Introduction to the Standard Model

Lecture 8: Quantisation and Feynman Rules
Quantisation of Gauge Fields

problem with gauge fields: Given the field equation:

M"A,=J" where MW =0"g" —0"0"

we see that because M* 39, = 0, M is not invertible. The problem can be solved by using
the fact that not all degrees of freedom for A* are physical (observable). This can be seen
by applying a gauge transformation to A*:

A" = AP+ VA — 9,A" = 9, A" + OA

We can now choose A such that d,A" = 0 which removes one degree of freedom from the
vector field A*. The gauge function A is not completely determined; there is another gauge
freedom

A—A+N

such that JA’ = 0. Then we have

AF— AT = AP+ OFA + OMN

where 0" A can be used to remove 9, A* and the term 9"\’ can be used to remove another
degree of freedom, e.g. A’ = 0 . Thus, A* now only has two degrees of freedom; the other
two can be “gauged away.”

The mode expansion for the 4-component gauge field is
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Adw) = / (;lﬂl;g S (a0 (k)™ + al ()el (k)™ )

r=0

Notice that A,(z) = A7(x); the gauge fields are real-valued.

Appyling the gauge condition:

QAN =0 = ke = S
— e =
A =0 = e = (0,¢)

This is the transversality condition; it is consistent with the observation that EM radiation
is tranversly polarised.
Note: k e = 0 is manifestly covariant whereas A° = 0 is not.



By choosing a reference frame k* = w(1, 0, 0, 1), the polarisation vectors read:

e =(0, 1, 0, 0) Linearly volarised
mear olarise
% = (0,0, 1, 0) yp

Using a basis change, one obtains the polarisation vectors which correspond to circularly
polarised light:

1 1
=g (e £eb) = F—=(0, 1, %, 0)

2 V2

g, are the helicity eigenstates of the photon.

3

Note: €, 5ff correspond to the two observable degrees of freedom of the gauge field A,,.

The quantisation of gauge fields is non-trivial because 9*A,, = 0 cannot be implemented at
the operator level due to a contradiction with the canonical commutation relations. This
issue is solved by the Gupta-Bleuler formalism (see Rel. QFT notes for more detail):

e only quantum states which correspond to transverse photons (¢*/¢!?) are relevant for
observables.
e unphysical degrees of freedom do not contribute in the scattering matrix (S—matrix)

elements.

The Gupta-Bleuler formalism works for any U(1) gauge theory but fails for Non-Abelian
theories (this was later solved by Fedeev and Popov in 1958 -see Modern QFT).

Feynman Rules and Feynman Diagrams

The dynamics of a theory are determined by the propagation of the fields and the interactions
between them. To start, we shall mention some points:
e Symmetries and the particle content determine the Lagrangian

e The terms in the Lagrangian define propagation and interaction of the particles (or
field quanta).

e The quantum field theory foralism leads to computational rules to evaluate the S—matrix
elements: S;r = (i|S|f) where S is the scattering operator (see further lectures).



Propagators:

The propagator is the Green’s function for the inhomogeneous field equation.

i) Scalar propagator
(O +m?)¢(z) = J(x)

where J(z) is the source term that creates the inhomogeneity required for this definition;
this result follows from the inhomogeneous Lagrangian: £ = L, + J(x)d(x).

d(z) = go(x) +1i / d'y Gz — y)J(y)

—(O+m)G(z —y) =id(z —y)

We use a Fourier ansatz:

Gz = / (3;1;40(/{)6—%%

- e

to find

ii) Fermion propagator

(i@ —m)S(z — y) = id(z — y)

S(z) = / %S(k)e‘“”

where S(k) = (S(k))ap is a matrix in spinor space.

iii) Gauge boson propagator

(= g+ (1= 3)0u00) D" () =~ 6(2)

ANNANNANL vy = g M —
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where A is a gauge fixing term:

A=1 Feynman Gauge
A=0 Landau Gauge

In the Landau gauge, D*”(k) obeys transversality condition, k,D* (k) = 0.

Interaction Vertices

Derivation of Feynman Rules Each term in a Lagrangian that contains products of
fields, 1, ..., N9, € {qﬁ,w, A“}, leads to an n-point vertex:

¢1(x1)

— 0 g . 4

ba(x2)

657L<ITL>

We desire a momentum space representation — Fourier Transform
Noether’s theorem =
translational invariance =
Poincaré invariance =
energy and momentum are conserved:

d(p1 +---+pn) overall

A propagator (up to a minus sign) is the inverse two-vertex:

Pyt = - (Vw*) h

k2—k2—ie

i G

k2—k2—ie

Note: The ie term is called the ‘Feynman prescription’ (or simply the ‘e prescription’) and
it ensures causality.



Recipe for deriving Feynman rules: Rather than actually performing the Fourier trans-
form and the functional derivative, the following rules can be used:

1.) Search for all terms in £ which contain a certain selection of the fields, e.g.:
—g(0,A,)A*B” = —¢(0,A")g,,A"B”

2.) Replace all derivatives by (—i) times the incoming momenta of the respective fields
(Fourier Transform):

—9(0,A4%(a)) g,y A" (a') B”(b) — i99,9.pA"(q) A*(¢') B” (p)
3.) Symmetrize indices of all identical bosonic fields:

194 Gup AP AP BY — i9(quGup + o9 ) A (0)A*(¢') B (p)

and omit external fields.
The Feynman rule for the example vertex is then:

ig(ngVp + q;)g;w) ~




