		$Y_{1}^{-1}(\theta, \phi)=\sin \theta e^{-i \phi}$	$Y_{2}^{-1}(\theta, \phi)=\sin \theta \cos \theta e^{-i \phi}$
$\mathrm{~m}=-2$			$Y_{2}^{-2}(\theta, \phi)=\sin ^{2} \theta e^{-i 2 \phi}$

4. Show that each of the above Y_{l}^{m} are eigenmodes of the operator

$$
-i \frac{\partial}{\partial \phi}
$$

with eigenvalue m. This is closely related to the z-component of orbital angular momentum in quantum mechanics.
5. Show that each of the above Y_{l}^{m} are eigenmodes of the operator

$$
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial^{2} \phi}
$$

with eigenvalue $-l(l+1)$. This is closely related to the squared orbital angular momentum in quantum mechanics.
6. Show that, when represented in terms of Cartesian coordinates on the unit sphere $x^{2}+y^{2}+z^{2}=r^{2}=1$,

$$
Y_{1}^{m}=\{x+i y, z, x-i y\}
$$

for $m=1,0,-1$ and that

$$
Y_{2}^{m}=\left\{(x+i y)^{2}, z(x+i y), 3 z^{2}-1, z(x-i y),(x-i y)^{2}\right\}
$$

for $m=2,1,0,-1,-2$.
7. Consider cartesian operators

$$
\begin{aligned}
L_{x} & =-i\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \\
L_{y} & =-i\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right) \\
L_{z} & =-i\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)
\end{aligned}
$$

(a) Express x, y, and z in spherical polars and find expressions for $\hat{r}, \hat{\theta}$, and $\hat{\phi}$ in terms of of cartesian components \hat{x}, \hat{y}, and \hat{z}.
Use your result and the relation

$$
\frac{\partial}{\partial x} f=\hat{x} \cdot \nabla f
$$

and the spherical polar representation of ∇ to show that

$$
\begin{aligned}
\frac{\partial}{\partial x} & =\sin \theta \cos \phi \frac{\partial}{\partial r}+\frac{\cos \theta \cos \phi}{r} \frac{\partial}{\partial \theta}-\frac{\sin \phi}{r \sin \theta} \frac{\partial}{\partial \phi} \\
\frac{\partial}{\partial y} & =\sin \theta \sin \phi \frac{\partial}{\partial r}+\frac{\cos \theta \sin \phi}{r} \frac{\partial}{\partial \theta}+\frac{\cos \phi}{r \sin \theta} \frac{\partial}{\partial \phi} \\
\frac{\partial}{\partial z} & =\cos \theta \frac{\partial}{\partial r}-\frac{\sin \theta}{r} \frac{\partial}{\partial \theta}
\end{aligned}
$$

Hence, show that

$$
\begin{gathered}
L_{x}=i\left(\sin \phi \frac{\partial}{\partial \theta}+\frac{\cos \theta}{\sin \theta} \cos \phi \frac{\partial}{\partial \phi}\right) \\
L_{y}=i\left(-\cos \phi \frac{\partial}{\partial \theta}+\frac{\cos \theta}{\sin \theta} \sin \phi \frac{\partial}{\partial \phi}\right) \\
L_{z}=-i \frac{\partial}{\partial \phi}
\end{gathered}
$$

(b) Show that

$$
-\left(L_{x}^{2}+L_{y}^{2}+L_{z}^{2}\right)=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial^{2} \phi}
$$

(c) Show that Y_{1}^{1} is not an eigenfunction of L_{x} or of L_{y}. ${ }^{1}$
(d) Show that

$$
y+i z, \quad x, \quad y-i z
$$

are equal to

$$
\frac{1}{2 i}\left(Y_{1}^{1}-Y_{1}^{-1}\right)+i Y_{1}^{0}, \quad \frac{1}{2}\left(Y_{1}^{1}+Y_{1}^{-1}\right), \quad \frac{1}{2 i}\left(Y_{1}^{1}-Y_{1}^{-1}\right)-i Y_{1}^{0}
$$

and that they are eigenfunctions of both L_{x} and of L^{2} (and what are their eigenvalues)?
Conclude that this is wavefunction basis we should use if we observe angular momentum in the x-direction instead of the z-direction, and that L_{x} will have magnetic quantum numbers $-1,0,1$.

[^0]
8. Rodrigues formula for Legendre polynomials

The $m=0$ spherical harmonics are given by

$$
Y_{l}^{0}(\theta, \phi)=N P_{l}(\cos \theta)
$$

(a) Use the Rodrigues formula for Legendre polynomials

$$
P_{l}(w)=\frac{1}{2^{l} l!} \frac{d^{l}}{d w^{l}}\left(w^{2}-1\right)^{l} \propto \frac{d^{l}}{d w^{l}}\left(w^{2}-1\right)^{l}
$$

to reproduce (ignoring normalisation) Y_{0}^{0}, Y_{1}^{0} and Y_{2}^{0} above.
(b) The associated Legendre polynomials are then given by

$$
P_{l}^{m}(w)=\frac{(-1)^{m}}{2^{l} l!}\left(1-w^{2}\right)^{m / 2} \frac{d^{l+m}}{d w^{l+m}}\left(w^{2}-1\right)^{l}
$$

Use this to reproduce (ignoring normalisation) all the above spherical harmonics.

9. Raising and lowering

Using the spherical polar representation, define

$$
L_{+}=L_{x}+i L_{y} \quad L_{-}=L_{x}-i L_{y} .
$$

Apply $L_{+}\left(L_{-}\right)$to each of the above Y_{1}^{m} and show that this raises (lowers) the magnetic quantum number.
Note also that

$$
L_{+} Y_{1}^{1}=0
$$

and that

$$
L_{-} Y_{1}^{-1}=0 .
$$

[^0]: ${ }^{1}$ This can also be shown for Y_{1}^{0}, and Y_{1}^{-1} if you are keen

