
Introduction to the Standard Model

Lecture 8: Quantisation and Feynman Rules

Quantisation of Gauge Fields

problem with gauge fields: Given the field equation:

MµνAµ = Jν where Mµν ≡ ∂µgµν − ∂ν∂µ

we see that because Mµν∂ν = 0, M is not invertible. The problem can be solved by using
the fact that not all degrees of freedom for Aµ are physical (observable). This can be seen
by applying a gauge transformation to Aµ:

A′µ = Aµ + ∂νΛ → ∂µA
′µ = ∂µA

µ + �Λ

We can now choose Λ such that ∂µA
µ = 0 which removes one degree of freedom from the

vector field Aµ. The gauge function Λ is not completely determined; there is another gauge
freedom

Λ → Λ + Λ′

such that �Λ′ = 0. Then we have

Aµ → A′′µ = Aµ + ∂µΛ + ∂µΛ′

where ∂µΛ can be used to remove ∂µA
µ and the term ∂µΛ′ can be used to remove another

degree of freedom, e.g. A0 = 0 . Thus, Aµ now only has two degrees of freedom; the other
two can be “gauged away.”

The mode expansion for the 4-component gauge field is

Aµ(x) =

∫
d3k

(2π)3

3∑

r=0

(
ar(k)εr

µ(k)e
−ik·x + a†r(k)εr∗

µ (k)eik·x
)

Notice that Aµ(x) = A∗
µ(x); the gauge fields are real-valued.

Appyling the gauge condition:

∂µA
µ = 0 =⇒ kµε

rµ = 0

A0 = 0 =⇒ εµ = (0, ε)

}

=⇒ k · ε = 0

This is the transversality condition; it is consistent with the observation that EM radiation
is tranversly polarised.
Note: kµε

µ
r = 0 is manifestly covariant whereas A0 = 0 is not.
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By choosing a reference frame kµ = ω(1, 0, 0, 1), the polarisation vectors read:

ε1µ = (0, 1, 0, 0)

ε2µ = (0, 0, 1, 0)

}

Linearly polarised

Using a basis change, one obtains the polarisation vectors which correspond to circularly
polarised light:

ε±µ = ∓ 1√
2
(εµ

1
± εµ

2
) = ∓ 1√

2
(0, 1, ±i, 0)

ε±µ are the helicity eigenstates of the photon.

Note: ε1,2, ε
±
µ correspond to the two observable degrees of freedom of the gauge field Aµ.

The quantisation of gauge fields is non-trivial because ∂µAµ = 0 cannot be implemented at
the operator level due to a contradiction with the canonical commutation relations. This
issue is solved by the Gupta-Bleuler formalism (see Rel. QFT notes for more detail):

• only quantum states which correspond to transverse photons (ε±/ε1,2) are relevant for
observables.

• unphysical degrees of freedom do not contribute in the scattering matrix (S−matrix)
elements.

The Gupta-Bleuler formalism works for any U(1) gauge theory but fails for Non-Abelian
theories (this was later solved by Fedeev and Popov in 1958 -see Modern QFT).

Feynman Rules and Feynman Diagrams

The dynamics of a theory are determined by the propagation of the fields and the interactions
between them. To start, we shall mention some points:

• Symmetries and the particle content determine the Lagrangian

• The terms in the Lagrangian define propagation and interaction of the particles (or
field quanta).

• The quantum field theory foralism leads to computational rules to evaluate the S−matrix
elements: Sif = 〈i|Ŝ|f〉 where Ŝ is the scattering operator (see further lectures).
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Propagators:

The propagator is the Green’s function for the inhomogeneous field equation.

i) Scalar propagator
(� +m2)φ(x) = J(x)

where J(x) is the source term that creates the inhomogeneity required for this definition;
this result follows from the inhomogeneous Lagrangian: L = L

KG
+ J(x)φ(x).

φ(x) = φ0(x) + i

∫
d4y Ĝ(x− y)J(y)

−(� +m2)Ĝ(x− y) = iδ(x− y)

We use a Fourier ansatz:

Ĝ(x) =

∫
d4k

(2π)4
G(k)e−ik·x

δ(x) =

∫
d4k

(2π)4
e−ik·x

to find
k

⇔ G(k) =
i

k2 −m2 + iǫ

ii) Fermion propagator

(i∂/−m)Ŝ(x− y) = iδ(x− y)

Ŝ(x) =

∫
d4k

(2π)4
S(k)e−ik·x

where S(k) ≡ (S(k))αβ is a matrix in spinor space.

α β

k

⇔ S(k)αβ = i

(
k/+m

k2 −m2 + iǫ

)

αβ

=
( i

k/−m

)

αβ

iii) Gauge boson propagator

(
− gµν +

(
1 − 1

λ

)
∂µ∂nu

)
D̂νρ(x) = −gρ

ν δ(x)

k

µν
⇔ Dµν(k) =

i

k2 + iǫ

(
− gµν +

kµkν

k2 − iǫ

(
1 − λ

))
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where λ is a gauge fixing term:

λ = 1 Feynman Gauge

λ = 0 Landau Gauge

In the Landau gauge, Dµν(k) obeys transversality condition, kµD
µν(k) = 0.

Interaction Vertices

Derivation of Feynman Rules Each term in a Lagrangian that contains products of
fields, ϕ1, . . . , ϕN ;ϕj ∈

{
φ, ψ,Aµ

}
, leads to an n-point vertex :

φ4(x4)

φn(xn)
φ2(x2)

φ1(x1)

φ3(x3)

∼ Vφ1...φn
(x1, . . . , xn) =

δ

δφ1(x1)
· · · δ

δφn(xn)

(
i

∫
d4xL

)

We desire a momentum space representation → Fourier Transform
Noether’s theorem ⇒

translational invariance ⇒
Poincaré invariance ⇒

energy and momentum are conserved:

δ(p1 + · · ·+ pn) overall

A propagator (up to a minus sign) is the inverse two-vertex:

−
( )−1

∣∣∣∣∣
k2→k2−iǫ

=
φ†φ

Pφφ† = −
(
Vφφ†

)−1
∣∣∣
k2→k2−iǫ

Note: The iǫ term is called the ‘Feynman prescription’ (or simply the ‘iǫ prescription’) and
it ensures causality.
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Recipe for deriving Feynman rules: Rather than actually performing the Fourier trans-
form and the functional derivative, the following rules can be used:

1.) Search for all terms in L which contain a certain selection of the fields, e.g.:

−g(∂µAν)A
µBν = −g(∂µA

ρ)gνρA
µBν

2.) Replace all derivatives by (−i) times the incoming momenta of the respective fields
(Fourier Transform):

−g(∂µA
ρ(a))gνρA

µ(a′)Bν(b) → igqµgνρA
ρ(q)Aµ(q′)Bν(p)

3.) Symmetrize indices of all identical bosonic fields:

igqµgνρA
ρAµBν → ig(qµgνρ + q′ρgµν)A

ρ(q)Aµ(q′)Bν(p)

and omit external fields.
The Feynman rule for the example vertex is then:

Aµ

Aρ

Bν

q

q ′

p
ig(qµgνρ + q′ρgµν) ⇔
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