
Physical Mathematics 2010: Problems 3 (week 6)

Wave Equation in Spherical polars

It is very beneficial to work through the procedure in the notes by yourself.

1. Follow the procedure in the notes to separate the wave equation
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into ODEs for R(r), Θ(θ), Φ(φ) and T (t).

2. Substitute w = cos θ to reduce the Θ-equation to the Legendre equation for m = 0.

3. Use the Method of Frobenius to find the first three Legendre polynomials P0(cos θ),
P1(cos θ) and P2(cos θ).

Combine these with your solution for the φ equation to form the Y 0
l (θ, φ) = Θ(θ)Φ(φ)

in the following table (up to normalisation factors).

Spherical Harmonics

The low (unnormalized) spherical harmonics are

l=0 l=1 l=2
m=2 Y 2

2 (θ, φ) = sin2 θei2φ

m=1 Y 1
1 (θ, φ) = sin θeiφ Y 1

2 (θ, φ) = sin θ cos θeiφ

m=0 Y 0
0 (θ, φ) = 1 Y 0

1 (θ, φ) = cos θ Y 0
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m=-2 Y −2
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4. Show that each of the above Y m
l are eigenmodes of the operator
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with eigenvalue m. This is closely related to the z-component of orbital angular mo-
mentum in quantum mechanics.
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with eigenvalue −l(l + 1). This is closely related to the squared orbital angular mo-
mentum in quantum mechanics.

6. Show that, when represented in terms of Cartesian coordinates on the unit sphere
x2 + y2 + z2 = r2 = 1,

Y m
1 = {x + iy, z, x− iy}

for m = 1, 0,−1 and that

Y m
2 = {(x + iy)2, z(x + iy), 3z2 − 1, z(x− iy), (x− iy)2}

for m = 2, 1, 0,−1,−2.



7. Consider cartesian operators
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(a) Express x,y, and z in spherical polars and find expressions for r̂, θ̂, and φ̂ in terms

of of cartesian components x̂, ŷ, and ẑ.

Use your result and the relation
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and the spherical polar representation of ∇ to show that
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Hence, show that
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(b) Show that

−(L2
x + L2

y + L2
z) =

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂2φ

(c) Show that Y 1
1 is not an eigenfunction of Lx or of Ly.
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and that they are eigenfunctions of both Lx and of L2 (and what are their eigen-
values)?

Conclude that this is wavefunction basis we should use if we observe angular
momentum in the x-direction instead of the z-direction, and that Lx will have
magnetic quantum numbers −1, 0, 1.

1This can also be shown for Y 0
1 , and Y −1

1 if you are keen



8. Rodrigues formula for Legendre polynomials

The m = 0 spherical harmonics are given by

Y 0
l (θ, φ) = NPl(cos θ)

(a) Use the Rodrigues formula for Legendre polynomials
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to reproduce (ignoring normalisation) Y 0
0 , Y 0

1 and Y 0
2 above.

(b) The associated Legendre polynomials are then given by
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Use this to reproduce (ignoring normalisation) all the above spherical harmonics.

9. Raising and lowering
Using the spherical polar representation, define

L+ = Lx + iLy L− = Lx − iLy.

Apply L+ (L−) to each of the above Y m
1 and show that this raises (lowers) the magnetic

quantum number.

Note also that
L+Y 1

1 = 0

and that
L−Y −1

1 = 0.


