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Abstract

The CKM matrix element |Vus| can be extracted from the experimental

measurement of semileptonic K → π decays and theoretical input for the corre-

sponding vector form factor in QCD. The thesis performs a major improvement of

the RBC/UKQCD programme to calculate Kl3 form factor in Nf = 2 + 1 Lattice

QCD using domain wall fermions. We use data from several lattice spacings and

different quark masses with lightest pion mass of about 170 MeV. Systematic

error corresponding to interpolation in the momentum transfer is avoided using

partially twisted boundary conditions. Using simulated quark masses near the

physical point, reduce the systematic error due to the mass extrapolation.

This work explores different kinematic arrangements of pion and Kaon

momenta for twisted boundary conditions. This thesis proposes a new ansatz for

mass extrapolation. Analysing three sets of simulation data allows for a detailed

study of systematic effects leading to the prediction fKπ+ (0) = 0.9671(17)(+18
−46),

where the first error is statistical and the second error systematic. The result

allows us to extract the CKM matrix element |Vus| = 0.2237(+13
− 8) and confirm

unitarity of the first row CKM matrix in the Standard Model.

Also in this thesis, we discuss porting of Clover Lattice fermion action to

Blue Gene-Q architecture. Clover action achieves maximum efficiency of 29.1%

for single precision with good weak scaling. Strong scaling shows local volume

dependency. In a study of different iterative solvers for Domain Wall Fermion

action (DWF), we find that Modified Conjugate Residual(MCR) and Multishift

MCR as the most efficient solver compared to CG and GCR. A new probing

technique for estimating the diagonal of the inverse Dirac operator in Lattice

QCD is introduced and this method is found to be closer to the exact solution

than stochastic methods.
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Chapter 1

The Standard Model

1.1 Introduction

Until 2012, all particles seen in nature were either spin-1
2

or spin-1 particles and

recently a spin-0 particle, the Higgs boson candidate was discovered to exist by

recent experiments at LHC. The fermions (spin-1
2
) and gauge bosons (integer

spin) can be classified as:

Fermions :

(
e

νe

) (
µ

νµ

) (
τ

ντ

) (
u

d

) (
s

c

) (
t

b

)
(1.1)

Bosons : h γ,W±,Z0, gi=1...8 (1.2)

The Standard Model that describes the fundamental particles and their interac-

tions, is based on the gauge symmetry group SU(3)c × SU(2)L × U(1)Y . There

are eight gluons mediating the SU(3)c strong interactions and four gauge bosons

(γ,W±, Z0) mediating the SU(2)L × U(1)Y electro-weak interactions. Quantum

Electro dynamics(QED) is perturbative since αe ≈ 1
137

. The Higgs mechanism

makes W±, Z0 massive, resulting in a weak “weak force”. The “Strong force” is

strong at low energy and makes it difficult for accurate theoretical prediction in

the non-perturbative sector.

1.2 Quantum Chromo dynamics

Quantum Chromo dynamics(QCD) is the theory of Strong interactions. The

running of the strong coupling αs(µ) (where µ is the energy scale) is such that

1



Chapter 1. The Standard Model

the interactions are characterised by Infrared Confinement, αs(µ) ≈ 1 at hadronic

scales and Asymptotic freedom, αs(µ) → ∞ as µ → ∞. The Lagrangian for a

set of quark flavors “q” with quark masses mq is as follows

LQCD = −1

4
F (a)
µν F

(a)µν + i
∑
q

ψ̄iqγµ(Dµ)ijψ
j
q −

∑
q

mqψ̄
i
qψqi (1.3)

where F
(a)
µν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν and (Dµ)ij = δij∂µ + igs

∑
a

λaij
2
Aaµ.

QCD is the theory of strong nuclear force and has the quark masses as

parameters. In the absence of string breaking, via. qq̄ pair production, the strong

force would give rise to a non-vanishing attractive force at asymptotically large

separation. This is empirically seen as quarks are never found free. Theoretical

prediction becomes difficult, as the coupling constant becomes large at small

energies. Thus we have to rely on experimental measurements of hadrons and

numerical simulations to verify our theoretical understanding of confined quarks

and gluon.

In QCD, the continuous chiral symmetry is spontaneously broken by the

quark condensate and we get massless Goldstone fields as a result. The light

quark masses explicitly break the chiral symmetry, resulting in light Goldstone

mesons. Ignoring the quarks with heavier mass, QCD with three quarks (u,d,s)

has approximate SU(3) symmetry and the eight Goldstone bosons corresponds

to generators of SU(3) symmetry. The massive fermions occur as a combination

of right and left handed chiralities and only the left handed components interact

with the weak bosons. The parameters of this electro-weak sector are not all

precisely determined and probing these interaction provides us a good test for

physics beyond Standard Model.

If we consider only two families of quarks (u,d) and (c,s), then W boson

doesn’t couple with the mass eigenstates |ud〉 or |cs〉 but with rotated states as

follows:

cosαc |ud〉+ sinαc |us〉 ; − sinαc |ud〉+ cosαc |us〉 (1.4)

where αc is the Cabibbo angle [Cabibbo 63]. If we include all three families of

quarks, then we get a 3x3 matrix that describes coupling of W boson to the quark

states |ud〉, |cs〉 and |tb〉. This unitary matrix is called the Cabibbo-Kobayashi-

2



1.3. CKM Matrix

Maskawa (CKM) matrix [Kobayashi 73].

1.3 CKM Matrix

CKM matrix describes the mixing between the electro-weak eigenstates (d′, s′, b′)

with the mass eigenstates (d, s, b) as shown below.d
′

s′

b′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b

 (1.5)

If the quark coupling of b and (d,s) quarks are neglected, the CKM matrix can

be approximated to

VCKM =

 cosαc sinαc 0

− sinαc cosαc 0

0 0 1

 (1.6)

where αc is the Cabibbo angle. The CKM matrix is also famously written in

terms of Wolfenstein parametrisation

VCKM =

 1− λ2

2
λ Aλ3(ρ+ iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 (1.7)

This describe a unitary matrix up to O(λ4) terms. Here λ ≡ Vus and A = Vcb
V 2
us

are the key quantities. The CKM matrix elements are fundamental parameters

of Standard Model. It can be seen in the Yukawa sector of Standard Model

Lagrangian that describes the weak interaction of quarks and hadrons.

Lyukawa =
g

2
√

2
(Jµh + Jµl )W+

µ + h.c. (1.8)

3



Chapter 1. The Standard Model

where Jµh and Jµl are the hadronic and leptonic (Vector-Axial) currents that

undergoes weak interaction.

Jµh = (ū, c̄, t̄)γµ(1− γ5)VCKM

 d

s

b

 (1.9)

Jµl = (ν̄e, ν̄µ, ν̄τ )γ
µ(1− γ5)

 e

µ

τ


In Standard Model, the fermion mass terms arise from the Yukawa couplings to

the Higgs field

(
1 +

H

v

)−1

LY ukawa = −(ē, µ̄, τ̄)

 me 0 0

0 mµ 0

0 0 mτ


 e

µ

τ

− (1.10)

(ū, c̄, t̄)

 mu 0 0

0 mc 0

0 0 mt


 u

c

t

−

(d̄, s̄, b̄)

 md 0 0

0 ms 0

0 0 mb


 d

s

b

 ;

where H is the Higgs field. If we maximally diagonalise the most general gauge

invariant Yukawa coupling terms by field redefinition, we find that the mass

matrix (d, s, b) and the electro-weak gauge couplings of the quark flavors (d′, s′, b′)

are rotated relative to each other by the CKM Matrix.

Determining the value of matrix elements and testing the unitarity of the

matrix is one of the main objective for constraining the Standard Model, as

any deviations from unitarity would be a indication of new physics. We find

experimentally that the diagonal elements are large. Many experiments and

Lattice QCD simulations have helped in determining the matrix elements. For

example, using semi-leptonic decays, where flavors of mesons are changed, we

can determine CKM matrix elements. Table 1.1 shows example transitions and

the corresponding CKM matrix element that can be determined. The unitarity
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condition of the CKM matrix ensures that elements of the first row of the matrix

should obey the following rule.

|Vud|2 + |Vus|2 + |Vub|2 = 1 (1.11)

Measuring this rule is one of the key results of this thesis. |Vub|2 is so small

(≈ 10−5) that it is usually approximated to zero. The value of |Vud| is known

precisely from “superallowed” nuclear decay[Hardy 09].

|Vud| = 0.97425(22) (1.12)

|Vus| can be found from Kaon, Hyperon [Cabibbo 04] and Tau decays [Maltman 09].

|Vus| = 0.2250(27) Hyperon Decays

|Vus| = 0.2208(34) Tau Decays

(1.13)

Even though the above measurements from experiments are good, there are still

many open issues and the precision of |Vus| compared to |Vud| and |Vub| is very

important in testing the Standard Model for deviations and possible new physics.

A key topic in this thesis is to measure Vus from semileptonic decays.

1.4 Semileptonic decays

Semileptonic decays involve changes to quark flavor or mixing of quarks and

from these processes we can determine CKM matrix elements. K → πlν

(Kl3) semileptonic decay involves coupling of u and s quarks and leads to the

determination of |Vus| [Colangelo 11]. In a Kl3 decay, the decay rate can be

Transition CKM element
K → πeν Vus
B → πeν Vub
D → Keν Vcs

Table 1.1: CKM matrix and semi-leptonic decays
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𝐾0 𝜋− 

d 

s u 

𝑊+ 

𝑙+ 

𝛾𝑙 

Figure 1.1: Plot showing semi-leptonic decay of K → πlν

written as [Leutwyler 84]

Γ =
G2
F

192π3
M5

kC
2I|Vus|2|f+(0)|2Sew(1 + δem) (1.14)

where GF is the Fermi constant, I is phase space integral, Sew(1 + δem) is the

radiative correction, C2 = 1(1/2) is the Clebsch-Gordon coefficient and Mk is the

kaon mass. The value of I is estimated to approximately 0.154 for K0
e3 and 0.102

for K0
µ3 [Alexopoulos 04], value of Sew determined precisely as 1.022 [Sirlin 82].

The electromagnetic piece (1 + δem) is small correction and doesn’t contribute

much to the error in Γ. Thus the product |Vus|2|f+(0)|2 can be precisely estimated

from experiments of semileptonic K → π decay rate [Antonelli 10]. A precise

theoretical determination of f+(0) is required for estimating the value of Vus.

f+(0) is defined from the strangeness changing weak current (Vµ = s̄γµu) as

〈π(p′)
∣∣Vµ∣∣K(p)〉 = (pµ + p′µ)f+(q2) + (pµ − p′µ)f−(q2) (1.15)

where q2 = (p − p′)2. In the SU(3) flavor limit (mu = md = ms), f+(0) = 1,

due to charge conservation. We can expect small SU(3) breaking effects in f+(0).

f+(0) can be expanded in terms of the meson masses as

f+(0) = 1 + f2 + f4 + . . . (1.16)
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As a result of Ademollo-Gatto theorem [Ademollo 64], f2 can be calculated

directly from masses mk, mπ and pion decay constant fπ [Gasser 85]. If we

can write the expansion as

∆f = f+(0)− (1 + f2) (1.17)

then the only quantity that needs to be determined is ∆f . Until recently, standard

result from Leutwyler and Roos (LR) is ∆f = 0.016(8) [Leutwyler 84, Bijnens 03].

Lattice methods offer an alternate method to calculate the value of f+(0)

non perturbatively [Hashimoto 99, Becirevic 05b, Boyle 07, Boyle 10, Gamiz 12].

Using Lattice methods, fKπ+ (0) has been determined to a precision of ≈ 0.5%

[Lubicz 09, Boyle 08b, Boyle 10, Kaneko 11, Bazavov 12, Gamiz 12]. A key part

of this thesis is to determine fKπ+ (0) from (Kl3) semileptonic decay as discussed

in Ch. 2 and Ch. 3.

1.5 Lattice QCD

For precise determination of Kl3 form factor, we are interested in determining

hadronic matrix element 〈π(p′)
∣∣Vµ∣∣K(p)〉 in (1.15), that mediates the Kl3

semileptonic decays. While the weak interacting theories are understood by

perturbation theory, perturbative methods for QCD at low energy becomes

difficult due to the strength of the coupling constant.

Non perturbative methods like Lattice QCD are the only way to solve QCD in

this regime. Lattice QCD provides us a tool to verify our understanding of QCD

by formulating the theory in a discrete lattice. Though space-time symmetries

are lost, the lattice respects local gauge symmetries. High frequencies are lost

due to discretisation, with momentum cutoff proportional to the inverse lattice

spacing 1/a. We choose a suitable lattice volume (L) and size (a) and evaluate

Feynman path integral by generating ensemble of fields and then measuring

physical quantities from them.

In evaluating the physical observables O, expectation value of operator should

be calculated.

〈O〉 = 1/Z

∫
DφO(φ) exp(−S(φ)) (1.18)

where S(φ) is the action and Z is the partition function. In Lattice QCD, we

7
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have one integration per degree of freedom and the numerical evaluation becomes

expensive for even small volumes. We use Monte-Carlo methods to importance

sample the integration. The expectation value is evaluated by generating many

gauge field configurations (φ1, φ2, φ3, ...) with the probability 1/Z exp(−S). The

operator O is evaluated on each of the configurations and the average value is

determined.

Oavg =
1

N

N∑
t=1

O(φt) (1.19)

As the number of gauge field configurations tends to infinity,

〈O〉 = lim
N→∞

Oavg (1.20)

we obtain the expectation value of the observable.

In Lattice QCD the aim is to transcribe the gauge action and Dirac operator

for fermions on a discrete space-time lattice so that ideally all important

symmetries of QCD like gauge invariance, chiral symmetry are present.

1.5.1 Lattice gauge action

In constructing the gauge fields on a discrete lattice, Wilson formulated the gauge

group (SU(3)) elements to live on the links that connect the sites and constructed

a plaquette (Wµν).

W 1×1
µν = Re Tr (Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν(x)) (1.21)

The trace of the product of path ordered link variables preserves gauge invariance

and leads to term proportional to FµνF
µν in its Taylor expansion in “a”. The

Wilson gauge action is

SG(U) =
6

g2

∑
x

∑
µ<ν

Re Tr
1

3
(1−W 1×1

µν ) (1.22)

We can improves this gauge action by taking linear combination of loops that

will remove the “an” terms in the Taylor expansion. The improved gauge action

8
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SG is of the form

SG[U ] = −β
3

[
(1− 8 c1)

∑
x;µ<ν

P [U ]x,µν + c1

∑
x;µ 6=ν

R[U ]x,µν

]
(1.23)

where P [U ]x,µν and R[U ]x,µν the real part of the trace of the path ordered product

of link variables around the 1× 1 plaquette and 1× 2 rectangle, respectively and

β ≡ 6/g2. The commonly used the Iwasaki action sets c1 = −0.331 [Iwasaki 85,

Iwasaki 84]. In coarser lattices, the number of low modes developed by Iwasaki

gauge action increases and the residual chiral symmetry breaking increases. These

low modes are suppressed by adding a weighting term, giving the Dislocation

Suppressing Determinant Ratio (DSDR) action [Kelly 11].

1.5.2 Lattice fermions

The naive discretisation of the Dirac fermion action replaces the derivative with

a finite difference and uses gauge links to maintain gauge invariance.

ψ̄ /Dψ =
1

2a
ψ̄(x)

∑
µ

γµ(Uµ(x)ψ(x+ µ̂) − U †µ(x− µ̂) ψ(x− µ̂)) (1.24)

The simplest fermion action is as follows

SL = mq

∑
x

ψ̄(x)ψ(x)

+
1

2a

∑
x

∑
µ

ψ̄(x)γµ(Uµ(x)ψ(x+ µ̂)− U †µ(x− µ̂)ψ(x− µ̂))

≡
∑
x

ψ̄(x)Mxy[U ]ψ(y) (1.25)

where M is the interaction matrix

Mi,j[U ] = mqδij +
1

2a

∑
µ

[
γµUi,µδi,j−µ − γµU

†
i−µ,µδi,j+µ

]
(1.26)

The above lattice action exhibits chiral symmetry as {γ5,M}=0 for mq = 0 but

has a problem of doubling. The Doubling problem can be seen from the Fourier

9
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representation

SL(p) = mq +
i

a

∑
µ

γµ sin pµa (1.27)

which gives rise to 2d flavors instead of one.

Wilson Fermion

Wilson’s solution to doublers was to add the Wilson term

SW = SL +
r

2a

∑
x

∑
µ

ψ̄(x)(Uµ(x)ψ(x+ µ̂)− 2ψ(x) +U †µ(x− µ̂)ψ(x− µ̂)) (1.28)

so that we have only one low energy solution at pµ=0 and other solutions at

pµ = π/a become massive and decouple in continuum limit.

SW (p) = mq +
i

a

∑
µ

γµ sin pµa+
1

a

∑
µ

1− cos pµa (1.29)

Adding such irrelevant terms not only increases the complexity and computational

cost, but also explicitly breaks the chiral symmetry.

Clover Fermion

O(a) improved clover action was proposed by Sheikholeslami and Wohlert

[Sheikholeslami 85] which builds on the Wilson action with the fix for doublers

by adding higher dimensional term to remove or reduce O(a) errors

Sclover = SW −
CSW

4

∑
µ<ν

ψ̄(x)σµνFµνψ(x) . (1.30)

Here the value of CSW can be determined by perturbative or non-perturbative

methods and determines the improvement. The cost of this method is comparable

to that of Wilson fermions. For both Wilson and Clover fermion actions, mq is

additively renormalised and leaves us to determine numerically the value of mq

where mπ → 0. As a part of this thesis, we discuss porting and optimisation of

Clover fermion action to Blue Gene-Q architecture in Ch. 4.
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Domain Wall Fermion

Many different methods were developed to resolve the doubling problem and

still preserve chiral symmetry and significant among them is the Domain Wall

Fermion(DWF) action. Shamir [Shamir 93] and Kaplan [Kaplan 92] extended

the Wilson fermion into fifth dimension (Ls) with left handed and right handed

fermions residing on the opposite walls of the fifth dimension. The DWF action

is defined as

SDWF = ψ̄DDWF(x)ψ(x) . (1.31)

with the domain wall fermion operator DDWF, for a fermion of mass mf , defined

as

DDWF
x,s;x′,s′(M5,mf ) = δs,s′D

‖
x,x′(M5) + δx,x′D

⊥
s,s′(mf ) (1.32)

D
‖
x,x′(M5) =

1

2

4∑
µ=1

[
(1− γµ)Ux,µδx+µ̂,x′ + (1 + γµ)U †x′,µδx−µ̂,x′

]
+ (M5 − 4)δx,x′ (1.33)

D⊥s,s′(mf ) =
1

2

[
(1− γ5)δs+1,s′ + (1 + γ5)δs−1,s′ − 2δs,s′

]
− mf

2

[
(1− γ5)δs,Ls−1δ0,s′ + (1 + γ5)δs,0δLs−1,s′

]
. (1.34)

The gauge fields are same on each slice with the gauge links set to unity except

for the boundaries or walls. The mixing between two chiral components reduces

exponentially as (Ls) → ∞. So at (Ls) = ∞ and finite a, we have exact chiral

symmetry. The O(a) discretisation error reduces exponentially as the size of (Ls)

increases. For finite Ls, chiral symmetry is slightly broken and this is measured

as the residual mass mres. For DWF, error for all practical purposes are O(a2)

and O(a4), with odd powers of a eliminated by exponentially suppressed chiral

symmetry breaking.

1.5.3 Dynamical fermions

Dynamical fermions make Lattice QCD expensive. Fermions are Grassmann

variables and cannot be simulated on a computer directly. Field theory is

implemented using Feynman path integral approach and the generating functional
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can be written on a Lattice as follows

Z =

∫
DAµD(ψ, ψ̄) exp(−S) (1.35)

where where S =
∫
d4x(1

4
FµνF

µν−ψ̄Mψ),M is the fermion matrix. The fermions

ψ and ψ̄ are represented using Grassmann variables and can be easily integrated

out. The action can be represented as

S = Sgauge + Squarks =

∫
d4x

1

4
FµνF

µν −
∑
i

log(det(Mi)) (1.36)

Now the integral is only over background gauge configurations and action

depends on the fermion determinant. Thus for generation of gauge fields using

Monte Carlo methods, determinant of M should be evaluated for each gauge

configuration. With L3 × T × 12 rows and columns, the computation of det(M)

is very expensive and we shall use stochastic methods to compute. If detM is

set to a constant value, we have the quenched approximation.

The physical quantities can be calculated by evaluating the expectation values

of operators (O)

〈O〉 =
1

Z

∫
DAµO exp(−S) (1.37)

where Z is a normalisation constant defined in (1.35). The physical observables

are calculated by using suitable operators and then studying the large t behaviour.

As the fermion fields are integrated out, all integrals should be expressed in terms

of gauge fields. For a observable O(φ, ψ̄, ψ), integration over fermion fields is done

by adding source terms (ψ̄σ + σ̄ψ).

Ô(φ, ψ̄, ψ) = O(φ,
∂

∂σx
,
∂

∂σy
) exp(σxM(φ)−1σy) |σx=σy=0 (1.38)

Fermion determinant is extensive and expensive and can be expressed in terms

of Gaussian integrals of gauge fields called “pseudofermions”. To ensure that the

matrix is positive definite, fermion determinant is expressed for even number of

flavors.

det(M(φ))2 = det(M(φ)M†(φ)) ∝
∫
dχ̄dχ exp[−χ̄(M†M)−1χ] (1.39)
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From the above relations, it is clear that solution to the system MM†ψ = χ

should be evaluated. In Lattice QCD this is normally done using iterative solvers

like Conjugate Gradient (CG). As a part of this thesis, we investigate different

iterative solvers for DWF in Ch. 4.

1.6 Hybrid Monte-Carlo

Hybrid Monte-Carlo (HMC) method is usually used to generate the gauge

configurations. The method introduces a momentum p corresponding to degree

of freedom φ, so that the Hamiltonian H is

H = p2 + S(φ) (1.40)

At each step of the evolution, S(φ) is updated using Molecular dynamics

evolution, p is selected randomly from a momentum heat-bath and then accepted

or rejected based on Metropolis algorithm.

Using HMC, the fermion determinant in (1.39) is evaluated on each of the

configurations using pseudofermions. Usually even number of pseudofermion

fields are used to aid the evaluation of fermion determinant. For odd number

of pseudofermion fields, we take det((MM†)1/2).

Pseudofermion field at each step can be selected from a random Gaussian

noise and rational approximation is used to approximate the pseudofermions and

MD evolution. This algorithm is referred to as RHMC [Clark 04] [Clark 05].

Rational approximation is done using partial fraction expansion. For eg.

1√
x
≈ 0.3904603901+

0.0511093775
x+0.0012779193

+ 0.1408286237
x+0.0286165446

+ 0.5964845033
x+0.4105999719

. (1.41)

As the denominator in the rational expansion are shifts of the fermion determi-

nant, we can use multi-shift solvers to reduce cost of solving the multiple linear

system of equations in parallel. As a part of this thesis, we investigate an improved

multi-shift MCR solver in Ch. 4.
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Chapter 1. The Standard Model

1.7 Measurement of Observables

As shown in the previous section, CKM Matrix elements and masses are

calculated from correlation functions. The two-point correlation function for a

meson propagator with quarks h and l can be written as

Ci(t, ~pi) =
∑
~x

ei~pi·~x〈0|Tr{h̄(x)γ5l(x)l̄(0)γ5h(0)}|0〉, (1.42)

Using Wick’s theorem, the above trace can be written as a product of quark

propagators (H,L)

Ci(t, ~pi) =
∑
~x

ei~pi·~x〈Tr{H†(x, 0)L(x, 0)}〉, (1.43)

H(x, 0) = 〈0|h(x)h̄(0)|0〉,

L(x, 0) = 〈0|l(x)l̄(0)|0〉

In all the above relations, the trace is over spin and colour indices and is not

denoted for simplicity. From (1.37), quark propagators are measured in a Lattice

as follows

〈0|ψ(x)ψ̄(y)|0〉 =
1

Z

∫
DAµψ(x)ψ̄(y) exp(−S) (1.44)

=
1

Z

∫
DAµM−1(x, y) exp(−S)

Similarly the three-point function can also be constructed from quark propagators

and measure in a lattice simulation.

Quark propagator matrix are large and it will be very expensive to determine

all the elements. So only a subset is calculated. In general a point source, with

unit spin-colour vectors at a single space-time location, is used. This source

will require 12 inversions for each spin and colour. This source suffers from

local Gauge fluctuations. The subset generated from point sources contains only

elements of the propagator from one source to all other source locations (one to

all propagator).

One source operator that is of particular interest is the Z2PSWall [Boyle 08a]

that is used in this work. For such stochastic sources [Foster 99, McNeile 06], a

set of sources (Nhits) contains elements randomly selected from a Distribution D,
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1.7. Measurement of Observables

symmetric about zero. They are usually used to compute the all the elements

of the propagator. Using D = Z × Z (Z = {+1,−1}) noise source, all to all

propagators can be calculated. These propagators are very noisy and are not

preferred unless required. For pseudoscalar mesons, this source reduces the two

pt-correlation function to a scalar product of two solution vectors as follows

M(x, y) =
1

N

∑
n

〈Φ(x) · Φ̄(y)〉 (1.45)

Thus this can be evaluated from a single inversion per Nhit. For large enough

gauge configurations, only a few Nhit need be used as increasing the Nhit doesn’t

improve. The sources may be affected by gauge correlation and so the are placed

at different time location so that any correlation does not affect the statistical

noise. The measured correlation functions from different sources are usually

averaged. Only the ground state is of interest and the source and sink operators

are separated large enough to reduce any contamination from excited states.

In this thesis, we discuss a new measurement technique to determine the

complete quark propagator matrix in Chap. 5.
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Chapter 2

The Kl3 Form-factor

2.1 The Kl3 form factor

The Kl3 form factor fKπ+ (0) at zero momentum transfer is of considerable

importance in determining the CKM matrix element Vus. From the relation

in (1.15), we can define the scalar form factor as

fKπ0 (q2) = fKπ+ (q2) +
q2

m2
K −m2

π

fKπ− (q2) , (2.1)

from the above relation we have fKπ0 (0) = fKπ+ (0). Calculation of fKπ+ (0) begins

with the measurement of pion and kaon correlation functions. The 2-point

correlation function is defined as

Ci(t, ~pi) =
∑
~x

ei~pi·~x〈Oi(t, ~x)O†i (0,~0) 〉 =
|Zi|2

2Ei

(
e−Eit + e−Ei(T−t)

)
(2.2)

We define the 3-point function between initial and final states Pi and Pf of the

weak vector current Vµ

CPiPf (ti, t, tf , ~pi, ~pf ) =
∑
~xf ,~x

ei~pf ·(~xf−~x)ei~pi·~x〈Of (tf , ~xf )V4(t, ~x)O†i (ti,~0) 〉 (2.3)

=
Zi Zf
4EiEf

〈Pf (~pf ) |V4(0) |Pi(~pi) 〉

×
{
θ(tf − t) e−Ei(t−ti)−Ef (tf−t) − θ(t− tf ) e−Ei(T+ti−t)−Ef (t−tf )

}
In the above relations, the states i, f can be kaon(K) or pion(π) and the

corresponding operators for mesons are OK = s̄γ5q and Oπ = q̄γ5q. The constants
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Chapter 2. The Kl3 Form-factor

have the following definitions Zf = 〈 0 |Of (0,~0)|Pf 〉; Zi = 〈Pi |O†i (0,~0) | 0 〉. In

practice, the values of ti and tf are fixed and we assume large time behaviour. We

can normalise the local vector current in (2.4) by multiplying it with normalisation

constant ZV .

ZV =
C̃π(tf ,~0)

C
(B,0)
ππ (ti, t, tf ,~0,~0 )

. (2.4)

where B refers to the bare vector current. The main aim is to calculate fKπ0 (0).

From (1.15), we know that this can be calculated from the weak matrix element

〈Pf (~pf ) |V4(0) |Pi(~pi) 〉. This matrix element can be computed by constructing

ratios of the correlation functions (2.2) and (2.4), such that the exponential and

constant terms can be cancelled out. We can define three ratios as follows

R1, PiPf (~pi, ~pf ) = 4
√
EiEf

√
CPiPf (t,~pi,~pf )CPfPi (t,~pf ,~pi)

CPi (tf ,~pi)CPf (tf ,~pf )
,

R2, PiPf (~pi, ~pf ) = 2
√
EiEf

√
CPiPf (t,~pi,~pf )CPfPi (t,~pf ,~pi)

CPiPi (t,~pi,~pi)CPfPf (t,~pf ,~pf )
,

R3, PiPf (~pi, ~pf ) = 4
√
EiEf

CPiPf (t,~pi,~pf )

CPf (tf ,~pf )

√
CPi (tf−t,~pi)CPf (t,~pf )CPf (tf ,~pf )

CPf (tf−t,~pf )CPi (t,~pi)CPi (tf ,~pi)
.

(2.5)

For large t, all the above ratios are equal to the weak matrix element.

R1,2,3 = 〈Pf (~pf ) |V4(0) |Pi(~pi) 〉 (2.6)

fKπ0 (q2
max) can be computed precisely from the relation

R2;Kπ(~0,~0) = fKπ0 (q2
max)(mK +mπ) . (2.7)

where q2
max = (mK−mπ)2. Also fKπ0 (0) can be evaluated by computing fKπ0 (q2) at

different q2 and then interpolating it to q2 = 0 using a suitable ansatz [Boyle 08b].

For interpolation, the value of f+(q2) is calculated at different values of q2 from

the relations below.

F (pK , pπ) = f+(q2)

f0(q2max)
(1 + Ek(pK)−Eπ(pπ)

Ek(pK)+Eπ(pπ)
ξ(q2)),

ξ(q2) = f−(q2)
f+(q2)

F (pK , pπ) = mK+mπ
EK(~pK)+Eπ(~pπ)

CKπ(t,~pK ,~pπ)CK(t,~0)Cπ(tf−t,~0)

CKπ(t,~0,~0)CK(t,~pK)Cπ(tf−t,~pπ)
.

(2.8)
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2.1. The Kl3 form factor

By determining F (pK , pπ) and ξ(q2), we can compute f+(q2) and f−(q2) at

different q2.

The above approach suffers from error due to interpolation. Also different

ansatz may result in different result for the scalar form factor and this will add

to the systematic uncertainties[Tsutsui 06] [Dawson 06]. In a lattice of volume

V = L3 × T with periodic boundary condition, the momentum are quantised as

pi = 2π
L
× i, where i is an integer. And the lowest non-zero momentum that can

be simulated is 2π
L

. This makes it difficult to evaluate scalar form factor directly

at q2 = 0.

Twisted boundary condition is a non-periodic technique which allows momen-

tum smaller than 2π
L

to be evaluated in a Lattice [Bedaque 05] [Boyle 04]. For a

quark field, the twisted boundary condition is given by

q(xi + L) = exp (i θi )q(xi) (2.9)

where θi is the twist which allows the momentum to be shifted by θi/L. Though

this can be applied to both sea and valence quarks, it is usually applied only to

valence quarks [Sachrajda 05]. For K → π decay, valence quarks with a twisted

boundary condition (with twist θ), the dispersion relation of the meson is given

by [de Divitiis 04, Flynn 06]

E =

√√√√m2 +

(
~pFT +

~θ

L

)2

, (2.10)

With this, the momentum transfer can be rewritten as [Boyle 07]

q2 = (pi − pf )2 = [Ei(~pi)− Ef (~pf )]2 − [(~pFT,i +
~θi
L

)− (~pFT,f +
~θf
L

)]2 . (2.11)

By adjusting the twists on the mesons (K, π), we can evaluate form factor exactly

at q2 = 0. An easier approach will be to keep either kaon or pion at rest and

adjust the twist on the other meson to get q2 = 0. For ratios in (2.5) the pion or
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Chapter 2. The Kl3 Form-factor

kaon twist required to get q2 = 0 is calculated as follows.

Rα,Kπ(~pK ,~0) with |~θK | = L
√

(
m2
K+m2

π

2mπ
)2 −m2

K and ~θπ = ~0

Rα,Kπ(~0, ~pπ) with |~θπ| = L
√

(
m2
K+m2

π

2mK
)2 −m2

π and ~θK = ~0 ,
(2.12)

where α = 1, 2, 3. Now form factor, f 0
Kπ(0) is evaluated directly at q2 = 0 using

the relation below.

f 0
Kπ(0) =

Rα,Kπ(~pK ,~0)(mK − Eπ)−Rα,Kπ(~0, ~pπ)(EK −mπ)

(EK +mπ)(mK − Eπ)− (mK + Eπ)(EK −mπ)
(α = 1, 2, 3) .

(2.13)

This relationship is obtained by considering the V4 or time component of the

weak vector current in (1.15). Using all the other components of the weak vector

current, we can obtain a system of equations which we can solve to obtain the

form factor. The equations are listed below.

Rα,Kπ(~θK ,~0, V4) = f+
Kπ(0) (EK +mπ) + f−Kπ(0) (EK −mπ)

Rα,Kπ(~0, ~θπ, V4) = f+
Kπ(0) (mK + Eπ) + f−Kπ(0) (mK − Eπ)

Rα,Kπ(~θK ,~0, Vi) = f+
Kπ(0) θK,i + f−Kπ(0) θK,i

Rα,Kπ(~0, ~θπ, Vi) = f+
Kπ(0) θπ,i − f−Kπ(0) θπ,i . (2.14)

Separately solving each of these equations can result in much larger error and this

can be overcome by simultaneously solving all the equations corresponding to all

the components of the vector current Vµ and then performing χ2 minimisation.

In evaluating f+
Kπ(0), it is important to estimate the systematic errors. As noted

above, lattice with finite spacing results in discretisation errors and finite volume

effects. Even though, twisted boundary condition can completely eliminate error

due to q2 interpolation, the simulated quarks are at unphysical masses and would

require mass extrapolation [Boyle 10].

2.2 Kl3 in Lattice QCD

The form-factor f+(q2 = 0) from Kl3 semi-leptonic decays is of considerable

interest and has been calculated independently by collaborations using different

lattice spacings and lattice actions. The Kl3 form factor has been successfully
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2.3. Ensembles

calculated by many collaboration, with Nf = 2 [Tsutsui 06, Dawson 06,

Lubicz 09, Lubicz 10] and Nf = 2 + 1 [Kaneko 11, Bazavov 12] dynamical quarks

and the details of their calculations can be found in [Colangelo 11].

The RBC-UKQCD collaboration has previously computed the form-factor

using Nf = 2 + 1 flavors of domain wall quarks [Boyle 08b]. Their study used

Nf = 2 + 1 dynamical flavors, generated from Iwasaki gauge action at β = 2.13

(a−1 = 1.73GeV) [Allton 08] and domain wall fermion action with strange quark

mass close to the physical mass. The calculations were performed with four

values of rather heavy light quark masses (amud = 0.005, 0.01, 0.02, 0.03) and

two different volumes, 163 and 243 (24Coarse). The result from the analysis was,

f+(0)Kπ = 0.9599(34)stat(
+31
−43)chiral(14)a , (2.15)

The errors quoted are statistical, due to Chiral extrapolation and Lattice cut-

off effects respectively. In this study, the 163 data was ignored due to its poor

quality and the study was performed using single lattice spacing. The pion and

kaon masses used in the simulations were much larger than the physical values

(mπ > 333 MeV). This gave rise to rather large chiral and “a” errors as shown

above. This chapter describes the work performed in reducing these errors by

adding new calculations with simulations using considerably lighter pion masses

down to 170 MeV and at two additional lattice spacings.

2.3 Ensembles

This chapter discusses the new analysis done in this thesis by adding new

ensembles 32Fine [Aoki 11], 32Coarse [R.Arthur 12] (cf. table 2.1) to the RBC-

UKQCD data-set and also by recomputing the form-factor on 24Coarse ensembles

using twisted boundary conditions. We also introduce a new method for the mass

extrapolation of data.

This is a major update on the precision-study of the Kl3 form factor,

f+(0) [Boyle 08b, Boyle 10]. Table 2.1 lists all the ensembles used and their

properties. The ensembles are generated using RHMC algorithm and are

sufficiently thermalised. The calculations are performed with the fifth dimension

of length Ls = 16 or 32. The strange quark mass is chosen so that it is closer to the

physical valence quark mass. For the ensemble with amud = 0.005, measurements
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Chapter 2. The Kl3 Form-factor

Label Size SG β a−1 mπ( MeV)

24Coarse 243 × 64× 16 Iwasaki 2.13 1.75(4) 333, 422, 562, 678

32Fine 323 × 64× 16 Iwasaki 2.25 2.31(4) 294, 349, 399

32Coarse 323 × 64× 32 Iwasaki+DSDR 1.75 1.37(1) 171, 247

Table 2.1: A summary of the three ensembles used in this analysis. Here ‘SG’
denotes the Gauge action, ‘mπ’ the pion mass and a−1 the lattice spacing. The
32Fine and 32Coarse data are new in this calculation.

are performed using two different valence strange quark masses (ams).

The aim is to measure f0(q2) on each of the ensemble and then perform

mass extrapolation to obtain the form-factor at physical meson mass. Table 2.3

summarises the input quark masses (amud, ams) , number of gauge configurations

(Nmeas), type of noise source and number of noise source positions (Nsrc) used

for measurement for each ensemble. For each gauge configuration, the quark

propagator is measured stochastically using “Z2PSWall” source with Nhits=1. In

further discussion, the ensembles will be referred to by the set name listed in

Table 2.3. For example, ensemble with amud = 0.0042 will be referred to as B4.

The above measurements using DWF is expensive and is evident from

table 2.2. This Kl3 calculation takes approximately 6000 years on a single core

and is made possible only by the HPC resources listed in table 2.2.

HPC Location Architecture core-hours

JUGENE Forschungszentrum Juelich Blue Gene-P 13.7 million

JUQUEEN Forschungszentrum Juelich Blue Gene-Q 2.4 million

DiRAC Univerity of Edinburgh Blue Gene-Q ≈35 million

DiRAC Swansea Univerity Blue Gene-P ≈2 million

Table 2.2: A summary of HPC resources used for this Kl3 calculation. Here
core-hours is an approximate estimate of total time used in hours × number of
cores used. Blue Gene-P and Blue Gene-Q have peak performance of 3.4 and
12.8 GFlops per core respectively.
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2.4. Measurement techniques

Label set amud amsea
s amval

s Nmeas Nsrcs mπL src

24Coarse

A3 0.03 0.04 0.04 105 2 9.13 Z2PSWall

A2 0.02 0.04 0.04 85 2 7.7 Z2PSWall

A1 0.01 0.04 0.04 153 2 5.8 Z2PSWall

A4
5 0.005 0.04 0.04 143 8 4.6 Z2PSWall

A3
5 0.005 0.04 0.03 143 8 4.6 Z2PSWall

32Fine

C8 0.008 0.03 0.025 120 8 5.5 Z2PSWall

C6 0.006 0.03 0.025 153 8 4.8 Z2PSWall

C4 0.004 0.03 0.025 135 8 4.1 Z2PSWall

32Coarse
B4 0.0042 0.045 0.045 162 16 5.7 Z2PSWall

B1 0.001 0.045 0.045 196 16 3.9 Z2PSWall

Table 2.3: Simulation parameters: bare light quark mass (amud), strange quark
mass (ams), number of gauge configurations (Nmeas), type of noise source and
number of noise source positions (Nsrc) used.

2.4 Measurement techniques

Setting up the calculation for the new ensembles involve the following steps.

Initially, for determining twists, the meson masses determined in [R.Arthur 12]

were used.

1. Determine the meson masses at zero momentum for each ensemble.

2. Evaluate the twist required for pion or kaon to obtain q2 = 0 (2.12).

3. Use twisted boundary conditions to measure 3-pt correlation functions.

4. Evaluate the ratios from the correlation functions as shown in (2.5)

[Becirevic 05b] [Becirevic 05a]

5. From the ratios, obtain f+(q2) and f−(q2) as shown in (2.14).

6. Evaluate f0(q2) from f+(q2) and f−(q2) as shown in (2.1)

In all the above analysis, statistical error for any measured quantity is determined

by generating a bootstrap ensemble [Efron 79] of size 500. Data is usually binned

before analysis and our analysis shows no real dependency on the bin size. In the

final analysis, bin size is chosen to be same as the number of srcs (Nsrc) for each

data set (as quoted in table 2.3).
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Figure 2.1: Plot of amK kaon(top) and amπ pion(bottom) mass (2.16) for A3
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Figure 2.2: Plot of amK kaon(top) and amπ pion(bottom) mass (2.16) for A2
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Figure 2.3: Plot of amK kaon(top) and amπ pion(bottom) mass (2.16) for A1
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Figure 2.4: Plot of amK kaon(top) and amπ pion(bottom) mass (2.16) for A3
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Figure 2.5: Plot of amK kaon(top) and amπ pion(bottom) mass (2.16) for A4
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Figure 2.6: Plot of amK Kaon(top) and amπ pion(bottom) mass (2.16) for C8
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Figure 2.7: Plot of amK kaon(top) and amπ pion(bottom) mass (2.16) for C6
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Figure 2.8: Plot of amK kaon(top) and amπ pion(bottom) mass (2.16) for C4
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Figure 2.9: Plot of amK kaon(top) and amπ pion(bottom) mass (2.16) for B4

 0.352

 0.354

 0.356

 0.358

 0.36

 0.362

 0.364

 0.366

 0  10  20  30  40  50  60
 0.352

 0.354

 0.356

 0.358

 0.36

 0.362

 0.364

 0.366

 0  10  20  30  40  50  60
 0.352

 0.354

 0.356

 0.358

 0.36

 0.362

 0.364

 0.366

 0  10  20  30  40  50  60

 0.115

 0.12

 0.125

 0.13

 0.135

 0  10  20  30  40  50  60

 0.115

 0.12

 0.125

 0.13

 0.135

 0  10  20  30  40  50  60

 0.115

 0.12

 0.125

 0.13

 0.135

 0  10  20  30  40  50  60

Figure 2.10: Plot of amK kaon(top) and amπ pion(bottom) mass (2.16) for B1
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2.4. Measurement techniques

set A3 A2 A1 A4
5 A3

5 C8 C6 C4

amπ 12-52 11-53 10-54 10-54 10-54 8-56 12-52 12-52
amK 12-52 11-53 11-53 10-54 10-54 9-55 12-52 12-52
Rxπ 4-22 4-19 6-20 8-20 8-20 6-13 9-14 na.
Ryπ 8-20 6-21 3-21 na. na. 6-15 11-17 7-14
Rzπ 6-17 6-18 4-21 na. na. na. na. 10-13
Rtπ 5-22 4-22 4-22 8-18 9-17 5-19 5-19 5-19
RxK 4-22 4-20 4-22 4-18 4-18 na. na. 7-19
RyK 8-20 6-21 4-22 na. na. 9-20 5-17 5-18
RzK 6-17 6-18 4-22 na. na. 8-19 5-13 na.
RtK 5-22 4-22 4-22 14-23 14-23 5-19 5-19 8-19
RxKπ 6-20 6-20 6-20 6-20 6-20 6-16 8-15 5-20
RyKπ 6-20 6-20 6-20 na. na. 6-17 10-16 8-14
RzKπ 6-20 6-20 6-20 na. na. 8-19 11-17 13-19
RtKπ 6-20 6-20 6-20 6-20 6-20 5-19 5-19 11-21
R2 6-20 6-20 4-22 6-20 6-20 6-18 5-18 6-17
ZV 7-19 4-20 4-20 4-21 4-20 5-19 5-19 5-19

Table 2.4: Fit window used for 24Coarse and 32Fine ensembles. na. indicates
that a fit window cannot be identified as the parameter could not be fitted to a
constant value. R refers to ratio in (2.5) and its subscript refers to the meson
that is twisted; superscript refers to the twist direction. R2 and ZV are defined
in (2.7) and (2.4) respectively.

Kinematics PT, KT PKT

set B4 B1 B4 B1

amπ 9-55 9-55 10-54 12-52
amK 11-53 10-54 11-53 12-52
Rxπ 8-15 6-17 8-17 na.
Ryπ na. 7-16 na. na.
Rzπ 7-17 na. na. 7-14
Rtπ 7-20 7-19 7-19 11-17
RxK 5-20 na. na. 13-17
RyK 5-20 na. 7-21 9-19
RzK na. na. 4-18 na.
RtK 5-20 na. 6-15 8-18
RxKπ 9-15 na. 5-16 10-18
RyKπ 5-20 na. 4-21 13-18
RzKπ 7-15 na. 8-18 7-18
RtKπ 7-20 na. 10-20 9-20
R2 10-16 7-16 8-16 6-17
ZV 6-17 5-19 10-18 5-19

Table 2.5: Fit window used for 32Coarse ensembles as in table 2.4 for Kinematics
PT, KT and PKT (refer table 2.7).
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set amπ amK q2
max [GeV2] f0(q2

max)

A3 0.38815(36) 0.41613(35) 0.0024(1) 1.0003(1)
A2 0.32219(45) 0.38428(45) 0.0118(4) 1.0018(1)
A1 0.24163(37) 0.35015(40) 0.0359(12) 1.0080(3)
A4

5 0.19090(46) 0.29849(48) 0.0610(22) 1.0181(12)
A3

5 0.19090(46) 0.33234(53) 0.0353(13) 1.0120(8)
C8 0.17256(39) 0.24124(40) 0.0251(8) 1.0066(4)
C6 0.15109(36) 0.23283(34) 0.0357(12) 1.0089(6)
C4 0.12745(46) 0.22619(47) 0.0520(17) 1.0193(11)
B4 0.18059(13) 0.37143(19) 0.0682(9) 1.0305(7)
B1 0.12461(15) 0.35942(28) 0.1033(13) 1.0607(10)

Table 2.6: amπ, amK (2.16) and q2
max = (mK−mπ)2, f0(q2

max) (2.7) for each data
set.

2.5 Meson masses

The meson masses are calculated from the two-point correlation functions (2.2)

using cosh fit. To avoid contamination from excited states, fit ranges for the cosh

fit are determined to doing a constant fit for the effective mass using the following

ansatz.

Meff = cosh−1

{
Ct−1 + Ct+1

2Ct

}
(2.16)

From the Meff fits, the fit range for cosh fit is determined by looking for excited

state contributions. Figures 2.1 - 2.10 shows the plot of Meff and the fit window

used for data sets A3, A2, A1, A
3
5, A

4
5, C8, C6, C4, B4 and B1. First two rows of

Table 2.4 and 2.5 lists the exact fit window used for calculation of Meff .

The meson masses determined are in good agreement with the values quoted in

[R.Arthur 12] except for data set C4. For C4, [R.Arthur 12] mentions difficulty in

fitting masses associated with difference between different interpolating operators.

Such discrepancies are not seen in the new measurements which uses Z2PSWall

noise sources and this measured value is used for further analysis. In all further

discussion and analysis, the meson mass determined by this study will be used

unless specified otherwise.
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2.6. Twisted boundary conditions

Table 2.6 lists the meson mass obtained and q2
max for each of the data set.

Here, q2
max is found to increase gradually from 0.0024(1) to 0.1033(13) as mπ is

reduced from 678 MeV to 170 MeV. This in turn will demand a increase in twists

in order to achieve q2=0.

2.6 Twisted boundary conditions

For 24Coarse ensembles, Fourier modes were used to obtain form-factor at

different q2 and then interpolated to q2 = 0. In this work, partial twisted

boundary condition is used to evaluate form-factor at q2 = 0. In addition to

measuring 32Fine and 32Coarse ensembles, 24Coarse ensembles are re-measured

using twisted boundary conditions to completely eliminate error due to q2

interpolation. As noted in table 2.6, q2
max increases approximately by 43 times as

mπ reduces by a factor of 4 (678→170). From (2.12), this directly implies that

the twists applied to absorb q2 should increase. Naively one would apply twists in

only one direction (x or y or z) as shown in (2.12). Tests showed that the signal

becomes noisy as the twist angle is increased. We found that applying twists in

two or all directions reduces twist angle in single direction and empirically the

noise is reduced.

The simultaneous equations in (2.14) give us different choices in solving them,

based on the application of twists and twist angles. To simplify the discussion,

these different choices are grouped as “Kinematic” as listed below.

1. Kinematic-PT : Solve equations for the choice where “only Pion” is

twisted

K(mK ,~0) → π(mπ, ~θπ); q2 = [mK − Eπ]2 − [
~θπ
L

]2 = 0 (2.17)

2. Kinematic-KT : Solve equations for the choice where “only Kaon” is

twisted

K(mK , ~θK) → π(mπ, ~0π); q2 = [EK −mπ]2 − [
~θK
L

]2 = 0 (2.18)

3. Kinematic-PKT : Solve equations for the choice where “Pion and Kaon”
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set PT : θπ KT : θK PKT : θπ, θK

A3 (0.375, 0.375, 0.375) (0.402, 0.402, 0.402) na.
A2 (0.790, 0.790, 0.790) (0.943, 0.943, 0.943) na.
A1 (1.270, 1.270, 1.270) (1.842, 1.842, 1.842 na.
A4

5 (2.682, 0.000, 0.000) (4.681, 0.000, 0.000) na.
A3

5 (2.129, 0.000, 0.000) (3.337, 0.000, 0.000) na.
C8 (0.943, 1.622, 0.000) (0.000, 1.570, 2.094) na.
C6 (0.943, 1.934, 0.000) (0.000, 1.570, 2.915) na.
C4 (1.739, 1.739, 0.000) (0.000, 3.086, 3.086) na.

B4 (3.209, 0.000, 3.209) (0.000, 6.587, 6.587)
(3.689, 0.000, 0.000),
(0.000, 2.356, 3.927)

B1 (2.513, 4.382, 0.000) (0.000, 0.000, 0.000)
(0.000, 0.000, 4.173),
(4.712, 3.142, 0.000)

Table 2.7: Choice of twist angles used for Kinematic-PT, KT and PKT for each
of the ensembles. na. refers that the particular Kinematic is not used to measure
f0(q2 ≈ 0).

are twisted

K(mK , ~θK) → π(mπ, ~θπ); q2 = [EK − Eπ]2 − [
~θK − ~θπ
L

]2 = 0 (2.19)

4. Kinematic-BT : Solve together equations for the choice where “only Pion”

and “only Kaon” are twisted

BT = PT + KT; q2 = 0 (2.20)

5. Kinematic-ALLT: Solve all equations for different choices where “only

Pion”, “only Kaon” and “Pion and Kaon” are twisted

ALLT = PT + KT + PKT; q2 = 0 (2.21)

Equation (2.12) can be used to compute twists only when pion or kaon is twisted.

Additionally we can evaluate f0(q2) at a nonzero q2 when the above twists are

used together. This can be used along with the f0(q2
max) to better constrain the

fit for q2 interpolation. f0(0) can be evaluated independently using any one of

the Kinematic and we can expect the values to be in good agreement.

Table 2.7 lists the twist angles applied to each of the data sets for Kinematic-
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2.6. Twisted boundary conditions

PT, KT and PKT. For B1, only Kinematic-PT can be used, as measurements

performed with Kinematic-KT are noisy. Assuming twists are applied in only

one direction, B1 requires twist of θπ = 5.049 (PT) or θK = 14.51 (KT) to get

q2 = 0. The resulting ratio R1 for kinematic-PT and KT are shown in Fig. 2.11.
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Figure 2.11: Plot of R1 (2.5): left : when twist θpi = 5.049 (PT) is applied, right:
when twist θK = 14.51 (KT) is applied, to obtain q2 = 0. In the above plots, Y
axis has different range and the difference shows the noise in Kinematic-KT

These ratios corresponding to KT are noisy with error >50%. These ratios

cannot be used in solving simultaneous equations for f+(0). This noise is due

to bigger twist applied to kaon that is three times that for pion. The applied

twists can be reduced by twisting in all spatial directions but test showed that

the channel is still noisy. It is important to note that in all the above cases, the

aim is to get zero momentum transfer, and we can use any of the kinematic to

get q2 = (pi − pf )2 = 0.

2.6.1 Kinematic-PKT

It is possible to determine the form factor at q2 = 0 without the correlators where

the kaon carries the twist (Kinematic-KT). For the case where only the pion is

twisted (Kinematic-PT), using the the system of linear equations in (2.14) will

determine the form factor. The problem with using only the results from PT is

that we have two equations (2.14) with two unknowns and so they aren’t very

well constrained. By twisting pion and kaon (Kinematic-PKT), we will have more

equations that will better constrain f + (0).
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For the data set B1, to reduce the kaon twist angles and still obtain q2 =

(pi − pf )2 = 0, the approach to twist only kaon cannot be used as shown in the

previous section 2.6. If the pion and kaon are twisted(Kinematic-PKT) to obtain

q2 = 0, the twists for kaon and pion are considerably reduced. For example

when the following twists (0.0,0.0,4.173) and (4.714,3.142,0.0) are used for pion

and kaon respectively, the ratios have good statistical signal compared to ratios

shown in Fig. 2.11. Fig. 2.12 shows R1 ratio for Kinematic-PKT using the above

mentioned twist angles.
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Figure 2.12: Plot of R1 (2.5) when kaon and pion are twisted (PKT) to obtain
q2 = 0

So in order to check if we get a better constraint on the relationship,

measurements are performed on B1 configurations with Kinematic-PKT and

Kinematic PT. This is found to be a better approach as the form-factor value

determined from Kinematic-PKT is found to be in good agreement with that for

Kinematic-PT.

2.7 Ratios

The ratios (R1, R2, R3) in (2.5), are evaluated using the correlation functions

and meson masses. They should be evaluated and then fitted to a constant

value by choosing a suitable fit widow. R3 ratio is found to be noisy and is

ignored in all our analysis. Using multiple ratios does not necessarily improve

the error because they are highly correlated. However they can be compared

for correctness. For each kinematic, R1 and R2 ratio are evaluated from both
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Figure 2.13: Plot of ratios (2.5), R1(left) and R2(right) for B4 ensemble when
pion is twisted (Kinematic-PT)

35



Chapter 2. The Kl3 Form-factor

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0  5  10  15  20
 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0  5  10  15  20
 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0  5  10  15  20
 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0  5  10  15  20
 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0  5  10  15  20
 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0  5  10  15  20
(a) ratios from Vy, twist in y direction only

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0  5  10  15  20

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0  5  10  15  20

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0  5  10  15  20

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0  5  10  15  20

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0  5  10  15  20

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0  5  10  15  20
(b) ratios from Vz, twist in z direction only

 0.545

 0.55

 0.555

 0.56

 0.565

 0.57

 0.575

 0  5  10  15  20

 0.545

 0.55

 0.555

 0.56

 0.565

 0.57

 0.575

 0  5  10  15  20

 0.545

 0.55

 0.555

 0.56

 0.565

 0.57

 0.575

 0  5  10  15  20

 0.545

 0.55

 0.555

 0.56

 0.565

 0.57

 0.575

 0  5  10  15  20

 0.545

 0.55

 0.555

 0.56

 0.565

 0.57

 0.575

 0  5  10  15  20

 0.545

 0.55

 0.555

 0.56

 0.565

 0.57

 0.575

 0  5  10  15  20
(c) ratios from Vt, twist in t direction only

Figure 2.14: Plot of ratios (2.5), R1(left) and R2(right) for C8 ensemble when
only kaon is twisted (Kinematic-KT)
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Figure 2.15: Plot of ratios (2.5), R1(left) and R2(right) for B1 ensemble when
both pion and kaon are twisted
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temporal and spatial components of vector current and then we can solve for

f+(q2) and f−(q2) simultaneously (2.14).
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Figure 2.16: Plot of ratio (2.5), R1 from Vx (left) and Vt (right) for A4
5 ensemble

when only pion is twisted (Kinematic-PT)
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Figure 2.17: Plot of R1 (2.5) from Vx (left) and Vt (right) for A3
5 ensemble when

only kaon is twisted (Kinematic-KT)

Figures 2.13, 2.14 and 2.15 shows ratios R1(left) and R2(right) for data sets

B4 (PT), C8 (KT) and B1 (PKT) respectively. These ratios have good signal

and are fitted to a constant value by selecting a suitable fit window to avoid

any excited state contributions. Table 2.4 and 2.5 lists the fit window used for

the ratios in spatial and temporal direction. Similarly for data sets A3
5 and A4

5,

Fig. 2.16 and Fig. 2.17 shows R1 ratios for PT and KT kinematic.

R1 ratio contains local vector current and is not balanced between numerator

and denominator whereas R2 is balanced. This is therefore not self normalising

38



2.7. Ratios

 0.7158

 0.716

 0.7162

 0.7164

 0.7166

 0.7168

 0.717

 0.7172

 0.7174

 0.7176

 0  5  10  15  20
 0.7158

 0.716

 0.7162

 0.7164

 0.7166

 0.7168

 0.717

 0.7172

 0.7174

 0.7176

 0  5  10  15  20
 0.7158

 0.716

 0.7162

 0.7164

 0.7166

 0.7168

 0.717

 0.7172

 0.7174

 0.7176

 0  5  10  15  20

 0.742

 0.743

 0.744

 0.745

 0.746

 0.747

 0  5  10  15  20

 0.742

 0.743

 0.744

 0.745

 0.746

 0.747

 0  5  10  15  20

 0.742

 0.743

 0.744

 0.745

 0.746

 0.747

 0  5  10  15  20

Figure 2.18: Plot of ZV (2.4) for A3(left) and B6(right)
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Figure 2.19: Plot of R2 (2.7) for A2(left) and B4(right)
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and renormalisation of the local vector current must be included. Thus we expect,

R2 = R1 × ZV (2.22)

Fig. 2.18 shows plot of ZV determined for C6 and A3 data set and fitted to a

constant value. Fig. 2.19 shows plot of R2 ratio computed for set C6 and A2 fitted

to a constant value. f0(q2
max) is evaluated precisely from this ratio as defined in

(2.7).

As shown in the plots, we have very good plateau that can be fitted to a

constant value. Some ratios have shorter plateau and the fit range is chosen

conservatively as shown in figures 2.13b and 2.14b. We note that where significant

ripples that say break time reversal occur, the fit range philosophy has been

that these are statistical effects that we are better to average over. This avoids

selecting a short sequence of correlated data points that could underestimate the

error.

2.8 Solving Kinematic

From the ratios, the form-factor fKπ0 (q2) is determined at different q2 by forming

simultaneous equations (2.14) for each of the kinematics and then solving them

simultaneously. For example in case of Kinematic-PT, if pion is twisted only in

one direction, then we have two simultaneous equations for the spatial and time

component. If we consider R1 and R2 ratios, then we have four equations to

solve. These four equations are solved to obtain form-factor for the Kinematic-

PT and similarly for Kinematic-KT. Table 2.8 lists the form factors for each set

for Kinematic PT and KT. Fig. 2.20 shows the the dependence of these form

factor on mπ.

As seen in Fig. 2.20, the form-factor of data sets with mπ < 400 seem to

be inconsistent. The form-factor determined from Kinematic PT and KT differ

by more than one sigma. In particular, for data sets B4 and C4, there is a 2%

discrepancy which is ten times that of statistical error. This is the primary reason

for exploring other kinematic choices to reduce this discrepancy.
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2.8. Solving Kinematic

set Kin. (aq)2 f+(q2) f−(q2) f0(q2) χ2/dof

A3 PT -1.86e-06(195) 0.99994(117) -0.0493(348) 0.99994(117) 1.74

A3 KT -1.95-06(210) 0.99830(125) -0.0051(349) 0.99830(126) 1.50

A2 PT 4.97e-06(111) 0.99565(154) -0.0561(187) 0.99565(154) 0.16

A2 KT 3.66e-06(132) 0.99557(173) -0.0578(185) 0.99557(173) 0.04

A1 PT 1.40e-05(329 0.98533(176) -0.0590(176) 0.98532(176) 0.90

A1 KT -9.07e-06(453) 0.98893(190) -0.1064(96) 0.98894(192) 1.20

A4
5 PT -0.00015(7) 0.97384(494) -0.0792(159) 0.97400(495) na.

A4
5 KT -0.00024(11) 0.98964(935) -0.1439(221) 0.99011(945) na.

A3
5 PT -0.00013(4) 0.98228(370) -0.0510(161) 0.98240(372) na.

A3
5 KT -0.00019(7) 0.99769(538) -0.1167(183) 0.99810(546) na.

C8 PT 3.96e-05(189) 0.98853(333) -0.0533(204) 0.98845(331) 0.14

C8 KT 5.45e-05(261) 0.99158(358) -0.0770(177) 0.99143(356) 0.18

C6 PT 3.27e-05(289) 0.98506(346) -0.0541(152) 0.98506(345) 0.01

C6 KT 4.92e-05(432) 0.97850(364) -0.0529(147) 0.97842(363) 0.26

C4 PT 8.14e-05(433) 0.98387(407) -0.0576(156) 0.98374(405) 1.01

C4 KT 8.12e-05(774) 0.96385(551) -0.0424(163) 0.96375(549) 0.01

B4 PT 0.00013(5) 0.97774(248) -0.0938(72) 0.97762(247) 1.03

B4 KT 0.00061(8) 0.95863(791) -0.0669(131) 0.95824(789) 0.05

B1 PT 0.00014(9) 0.96959(597) -0.0975(110) 0.96947(596) 0.52

B1 KT na. na. na. na. na.

Table 2.8: Table showing values of q2 and the results for the form factors for each
set for Kinematic(Kin.) PT and KT.
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Figure 2.20: Plot of form factors vs simulated pion mass ; comparing value
obtained from Kinematic PT and KT as listed in table 2.8

set Kin. f+(q2) f−(q2) f0(q2) χ2/dof

A3 BT 0.99917(4) -0.0274(5) 0.99917(4) 1.21

A2 BT 0.99563(24) -0.0572(14) 0.99562(24) 0.09

A1 BT 0.98675(82) -0.0883(26) 0.98674(82) 3.54

A4
5 BT 0.97553(423) -0.1021(93) 0.97578(424) 2.56

A3
5 BT 0.98583(271) -0.0767(72) 0.98605(272) 3.20

C8 BT 0.99013(149) -0.0683(103) 0.99002(150) 0.28

C6 BT 0.98496(200) -0.0667(95) 0.98488(199) 0.75

C4 BT 0.98255(303) -0.0713(107) 0.98238(302) 1.85

B4 BT 0.97781(239) -0.0940(71) 0.97773(238) 0.77

B4 PKT 0.97523(343) -0.0954(82) 0.97526(342) 0.39

B4 ALLT 0.97713(197) -0.0975(54) 0.97716(197) 0.95

B1 BT na. na. na. na.

B1 PKT 0.97159(631) -0.0822(104) 0.97148(629) 0.95

B1 ALLT 0.97053(404) -0.0885(83) 0.97053(404) 0.88

Table 2.9: Table showing results for form factors at q2 ≈ 0 for each data set for
Kinematic(Kin.) BT, PKT and ALLT.
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Figure 2.21: Plot of form factors vs simulated pion mass ; comparing value
obtained from Kinematic PT, KT and BT as listed in table 2.8 and table 2.9

2.8.1 Twisting Kaon Vs Pion

To understand the 2% discrepancy arising from difference in form-factor deter-

mined with Kinematic PT and KT, other Kinematic choices should be explored.

Kinematic-BT computes f0(0) by solving globally all the equations in (2.14)

corresponding to Kinematic PT and KT. Table 2.9 lists the form-factor value

for each data-set determined using Kinematic-BT. For B1, BT cannot be used

due to the reason discussed in the previous section 2.6. For each data set, Fig. 2.21

compares the form-factor determined using Kinematic PT,KT and BT. This

clearly shows that the form factor values determined from BT are in agreement

with that of PT. This gives us good argument to discard Kinematic KT or instead

use BT for all data sets.

2.9 Form-factor dependence on Twists

In order to find a better choice of kinematic and understand different kinematic

used we analysed the situation further: From (2.14), the slope of f+(0) with
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Chapter 2. The Kl3 Form-factor

respect to f−(0) is given by

∂f+(0)

∂f−(0)µ
= −(~pK − ~pπ)µ

(~pK + ~pπ)µ
(2.23)

and for kinematic options (µ = t, x, y, z) used in (2.14), for the time-component

of the vector current, Vt,

∂f+(0)

∂f−(0)

∣∣∣∣
θK=0

= −mK − Eπ
mK + Eπ

,
∂f+(0)

∂f−(0)

∣∣∣∣
θπ=0

= −EK −mπ

EK +mπ

, (2.24)

and for the spatial components Vx,y,z.

∂f+(0)

∂f−(0)

∣∣∣∣
θK=0

= 1
∂f+(0)

∂f−(0)

∣∣∣∣
θπ=0

= −1 , (2.25)

For any single kinematic to get a better constraint on f+(0), the slopes of the

time and spatial components should be of different sign (positive or negative).

The larger kaon mass will mean that the slope from Vt will always be negative. So

a positive slope from Vx,y,z, will help constrain the relation better. From Vx,y,z,

positive slope is obtained for Kinematic-PT and negative slope for Kinematic-

KT. This means slopes of the time and spatial components for Kinematic-KT are

negative and the corresponding equations become ill-constrained.

Fig. 2.23, 2.22, 2.24 shows the slope of the equations for kaon only and pion

only kinematics (l.h.s. and r.h.s. plots). While all solutions have a negative slope

for the case where only the kaon is twisted(KT), there are solutions with opposite

slopes in the case where the pion is twisted(PT). Because the solution is given

by the intersection of the individual constraints, Kinematic-PT provides the best

result. The statistical errors are also smaller in this case. Kinematic-KT is not

well constrained as shown by the large intercept where the equations intersect.

Motivated by these observations, we computed all correlation functions once

again for a third choice of kinematic-PKT, where both the kaon and the pion

are twisted. As shown in the left plot in Fig. 2.24b, this is found to gives us a

good alternative for B1 data set where the kaon cannot be twisted to get a signal.

Kinematic PKT also leads to a good constraint for f+(0) for B4.

For B4 with Kinematic-PKT, the result is in agreement with the result

obtained by solving all simultaneous equations for the cases where either the pion
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2.9. Form-factor dependence on Twists

(a) Kinematic KT (left), Kinematic PT (right)

(b) Kinematic BT

Figure 2.22: Plot of f+(0) vs. f−(0) for C6 ensemble
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(a) Kinematic KT (left), Kinematic PT (right)

(b) Kinematic BT

Figure 2.23: Plot of f+(0) vs. f−(0) for C4 ensemble

46



2.9. Form-factor dependence on Twists

(a) Kinematic KT (left), Kinematic PT (right)

(b) Kinematic PKT (left), Kinematic BT (right)

Figure 2.24: Plot of f+(0) vs. f−(0) for B4 ensemble
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set mπ [GeV ] mK [GeV ] f0(0)

A3 0.678(12) 0.723(13) 0.99917(4)
A2 0.563(10) 0.672(12) 0.99562(24)
A1 0.422(8) 0.612(11) 0.98674(82)
A4

5 0.334(7) 0.581(11) 0.97578(424)
A3

5 0.334(7) 0.522(10) 0.98605(272)
C8 0.399(7) 0.557(10) 0.99002(150)
C6 0.349(7) 0.538(10) 0.98488(199)
C4 0.295(6) 0.522(10) 0.98238(302)
B4 0.248(2) 0.509(4) 0.97716(197)
B1 0.170(1) 0.492(3) 0.97053(404)

Table 2.10: mπ, mK and f0(0) for each ensemble.

or the kaon are twisted (Kinematic-BT) as shown in the right plot of Fig. 2.24b

(obtained by combining the plots in Fig. 2.24a). Similarly for C6 and C4, result

obtained from Kinematic-BT is in agreement with kinematic-PT as shown in

Fig. 2.22b and Fig. 2.23b respectively.

The analysed results for B1 and B4 from Kinematic-PKT and ALLT are shown

in table 2.9. Fig. 2.25 shows a closer look at the form-factor values for B1 and

B4. This shows us that all kinematics are in good agreement except Kinematic-

KT and the systematic error arising from the difference in form-factor values

from Kinematic PT and KT can be ignored if a better kinematic solution can

be used. Thus for all data sets, kinematics are combined if available and so

either Kinematic BT or ALLT is always used. The form-factor and meson masses

for each of the data set is listed in table 2.10. Here, the form-factor values

are determined at unphysical values of meson masses. This data needs to be

extrapolated using suitable fit ansatz and this is addressed in the next chapter.
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Figure 2.25: Plot of form factor for different kinematics. Left : for data set B4

Right : for data set B1
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Chapter 3

Kl3 form factor - Extrapolation

3.1 Extrapolation

For computing the value of Vus, the value of fKπ+ (q2) should be calculated at

q2=0 and at the charged pion mass mπ− = 139.57 MeV and the neutral koan

mass mK0 = 497.614 MeV [Beringer 12]. In the previous chapter, fKπ+ (q2) was

determined for different values of unphysical quark (kaon and pion) masses. This

means mass extrapolating unphysical values f+(0) to the physical one using a

suitable ansatz. This chapter describes the steps followed in finding a suitable

ansatz and then estimating the systematic errors associated with fKπ+ (0) and Vus.

In this chapter, we will denote the physical form-factor by fKπ+ (0) and unphysical

one by f+(0).

Previous work [Boyle 08b] used the following ansatz with four fit parameters

A0, A1,M0,M1 to simultaneously fit f0(q2) dependence on q2 and quark masses.

We will refer to it as “simul-fit”. This is successfully used to extrapolate

24Coarse ensembles. The result of this previous work (2.15) was reproduced

for completeness and verification purposes.

fKπ0 (q2,m2
π,m

2
K) =

1 + f2 + (m2
K −m2

π)2(A0 + A1(m2
K +m2

π))

1− q2/(M0 +M1(m2
K +m2

π))2
(3.1)

where the term f2 in the above expression is defined as

f2 =
3

2
HπK +

3

2
HηK (3.2)

HPQ = − 1

64π2f 2
d

[
M2

P +M2
Q +

2M2
PM

2
Q

M2
P −M2

Q

ln
M2

Q

M2
P

]
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Chapter 3. Kl3 form factor - Extrapolation

The numerator of the simul-fit (3.1) is motivated from the Ademello-Gatto

theorem [Ademollo 64], whereas the denominator is a standard pole fit for quark

mass dependence. In the above ansatz f2 can be calculated accurately from

lattice results of m2
K ,m

2
π,m

2
η and decay constant fd. fd refers to pion constant

fπ at the SU(3) chiral limit and the difference of fd from fπ remains theoretically

uncertain. fd is chosen to be 130 MeV [etal 06] for further discussions unless

specified otherwise. In the following sections, we will separately study the q2 and

quark mass dependence of the simul-fit.

For clarity, definition of some frequently used terms are summarised below.

“Cutoff” in this section for mπ and q2 will refer to selection of data for which

mπ and q2 are less than the quoted cutoff value. Where a cutoff is not quoted,

all data is included in obtaining a fit. “Physical limit” refers to point at which

mπ = 139.57 MeV and mK = 497.614 MeV and the “SU(3) symmetric limit”

refers to the point where mπ = mK and f0(0) = 1. As shown in table 2.10 data

sets A4
5, B4, B1 are closer to physical limit and data sets A3, A2, C8 are closer to

SU(3) symmetric limit.

An important update in this thesis is the way the dependence of form factor on

quark masses is analysed. In previous studies by RBC-UKQCD, this dependence

is understood by plotting f0(0) as a function of m2
π which required additional

terms that parametrise the dependence on the strange quark masses.

In this thesis, f0(0) was studied as a function of (m2
K −m2

π)2/m2
K . This term

appears as a leading term in the Taylor expansion of f2 around the SU(3) sym-

metric point [Leutwyler 84, Becirevic 06]. We shall see that this parametrisation

in fact describes the strange quark mass dependence surprisingly well without

additional terms. The first use of this parametrisation in extrapolating Kl3 was

made in this thesis work.

In the chiral expansion of f+(0) = 1 + f2 + f4 + . . . , the Ademollo-Gatto

theorem [Ademollo 64] states that f+(0) receives corrections from 1, that are

second order in (m2
K −m2

π). Because of this, Leutwyler and Roos [Leutwyler 84]

observed that f2 does not receive contributions from beyond leading order terms in

the chiral effective Lagrangian, and may be expressed only in terms ofmK , mπ and

fπ. The theoretical uncertainty in the low energy constant at the SU(3) symmetric

chiral limit (mu = md = ms = 0) appearing in f2, makes this expression somewhat

uncertain since this differs in principle from the fπ measured for non-zero mass
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3.1. Extrapolation

physical quarks[Allton 08].

In extrapolation of lattice data at unphysical quark masses, analytic functions

have proved to be a good alternative to chiral effective theory[Aoki 11, Arthur 13].

Although the chiral effective theory is formally the correct expansion of Kl3 form

factor around zero quark mass, both the physical point and even more so the

lattice data points are at non-zero quark masses.

Both the radius of convergence of the chiral effective theory and the region

in which using a few terms of the series is accurate, are unknown without lattice

input. Analytic expansion will be formally correct provided we stay away from the

non analytic behaviour at zero quark masses. Of course, in principle an analytic

fit may require more terms for accurate extrapolation to the physical point in

the presence of chiral curvature. The use of analytic forms has been successful in

quantifying the systematic error in the use of chiral effective fits by comparing it

to the NLO ansatz [Aoki 11].

In Kl3, the symmetry of f+(0) = 1 for mK = mπ 6= 0 is encoded in the SU(3)

effective theory. Instead of using a naive analytic expansion, the SU(3) effective

theory therefore forms the basis of our analytic expansion. This symmetry holds

good for arbitrarily large mK = mπ. By taking (m2
K −m2

π)2/m2
K as an analytic

expansion parameter, we form a analytic expansion that respects this symmetry

at both the physical point and lattice data points. Surprisingly, we shall see that

this single expansion parameter in fact describes the complete pion and kaon mass

dependence of all our lattice data points with a first or second order polynomial.

The fit ansatz motivated by this analytic expansion will be explained in detail in

section 3.3.

3.1.1 q2 dependence

In the above ansatz (3.1) (simul-fit), we can completely ignore the denominator

if momentum interpolation is done to compute f0(q2) at q2=0. We can either

use a fit ansatz to perform q2-interpolation or use partially twisted boundary

conditions to determine f0(q2) at q2=0. Fig. 3.1 shows f0(q2) dependence on q2

for all the ensembles. With q2 ranging from -0.4 to 0.1, all the f0(q2) values can

be used in simul-fit (3.1) to determine A0, A1,M0,M1. We can then compute

f0(0) by setting q2 = 0, mπ = 139.57 MeV and mK = 497.614 MeV. Fitting all

q2 information, fKπ0 (0) is found to be 0.9625(14)stat with χ2/dof = 2.18. χ2/dof

53



Chapter 3. Kl3 form factor - Extrapolation

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

-0.4 -0.3 -0.2 -0.1  0  0.1

f 0
(q

2 )

q2 GeV2

f0(q2) - q2 dependence

A3

A2

A1

A54

A53

C4

C6

C8

B4

B1

Figure 3.1: Plot of f0(q2) dependence on q2 for all data sets.
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Figure 3.2: Plot of f0(q2) dependence on q2 for q2 ≈ 0. This plot is a q2 zoom of
Fig. 3.1
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3.1. Extrapolation

denotes the quality of the fit and a value of less than 1 is considered a good fit.

Using partial twisted boundary conditions, we have evaluated f0(q2) at q2 ≈0

as listed in table 2.10. Fig. 3.2 shows the f0(q2) of each data set at q2 in the

range: -0.00057 to +0.00053(q2 ≈ 0). We can reduce the q2 dependence in the

simul-fit by selecting f0(q2) based on q2 cutoff. Similarly, we can repeat the fit

with mπ cutoff where data sets are included or excluded from the extrapolation

based on the mass cutoff.

Figure 3.3: Plot showing simul-fit of fKπ0 (q2) for different cutoff of q2. For
“TW only”, f0(0) determined using twisted boundary conditions (table 2.10)
are used. “FM+TW” uses all f0(q2) (also values generated using Fourier modes
for 24Coarse.)

Table 3.1 tabulates fKπ0 (0) determined for different cutoff of q2 and mπ. For

the case where we include all data sets to fit, we can infer that the χ2/dof

reduces 4 times (from 2.49 to 0.49) as f0(q2) values at q2 > 0.001 are excluded

from the fit, even if statistical error increases by 30%. Also excluding the values

at q2 > 0.001 reduces the variance of f0(q2) for different mπ cutoffs. Fig. 3.3

shows how the simul-fit better fits the individual data points when q2 cutoff is

used. In this plot “TW only” uses only f0(q2) values at q2 < 0.001 to simul-
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Chapter 3. Kl3 form factor - Extrapolation

mπ cutoff
|q2|cutoff GeV

1 0.1 0.01 0.001

700 0.9625(14)2.18 0.9636(14)1.97 0.9642(18)1.25 0.9635(20)0.49

600 0.9605(26)2.04 0.9621(16)1.98 0.9632(21)1.14 0.9636(20)0.52

500 0.9587(20)2.21 0.9608(22)2.22 0.9612(27)1.22 0.9618(30)0.45

400 0.9592(22)2.44 0.9628(27)2.53 0.9632(33)0.27 0.9639(33)0.16

300 0.9655(36)1.63 0.9687(38)1.26 0.9651(53)0.00 na.
———— ———— ———— ———— ————

sys 0.9625(14)(+30
−38) 0.9636(14)(+51

−18) 0.9642(18)(+9
−30) 0.9635(20)(+4

−17)

Table 3.1: fKπ0 (0) determined for different cutoffs of q2 and mπ using simul-
fit (3.1) and fd = 130 MeV. Subscript for fKπ0 (0) values denote χ2/dof of the
simul-fit.

fit, whereas “FM+TW” uses all f0(q2) values including the one generated using

Fourier modes for 24Coarse ensemble. From Fig. 3.3, we can infer that the f0(q2)

values at q2 � 0 can be ignored to get a accurate fit.

Simul-fit (3.1) can also be performed by first interpolating f0(q2) values to

f0(0) using a suitable ansatz and then extrapolating the f0(0) values to that of

physical quark masses. For q2 interpolation, a pole or a quadratic fit can be used

as listed below.

Quadratic : f0(q2) = a0 + a1q
2 + a2q

4 (3.3)

Pole : f0(q2) = f0(0)/(1− q2/M2) (3.4)

The pole and quadratic fits are repeated for all the ensembles. Table 3.2

summarises the results of pole and quadratic fit for each of the data sets.

Appendix A shows the plot of pole, quadratic and simul fit for each individual

fit.

With all q2 data included, data sets B1,C4,A4
5 and A1 have χ2/dof > 1.

Similar to the simul-fit the χ2/dof of pole and quadratic fit reduces as q2 cutoff is

introduced. Once f0(0) is determined using ansatz (3.3) or (3.4), we can use the

numerator of (3.1) to extrapolate as we are left with only two free parameters

A0, A1.

f0(q2,m2
π,m

2
K) = 1 + f2 + (m2

K −m2
π)2(A0 + A1(m2

K +m2
π)) (3.5)

Tables 3.3 and 3.4 lists fKπ0 (0) determined for different cutoff of q2 and mπ

using pole (3.3) and quadratic (3.4) fits respectively for q2 interpolation and
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3.1. Extrapolation

Pole Quadratic
set f+(0) χ2/dof f+(0) χ2/dof

24Coarse
A3 0.99916(6) 0.42 0.99917(5) 0.35
A2 0.99569(26) 0.20 0.99565(24) 0.20
A1 0.98677(82) 1.89 0.98687(80) 1.73
A4

5 0.97747(282) 1.44 0.97589(344) 1.34
A3

5 0.98638(269) na. na. na.
32Fine

C8 0.98954(175) 0.15 0.99124(273) na.
C6 0.98377(231) 1.20 0.98459(209) 1.20
C4 0.97950(334) 4.10 0.98065(341) na.

32Coarse
B4 0.97684(185) 0.06 0.97720(192) 0.01
B1 0.97191(348) 3.20 0.97321(399) 3.08

Table 3.2: Results for f+(0) using pole dominance (3.4) and quadratic (3.3) fits
to each data set
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Figure 3.4: Plot showing simul-fit (3.5) of fKπ0 (q2) using f0(0) determined using
twisted boundary conditions only (table 2.10)
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mπ cutoff
|q2|cutoff GeV

1 0.1 0.01 0.001

700 0.9641(16)0.70 0.9641(16)0.87 0.9643(16)0.56 0.9646(16)0.53

600 0.9629(19)0.55 0.9632(19)0.87 0.9633(19)0.50 0.9636(19)0.45

500 0.9621(23)0.59 0.9623(23)0.96 0.9615(25)0.39 0.9619(24)0.36

400 0.9638(26)0.45 0.9652(26)0.47 0.9638(29)0.13 0.9641(28)0.12

300 0.9667(38)0.00 0.9689(39)0.11 0.9651(44)0.00 0.9642(43)0.13

———— ———— ———— ———— ————

sys 0.9641(16)(+26
−20) 0.9641(16)(+48

−18) 0.9643(16)(+9
−28) 0.9646(16)(+0

−27)

Table 3.3: fKπ0 (0) determined for different cutoff of q2 and mπ using fit ansatz
(3.5) and fd = 130 MeV. Subscript for fKπ0 (0) values denote χ2/dof of the fit
ansatz (3.5).

mπ cutoff
|q2|cutoff GeV

1 0.1 0.01 0.001

700 0.9646(16)0.60 0.9643(16)0.47 0.9647(17)0.35 na.
600 0.9637(19)0.56 0.9637(19)0.49 0.9643(21)0.39 na.
500 0.9628(25)0.63 0.9620(25)0.37 0.9628(27)0.26 na.
400 0.9649(29)0.44 0.9637(30)0.27 0.9642(31)0.05 na.
300 0.9676(43)0.10 0.9649(44)0.00 0.9651(51)0.00 na.

———— ———— ———— ———— ————

sys 0.9646(16)(+30
−18) 0.9643(16)(+6

−23) 0.9647(17)(+5
−19) na.

Table 3.4: fKπ0 (0) determined for different cutoff of q2 and mπ using fit ansatz
(3.5) and fd = 130MeV . Simul fit for |q2| < 0.001 cannot be performed as
we have only one f0(0) value whereas quadratic fit needs at least two values.
Subscript for fKπ0 (0) values denote χ2/dof of the fit ansatz (3.5).
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3.1. Extrapolation

then extrapolating using fit (3.5). We can observe similar behaviour as that

for simul-fit (3.1). In table 3.4 simul fit for |q2| < 0.001 cannot be performed

as we have only one f0(0) value whereas quadratic fit needs at least two. Also

with q2cutoff < 0.001, we can observe that fKπ0 (0) shows reduced variance when

mπ cutoff is applied.

Fig. 3.4 shows mass extrapolation using fits (3.4) and (3.5). This is similar

to the simul-fit (3.1) as shown in Fig.3.3. Using twisted boundary conditions, we

have computed f0(q2) at q2 ≈ 0. Using only the f0(q2) values q2 ≈ 0, we have

improved the χ2/dof for the simul-fit and reduced the model dependence of q2

interpolation. Using the above argument, we exclude f0(q2) at q2 > 0 for further

analysis. This also greatly reduces any systematic error from q2 dependence from

entering our mass extrapolation.

3.1.2 Strange quark dependence

In addition to the q2 dependence of simul-fit, we should also model the strange

quark mass dependence as the simulated strange quark mass is not exactly at

the physical point. If SU(3) symmetry is good and the lattice artifacts are small,

the slope of m2
K vs m2

π will be the same for each of the ensembles. The only

difference that will occur is in the intercept due to the differing strange quark

masses. Fig. 3.5 plot the dependence of kaon and pion masses for each ensemble.

So mK and mπ of each ensemble is fitted using ansatz (3.6).

m2
K = X + Y m2

π (3.6)

Y should be the same across all 3 sets of ensembles, but with different X’s. We

used constrained fit to solve system of equations for all 3 ensembles at once.

m2
K = X1 + Y m2

π (3.7)

m2
K = X2 + Y m2

π

m2
K = X3 + Y m2

π
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Figure 3.5: Plot showing relation between m2
K and m2

π for all the ensembles

Fitting for all three ensembles, we obtain

24Coarse : m2
K = 0.2808(106) + 0.5211(3) m2

π

32Fine : m2
K = 0.2271(31) + 0.5211(3) m2

π

32Coarse : m2
K = 0.2275(8) + 0.5211(3) m2

π (3.8)

Using the above fit to predict for physical strange quark, kaon mass is written as:

Physical limit : m2
K = 0.2336 + 0.5211(3) m2

π (3.9)

For the strange quark mass correction, we should use (3.9) to determine the

Kaon mass for physical strange quark on each ensemble. With the corrected

strange quark, the difference of f0(0) evaluated with both corrected Kaon mass

and the original Kaon mass at fixed mπ gives the correction for f0(0) as shown

in (3.10).

f0(0) = f0(0) + f0(0)phy − f0(0)latt (3.10)

Here, f0(0)latt is determined from the data sets with unphysical strange quark

masses and f0(0)phy is determined from using original value of mπ and corrected
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Figure 3.6: Plot of f+(0) dependence on m2
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mπ cutoff f0(0) fdGeV χ2/dof

700 0.9606(35) 0.108(16) 0.52
600 0.9629(38) 0.129(100) 0.39
500 0.9661(36) 0.630(292) 0.15
400 0.9663(39) 0.310(246) 0.14
300 0.9655(68) 0.659(381) 0.03

Table 3.5: fKπ0 (0) and decay constant fd determined for different cutoff of mπ

using simul-fit (3.1) with fd as a free parameter.

mK (from (3.9)) in simul-fit ansatz (3.1). All this, however, has no bearing on

the final value of fKπ0 (0) since that comes directly from the SU(3) fit and so is

automatically corrected. Fig. 3.6 shows f+(0) plotted as a function of m2
π for all

ensembles. The data points in Fig. 3.6(top) are the ones for the simulated, i.e.

unphysical strange-quark mass. After fitting the points using simul-fit (3.1) and

then correcting towards the physical strange-quark mass, all data points line up

on the fit-curve in the bottom plot of Fig. 3.6.

3.2 Decay constant - NLO Fit

As noted in [Boyle 10] one does not know the true value of SU(3) low energy decay

constant fd entering f2. Certain choices amount to different forms of higher-order

terms in the expansion of the form factor. A straight forward method will be to

add fd as a free parameter to the simul-fit along with A0, A1,M0,M1.

Table 3.5 lists fKπ0 (0) and decay constant fd determined for different cutoff of

mπ using simul-fit ansatz (3.1) with fd also as a free parameter. With more

parameters to fit, this method becomes noisy as denoted by the error of fd

and variance of fKπ0 (0) for different mπ cutoffs. For mπ cutoff > 500, the χ2

minimisation is dependent on the starting value of fd used in the simul-fit. This

results in a underdetermined fKπ0 (0) value. One of the reasons is due to the fact

that as we are closer to the SU(3) symmetric limit(mπ cutoff > 500), the NNLO

contribution becomes ≈0. As we move closer to the physical limit, fd seems to

prefer a value � fπ as shown in table 3.5.

If NNLO contribution is very small and we can approximate form-factor as

f0(0) = 1 + f2 (3.11)
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Figure 3.7: Plot showing 1 + f2 for different values of fd, with f0(0) determined
using twisted boundary conditions (table 2.10) .

This leaves us with only one free parameter as compared to 5 in (3.1). Table 3.6

summarises fd and fKπ0 (0) obtained for different mπ cutoffs. Compared to fit

shown in table 3.5, χ2/dof < 1 and fKπ0 (0), fd show less variance. fd is found to

lie within the range from 96 to 101 MeV. Fig. 3.7 shows how 1 + f2 for different

values of fd fits f0(0) values of each ensemble. We can infer that fd=100 MeV

describes almost all the lattice data. This contradicts the results obtained by

allowing fd to be a free parameter in simul-fit.

Even though fd is well constrained by 1 + f2, the NNLO contribution cannot

be ignored. The simul-fit should be repeated with different choices of fd to check

mπ cutoff fKπ0 (0) fdGeV χ2/dof

700 0.9582(18) 0.0972(21) 0.70
600 0.9574(19) 0.0963(21) 0.58
500 0.9575(20) 0.0964(23) 0.67
400 0.9581(25) 0.0971(29) 0.75
300 0.9609(27) 0.1005(35) 0.34

Table 3.6: fKπ0 (0) and decay constant fd determined for different cutoff of mπ

using 1 + f2 (3.11) with fd as the only free parameter.
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if the NNLO contribution can be ignored. Fig. 3.8 shows fKπ0 (q2) for different

values of fd. From the plots, lighter data points introduced in this thesis prefers

fd ≈ 130− 150 MeV. Simul-fit with fd ≈ 95− 100 MeV seem to fit all data sets

except f0(0) at lightest pion mass (B1). Since B1 is closer to the physical point,

it cannot be ignored in the mass extrapolation.

Thus even though global fit with only NLO term (3.11) seem to prefer fd ≈ 95

MeV, we cannot conclude this as a final value as it doesn’t seem to account for

the NNLO contributions. We can conclude that simul-fit is dependent on our

choice of the unknown parameter fd. Also we are unable to determine fd reliably

when fit as a free parameter and this is not a good recipe for model independent

results.

3.3 Polynomial Fits

The simul-fit ansatz in (3.1) is motivated by Ademello-Gatto theorem, and as

described in the previous section this fit seems to be dependent on the choice

of fd in f2. For f2, a simpler polynomial ansatz can be obtained by Taylor

expanding the f2 around the SU(3) symmetric limit (mK = mπ) and ignoring the

higher order terms.

3.3.1 1-NLO

Expanding f2 around the SU(3) symmetric limit, and ignoring the higher order

terms, we can approximate f0(0) as follows.

f0(0) = 1 + C

(
(m2

K −m2
π)

2

m2
K

)
(3.12)

We will refer to it as 1-NLO fit, with 1 referring to the value of f0(0) at SU(3)

symmetric limit. Table 3.7 lists the fKπ0 (0) and fKπ0 (0) at SU(3) symmetric limit

determined using 1-NLO fit. The χ2/dof of 1-NLO fit for mπcutoff < 700 is

4.61 and reduces to 0.17 as mπ cutoff is reduced. The 1-NLO fit is a linear fit

and χ2/dof � 1 simply points to existence of NNLO term and the presence of

a dominant quadratic term in the Taylor expansion. This explains why χ2/dof

decreases as the points closer to SU(3) symmetric limit (mπ > 500) are excluded

65



Chapter 3. Kl3 form factor - Extrapolation

 0.96

 0.97

 0.98

 0.99

 1

P
hysical

A3,2,1,54,53

C8,6,4

B4,1

mπ
2 < 700 

 0.96

 0.97

 0.98

 0.99

 1

P
hysical

A3,2,1,54,53

C8,6,4

B4,1

mπ
2 < 600 

 0.96

 0.97

 0.98

 0.99

 1

P
hysical

A3,2,1,54,53

C8,6,4

B4,1

mπ
2 < 500 

 0.96

 0.97

 0.98

 0.99

 1

P
hysical

A3,2,1,54,53

C8,6,4

B4,1

mπ
2 < 400 

 0.96

 0.97

 0.98

 0.99

 1

 0  0.05  0.1  0.15  0.2

P
hysical

A3,2,1,54,53

C8,6,4

B4,1

mπ
2 < 300 

Figure 3.9: Plot showing fKπ0 (q2) determined using 1-NLO fit (3.12) as a function
of (m2

K −m2
π)2/m2

K for different mπ cutoffs.
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mπ cutoff f0(0) f
SU(3)
0 (0) χ2/dof

700 0.9756(10) 1 4.61
600 0.9733(12) 1 2.18
500 0.9709(14) 1 0.69
400 0.9684(19) 1 0.13
300 0.9684(22) 1 0.17

Table 3.7: fKπ0 (0) and f0(0) at SU(3) symmetric limit determined for different
cutoff of mπ using 1-NLO fit (3.12).

from the fit. Fig. 3.9 shows how the linear 1-NLO fits individual data points and

how the fit evolves as mπ cutoff is applied. We can infer from the Fig. 3.9 that

1-NLO doesn’t fit all the points for any mπ cutoff and so cannot be used as a

suitable ansatz for all data sets.

3.3.2 a-NLO

In 1-NLO fit ansatz, we can allow the value of fKπ0 (0) at the SU(3) symmetric limit

to be a free parameter instead of setting it to 1. Equation (3.13) corresponds to

polynomial ansatz for the NLO term in simul-fit with fKπ0 (0) at SU(3) symmetric

limit as a free parameter. We will refer to it as a-NLO fit and A in a-NLO fit

should be consistent with 1 to ensure charge conservation.

f0(0) = A+ C

(
(m2

K −m2
π)

2

m2
K

)
(3.13)

mπ cutoff f0(0) f
SU(3)
0 (0) χ2/dof

700 0.9722(13) 1.0004(1) 1.54
600 0.9691(17) 1.0018(5) 0.51
500 0.9676(28) 1.0037(27) 0.52
400 0.9673(28) 1.0015(30) 0.11
300 0.9657(53) 1.0070(127) 0.03

Table 3.8: fKπ0 (0) and f0(0) at SU(3) symmetric limit determined for different
cutoff of mπ using a-NLO fit (3.13).

Table 3.8 lists the fKπ0 (0) and fKπ0 (0) at SU(3) symmetric limit determined

using a-NLO fit. The χ2/dof of a-NLO fit when all data set is included is 1.54

and reduces to 0.03 as mπ cutoff is reduced. Interestingly, for mπ cutoff > 400,
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Figure 3.10: Plot showing fKπ0 (q2) determined using a-NLO fit (3.13) as a function
of (m2
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K for different mπ cutoffs.

68



3.3. Polynomial Fits

the value of f
SU(3)
0 (0) produced by the fit is not consistent with 1, in violation

of charge conservation. The deviation is small and likely a statistical effect or

insufficient terms in our fit model at this level of precision. Fig. 3.9 shows how

the linear a-NLO fits individual data points and how the fit evolves as mπ cutoff

is applied. Allowing f
SU(3)
0 (0) to be a free parameter inflates the error in the fit

and fits almost all data points (especially with mπ cutoff of 400 and 300).

Thus we can conclude that, for a mπ cutoff of 400 MeV, a-NLO is a good

approximation of 1 + f2 but also indicates the existence of NNLO terms. The

important thing to note is that this fit ansatz is independent of fd. If the

inconsistent fits are discarded (mπ cutoff > 400) we can expect fKπ0 (0) value to lie

within the range 0.9657 to 0.9673. This value is greater than that from simul-fit

(130MeV) and so we can expect the polynomial fit ansatz (1-NLO and a-NLO)

to prefer a value larger than 130 MeV for fd.

mπ cutoff f0(0) f
SU(3)
0 (0) χ2/dof

700 0.9668(21) 0.99996(15) 0.16
600 0.9668(22) 0.99994(13) 0.18
500 0.9668(28) 0.99977(355) 0.21
400 0.9676(30) 1.00247(389) 0.13
300 na. na. na.

Table 3.9: fKπ0 (0) and f0(0) at SU(3) symmetric limit determined for different
cutoff of mπ using a-NNLO fit (3.14).

3.3.3 1-NNLO and a-NNLO

From a-NLO and 1-NLO fits, we found that the polynomial ansatz is a good

approximation for the simul fit and need to add NNLO term to account for the

curvature in the data. So we can readily add the NNLO term as that in (3.5) to

fits (3.13) and (3.12) as shown below.

f0(0) = A+
(m2

K −m2
π)

2

m2
K

(
C +B

(
m2
K +m2

π

))
(3.14)

f0(0) = 1 +
(m2

K −m2
π)

2

m2
K

(
C +B

(
m2
K +m2

π

))
(3.15)
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Figure 3.11: Plot showing fKπ0 (q2) determined using a-NNLO fit (3.14) as a
function of (m2

K −m2
π)2/m2

K for different mπ cutoffs.
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Figure 3.12: Plot showing fKπ0 (q2) determined using 1-NNLO fit (3.15) as a
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mπ cutoff f0(0) f
SU(3)
0 (0) χ2/dof

700 0.9671(17) 1 0.14
600 0.9668(20) 1 0.15
500 0.9668(30) 1 0.15
400 0.9676(30) 1 0.13
300 0.9664(43) 1 0.04

Table 3.10: fKπ0 (0) determined for different cutoff of mπ using 1-NNLO fit (3.15).

These fits will be referred to as a-NNLO and 1-NNLO fit respectively. The

NNLO term is similar to the NNLO term of simul-fit. Tables 3.9 and 3.10 lists

the fKπ0 (0) and fKπ0 (0) at SU(3) symmetric limit determined using fits a-NNLO

and 1-NNLO respectively. For both a-NNLO and 1-NNLO, not only we get lower

χ2/dof when compared to simul-fit, but also the variance for different mπ cutoff

is negligible. For a-NNLO fit, when f
SU(3)
0 (0) is allowed to be a free parameter,

its value is consistent with 1, as required by charge conservation.

Fig. 3.12 shows how the 1-NNLO fits individual data points and how the fit

evolves as mπ cutoff is applied. All the fits, fit all the data values and we can

observe similar features for a-NNLO fit (Fig. 3.11). This also doesn’t suffer from

dependence on fd. From 1-NNLO and a-NNLO, we can expect fKπ0 (0) value to

lie within the range 0.9664 to 0.9676.

Fig. 3.13 shows mass extrapolation of fKπ0 (0) using different fit ansatz. We can

conclude that 1-NNLO fits the form-factor data for all ensembles when compared

to simul-fit, a-NLO and 1-NLO fits. The result from 1-NNLO fit is taken as the

central value for above reasons. Now we need to estimate the systematic errors

associated with the model dependence of our mass extrapolation, finite volume

effects and Lattice artifacts.

3.4 Error budget

In this section we estimate the systematic uncertainties associated with Lattice

artifacts , finite volume effects and model dependence of mass extrapolation in

our error budget.

The ratios R1 and R2 in (2.5) are constructed such that fKπ+ (0)|ms=ml = 1

and holds exactly even in a finite volume and for a finite lattice cut-off. So we

expect finite-volume and cut-off effects to be symmetry-suppressed. Domain wall
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fermions are O(a)-improved and on the deviation of the form factor from one, we

expect O ((aΛQCD)2) ≈ 5% and ≈ 2% cut-off effects on the Coarse (32Coarse) and

finest ensemble (32Fine) respectively (assuming ΛQCD ≈ 300 MeV). The Fig. 3.13

validates our findings as the data points for mπ = 248 MeV (B4) and mπ =

334 MeV (A4
5), with a = 0.14 fm and a = 0.11 fm, respectively, lie on top of each

other. Similarly, the mπ = 334 MeV (A3
5) and mπ = 349 MeV (C6) simulation

points for a = 0.11 fm and a = 0.09 fm, respectively, are in complete agreement.

we can conclude that the cut-off effects are therefore absent at the current level of

precision. The chiral effective theory [Ghorbani 11, Ghorbani 13] predicts finite

Figure 3.13: Plot showing mass extrapolation of fKπ0 (0) using different fit ansatz
and f0(0) from table 2.10. poly-NNLO and poly-NLO fit refers to 1-NNLO and
1-NLO fit with mπ cutoff of 700 MeV.

volume effects are proportional to e−mπL and suppressed exponentially. From

table 2.3 we can observe that mπL has a minimum of value of 3.9. So we can

conclude that the finite volume effects to be less than 2%.
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Chapter 3. Kl3 form factor - Extrapolation

Both the uncertainty due to finite volume effects and finite lattice cut-off

affects only 1− fKπ+ (0) which is negligible when compared to the statistical error

for fKπ+ (0) . In this section we therefore assume that both lattice artifacts and

finite-volume effects are below the statistical accuracy of the results. Following

the above discussion we estimate finite volume errors to be of order 2% and cutoff

effects to be of order 5% on 1 − fKπ+ (0). Error in the lattice spacing shows the

uncertainty in the scale of each ensemble and this is folded into the error analysis,

so that the statistical error includes this uncertainty.

a−1(32Fine) = 2.310(37)(17)(9) GeV (3.16)

a−1(24Coarse) = 1.747(31)(24)(4) GeV

a−1(32Coarse) = 1.3709(84)(56)(3) GeV

The mass extrapolation for our final result is based on 1-NNLO fit but simul-fit

appears to be an adequate alternative even though it is found to be dependent on

fd. When varying the input fd in simul-fit, the value of χ2/d.o.f. has a minimum

around fd = 123 MeV. For this value of fd we find fKπ+ (0) = 0.9632(16). We take

the difference in central value between this simul-fit result and 1-NNLO as the

residual model-dependence. After these considerations our final result is,

fKπ+ (0) = 0.9671(17)stat(
+ 0
−39)model(7)FSE(17)cutoff

0.2% 0.4% 0.07% 0.2%

= 0.9671(17)(+18
−46) ,

(3.17)

where all systematic errors are added in quadrature. The previous result [Boyle 10]

was based on 24Coarse ensemble with simul-fit where the main source of error

was found to be f2-term that determines the curvature as one moves away from

the SU(3)-symmetric limit. Data sets with mπ > 333, mass extrapolation was

performed by varying the value of the decay constant entering f2. This value is

then used to quantify the error due to mass extrapolation. Their result was

0.9599(34)(+31
−43)(14) and is fully compatible with the simul-fit applied to the

enlarged data set. With the new 1-NNLO ansatz, the mass extrapolation is

independent of choice of decay constant.

The first applications of our result are predicting the CKM-matrix element
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|Vus| and testing the unitarity of the CKM-matrix which is a crucial Standard

Model test. In [Antonelli 10] the experimental data for K → π semi-leptonic

decays was analysed. Their result |VusfKπ+ (0)| = 0.2163(5) combined with our

result for fKπ+ (0) gives

|Vus| = 0.2237(+13
− 8) . (3.18)

Together with the result |Vud| = 0.97425(22) [Hardy 09] from super-allowed

nuclear β-decay and |Vub| = 4.15(49) · 10−3 [Beringer 12] we then confirm CKM-

unitarity at the sub per mille level,

|Vud|2 + |Vus|2 + |Vub|2 − 1 = −0.0008(+7
−6) . (3.19)

0.94 0.96 0.98
fK→π+ (0)

N
f
=

2
+

1
N

f
=

2

JLQCD 2005

JLQCD 2005

RBC 2006

ETM 2009

RBC/UKQCD 2007

RBC/UKQCD 2010

JLQCD 2011

MILC 2012

RBC/UKQCD 2013

Figure 3.14: Comparison of recent Lattice results for fKπ0 (0). Solid blue line
(RBC-UKQCD 13) denotes the result calculated in this thesis.
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3.5 Conclusion

We have studied the Kaon semi-leptonic decay form factor in three-flavor lattice

QCD with simulations in large lattice volumes , three values of the lattice spacing

and pion masses in the range from 678 to 171 MeV. All these allows us to do

a the detailed study of systematic effects. We have studied the dependence of

the ansatz on momentum transfer and quark masses. In performing the chiral

extrapolation this study has identified a preferred functional form which was not

used previously. After the extrapolation to the physical point we obtain the

form factor with a statistical precision of 2 per mille and estimated +2
−5 per mille

systematic errors. The prediction for the form factor, fKπ+ (0) = 0.9671(17)(+18
−46)

has an overall uncertainty of +0.3
−0.5%, where statistical and systematic uncertainties

have been added in quadrature.

Future work in the calculation should supplement the data set by simulations

performed directly at the physical point. These additional data will allow us to

reduce the dominant systematic uncertainty, that due to the extrapolation in the

quark mass to the physical point.

In Fig. 3.14 we compare the result discussed in this thesis for f+(0) with

other Lattice determinations. This result has bee published in JHEP [Boyle 13a]

and presented at the recent Lattice conference at Mainz [Juettner 13]. Recent

results of f+(0) determined at physical quark masses using Nf = 2 + 1 + 1

HISQ fermions [Gamiz 13] and the update to this thesis [Juettner 13] are in

good agreement with the result in this thesis. An immediate phenomenological

application of our result is the test of first-row CKM-matrix unitarity in the

Standard Model which we are able to confirm at the sub per mille level.
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Chapter 4

Clover Action for Blue Gene-Q

and Iterative solvers for DWF

4.1 Introduction

In Lattice measurement of physical quantities, the simulated unphysical quark

masses require mass extrapolation, as discussed in Chap. 3. With almost 50

million core-hours used for Kl3 calculation(ref. table 2.2) using unphysical quark

masses, the major challenge in simulating physical quarks is the computational

complexity of these simulations. This chapter describes the efforts made to

reduce the computation cost by optimising clover fermion action for a new HPC

architecture and testing different iterative solvers for DWF.

In Lattice QCD, the clover action is widely used, as it is cheaper than the

chiral fermion action(DWF) discussed earlier. The clover term in (1.30) with the

right coefficients gives O(a) improvement for on-shell quantities. Lattice QCD

simulations with dynamical fermions usually involves hundreds of thousands of

inversions in a serial dependent, importance sampling of QCD path integral.

The inverter performance is critical for any good optimisation of Lattice QCD

simulation. The inverter of this sparse matrix involves using an iterative solver

that has repeated application of the clover operator. This chapter describes

porting and optimisation of clover inverter to Blue Gene-Q architecture using the

BAGEL compiler [Boyle 09].
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4.2 Blue Gene-Q

Blue Gene-Q is based on the 64-bit Power-PC A2 processor core and with peak

performance of 209 tera flops per rack of 1024 nodes (each node containing 16

compute and one OS core). It is the successor of Blue Gene-P architecture.

Blue Gene-Q has quad floating point unit which can handle four floating point

multiply-add operations, in parallel. Each node has 16GB of memory, the on-chip

memory hierarchy consists of 16 KB L1 data and instruction cache and 4KB of L1

prefetch engine and 32 MB of L2 cache. DMA (Direct Memory Access) handles

reading and writing messages across the network torus. Each core supports four

threads and 64 threads across all cores share memory in a node. For complete

details of the architecture, refer to [Haring 12] and [Gilge 13].

The Message Passing Interface (MPI) and OpenMP are supported and XL

compilers provide some support for automatic vectorisation. As with most recent

HPC architecture, the performance is limited by network and memory bandwidth.

Symmetric multi-threading of four hardware threads per core (64 per node) helps

in hiding the memory latency. The 5D interconnect torus and DMA provides a

peak bandwidth of 40GB/s and overlapping communication with computations

usually helps in hiding the network latency. The L1 prefetch engine, that was

developed by scientists in University of Edinburgh and Columbia University,

supports many prefetch patterns. The L2 cache supports atomic operations

and the message-unit supports MPI Collective and All-to-All operations in

hardware. For a detailed discussion of optimising Lattice actions for Blue Gene-Q

architecture, refer to [Boyle 12a].

4.3 BAGEL and BFM

BAGEL is a QCD domain specific library developed by University of Edin-

burgh [Boyle 09]. It generates optimised assembly language instructions for

target architectures including QCDOC, Blue Gene-P and Q machines. BAGEL

achieves 20-50 % efficiency by better management of registers, SIMD operations,

memory prefetching and instruction pipe-lining. For Blue Gene-Q, BAGEL uses

one MPI process and 64 threads per node to efficiently use the shared memory

and avoid unnecessary MPI packets for communication within the node. Also it

uses IBM’s System Programming Interface (SPI) library to communicate using
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DMA and synchronise threads. Where possible, the compiler generates SIMD

(QPX) instructions that efficiently use the quad floating unit.

BAGEL Fermion Matrix (BFM) library builds on top of BAGEL to provide

QCD specific functionality. Currently the library supports solutions to QCD

actions Wilson, Wilson twisted mass, Domain wall and Overlap. It supports

iterative solvers like Conjugate Gradient (CG), Multi-shift CG in single, double

and mixed precisions. As a part of this thesis, BFM was modified to support clover

fermion action and new iterative solvers: MCR, GCR, OrthoMin and Multi-shift

MCR.

4.4 Clover and Wilson actions

Clover action can be built from the Wilson action as follows

S =
∑
xy

¯φ(x)Mxyφ(y) (4.1)

MWilson
xy = I − kD

M clover
xy = A− kD

A = I − k Csw
2

∑
µ<ν

[γµ, γν ]Fµν

where D is Wilson-Dirac operator. For clover action, Wilson-Dirac operator D
and clover term A can be applied independently. This clover term A is local and

can be computed once and applied to all the iterations of an iterative solver. In

general, for any action that is based on Wilson fermion action and if it can be

written like (4.1), then an optimised implementation of D can be reused.

A is hermitian as [γµ, γν ] and Fµν are hermitian. The γ matrices are of the

form

γ3 =

(
0 I2

I2 0

)
γk=0,1,2 =

(
0 iσk

−iσk 0

)
(4.2)

where σk are the Pauli matrices. The algebra of γ matrices leaves A having the

following format at each site.

Axyzt =

(
A6×6

1 0

0 A6×6
2

)
(4.3)
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with two 6×6 hermitian matrices A1 and A2. This leaves us with implementation

of A× φ to complete the clover action. In performing this matrix multiplication,

A1 and A2 are represented in a compressed format. To save memory space,

the diagonal elements are stored as real numbers and only the lower triangular

elements are stored as complex numbers.

4.5 Optimisation

This section describes the optimisation performed in porting the clover action

to Blue Gene-Q architecture. BAGEL provides a highly optimised version of

Wilson-Dirac operator(D) [Boyle 12a]. For an iterative solver, A is constructed

once and then applied hundreds of thousands of times. Construction of clover

matrix(A) takes less than 1% of the total inverter time and optimising this kernel

will result in no real speedup. For this work, the clover matrix A is constructed

using an external library like CHROMA [Edwards 05] or CPS [Boyle 05] and

then imported to BAGEL. This leaves us with optimising only the clover apply

kernel(A× φ).

C C C C C

C C C C C

C C C C C

A A A A A

A A A A A

A A A A A

C A C A C A

C

C

C

A

A

A

C A C A C A

C A C A C A

Figure 4.1: Plot showing data alignment for SIMDisation of data, where C and
A are complex numbers from different logical volumes.
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4.5.1 SIMD Optimisation

Blue Gene-Q has a vector length of four and this means for any SIMD

optimisation, data required for four parallel instruction should be aligned

consequently in memory. BAGEL compiler supports aligning data for different

vector lengths. The compiler constructs logical SIMD volumes based on the

vector length and stores the data from each of the logical volumes consequently

in memory.

Clover matrix A has the following format, with the right most index the fastest

index.

A[L_x][L_y][L_z][L_t][M];

M :

real diag[2][6];

complex offdiag[2][15];

For complex number, the SIMD vector length of two is sufficient. Subdividing

the volume to two logical volumes, A is stored in the below format.

A[L_x][L_y][L_z][L_t/2][M][2]

M :

real diag[2][6];

complex offdiag[2][15];

Fig. 4.1 shows the SIMDisation of data for 2 logical nodes. With this new data

layout, the QPX floating point unit can be efficiently used to increase floating

point throughput. The key part is that by operating on two or more logical

nodes in a data parallel fashion, one can always generate independent operations

in different SIMD lines. This guarantees efficient SIMD operations and generalises

to arbitrary width. A similar approach was used in the connection machine to

operate on multiple memory banks and there the logical nodes were called virtual

nodes.

4.5.2 Memory Optimisation

The application of clover matrix A to a fermion vector requires efficient usage of

cache and registers. This kernel requires reduction operations and using registers

for all reduction variables will avoid writing to L1 cache which is write through.

81



Chapter 4. Clover Action for Blue Gene-Q and Iterative solvers for DWF

With 32 registers available, it will be easier to load half-spinors into register and

compute the results. It is important to note that all registers cannot be used

as some are reserved for memory pointers. The data access pattern is sequential

and the hardware cache is well optimised for sequential access. The logic can be

summarised in Algo. 1.

Data: Lattice Fermion ψ[V ][Ns ×Nc], clover matrix A[V ][M ]

Result: Lattice Fermion χ[V ][Ns ×Nc]

Initialisation:

for each site in V do

for each half spinor do
Load REG6

ψ = ψ[site][Ns ×Nc]

Load REG6
χ = χ[site][Ns ×Nc]

Load REG6
A = A[site][M : diag]

compute REGχ = REGψ ·REGA

Load REG15
A = A[site][M : offdiag]

compute REGχ += REGψ ·REGA

store χ[site][Ns ×Nc] = REGχ

end

end

Algorithm 1: Function to apply clover matrix(A). REG refers to registers and

the super-script refers to number of registers used.

The above logic uses 27 registers, 6 each for χ and ψ and 15 registers for storing

the clover matrix(A). Using fewer registers leads to serialisation of instructions

due to dependencies. This is evident from the assembly instructions created by

the BAGEL compiler.

For threading, 4 threads are used per core and 64 threads per node. With the

spinors and clover matrix stored in shared memory, each thread is allocated list

of sites using static scheduling. Complex scheduling strategies are not required

as threads do the same amount of work. In case of multiple nodes, MPI is used

for collective operations. This part of the kernel that implements application

of clover matrix(A) doesn’t involve any massive communication like the Wilson-

Dirac operator(D).
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4.5.3 Instruction pipe-lining

Instruction pipe-lining plays a important role in increasing the throughput of

instructions and hiding the memory latency. This is essential for achieving good

efficiency with modern hardware architectures. BAGEL compiler constructs two

pipelines using the greedy algorithm. Any dependencies for instructions are

identified and are reordered accordingly. The planned schedule is referred to

as execution map and acts as a abstract assembler. The instructions in execution

map are then translated to hardware specific assembly instructions.

Listing 4.1: Execution map generated by BAGEL for Clover apply (A)

pipeline1 pipeline2

qvfxmul qvlfsx

qvfxmul qvlfsx

qvfxmul qvlfsx

qvfxmul addi

qvfxmul la

qvfxmul -

- -

- -

qvfxxnpmadd -

qvfxxnpmadd -

qvfxxnpmadd qvlfsx

qvfxxnpmadd qvlfsx

qvfxxnpmadd qvlfsx

qvfxxnpmadd qvlfsx

- qvlfsx

- qvlfsx

qvfxmadd qvlfsx

qvfxmadd qvlfsx

qvfxmadd qvlfsx

qvfxmadd qvlfsx

qvfxmadd qvlfsx

- qvlfsx

- qvlfsx

qvfxmadd qvlfsx

qvfxxcpnmadd qvlfsx
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qvfxxnpmadd -

qvfxxnpmadd addi

For clover apply(A) as described in Algo. 1, BAGEL builds a execution map

as shown in listing 4.1. We can see that from the prefix that the BAGEL uses

QPX instructions to efficiently use the quad floating unit. Further the the load

instruction (qvlfsx) are pipe-lined with the multiply instructions (qvfxmul). As

the instruction unit is kept busy, this increases instruction throughput and the

latency associated with loading data to memory is hidden.
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Figure 4.2: Plot comparing percentage of flops, percentage execution time using
gcc and bagel compiler for clover apply(A) and optimised Wilson-Dirac(D) kernels

4.6 Results

The optimisations discussed in previous section are applied to clover apply(A)

kernel. Fig. 4.2 compares the percentage of flops, percentage execution time

using gcc and bagel compiler for clover apply(A) and optimised Wilson-Dirac(D)

kernels. Clover apply has 576 flops where as Wilson-Dirac has 1320 flops. With

almost 30% of the total time spent on A, if both D and A are 100% efficient,

we can expect them to consume 70% and 30% of the execution time. Using a
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gcc compiler for building A and BAGEL optimised D, result in an imbalance

as cores spend 84% of time in A as shown in Fig. 4.2. This shows the need for

an optimised A for the Blue Gene-Q architecture. Using BAGEL compiler and

applying the optimisations, results in an optimised clover apply(A) kernel, for

which time spent is reduced ≈ 4 times compared to the gcc version.

In order to achieve good efficiency, we need to experiment with the threads,

MPI processes and memory. We have already established that to maximise the

usage of shared memory and reduce unnecessary MPI packets, the application

should run only with one MPI process per node. Each node supports 64 hardware

threads and we can experiment with number of threads that gives optimal

performance. Even though using more threads will result in better performance,

it will also increase the synchronisation overhead. In this section, performance

will be measured as the performance of the entire iterative Conjugate Gradient

solver for clover fermion action that includes application of D and A for each

iteration. We will simply refer to it as Clover-CG.

Fig. 4.3 shows the performance of Clover-CG in GFlops per node, for

increasing number of threads. The performance is measured on lattice volume of

324, running on 128 nodes. From the plot we can infer that we have maximum

efficiency of 18% for double precision and 23% for single precision when 64

threads are used. The speedup, when the threads are increased is not linear.

If a linear speedup is achieved, we can expect a maximum performance of 100

and 124 GFlops per node for double and single precision respectively. We achieve

only ≈ 37% of the expected maximum performance due to the synchronisation

overheads.

An important factor in performance for most high performance application

is memory and network bandwidth. Optimally, the data should be available in

cache so that memory latency is reduced. This means finding a optimal number

of nodes to run the application so that the data can fit in the memory. Also care

should be taken to ensure that there is enough data to keep the cores busy all

the time.

Fig. 4.4 shows the performance in GFlops per node for Clover-CG in single

precision for different volume and increasing number of nodes. One a single

node, we couldn’t run volumes larger than 324 because of the limited memory

available. On multiple nodes, we cannot run simulations for cases, where the

85



Chapter 4. Clover Action for Blue Gene-Q and Iterative solvers for DWF

1
.5
7

2
.6
5 4
.4
7 7
.4
9

1
4
.9
1

2
7
.0
9

3
7
.7
6

2
.3
7

1
.9
3

3
.3
5 5
.6
6

9
.5
9

1
8
.3
9

3
2
.2
3

4
5
.1
6

2
.2
5

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128

G
FL
O
P
S/
N
O
D
E

THREADS

double

single

Figure 4.3: Plot showing performance in GFlops per node for Clover-CG when
increasing number of threads are used per node. The performance is measured
on lattice volume of 324, running on 128 nodes.
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Figure 4.5: Plot showing performance in GFlops per node for a clover solver in
double precision for different volume and increasing number of nodes.

local sub-volume is very small or has a odd dimension. We achieve a maximum

performance of 59.5 GFlops per node when the lattice volume is 484. This

maximum performance corresponds to a efficiency of 29.1%. We can infer that

for a single precision, using a local volume of 16× 8× 8× 16 fits the memory well

and there is enough data to keep all the cores busy. Similarly Fig. 4.5 shows the

performance in GFlops per node for Clover-CG in double precision for different

volume and increasing number of nodes. We achieve a maximum speedup of

37.8 GFlops per node when the lattice volume is 324. In fact, for lattice volume

323×48, the performance slightly improves to 41 GFlops per node. This maximum

performance corresponds to a efficiency of 20.2%. We can infer that for a double

precision, using a local volume of 16× 8× 8× 12, data fits the memory well and

there is enough data to keep all the cores busy.

Both the single and double precision performance show strong local volume

dependence. Fig. 4.6 shows the strong scaling of Clover-CG in double and

single precision for increasing local lattice sub-volume, when run on a single

and 128 nodes. The strong scaling shows strong dependence on local volume.

For single precision, the performance improves as the local volume increase to

214 = 16384 and then reduces. Similar performance is seen for double precision,
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Figure 4.6: Plot showing strong scaling (GFlops per node) of the clover solver
in double and single precision for increasing local sub-volume (for a single node)
when run on a single and 128 nodes

with maximum performance achieved for a local volume of 213 = 8192 (as double

precision takes twice as much memory as that for single precision). This is directly

related to the size of the L2cache and maximum performance is achieved when

the data fits the L2cache.

Also we can note that maximum performance of Clover-CG on 128 nodes

using message passing slows down by 15% (single) or 16.5% (double) compared

to single node. This is due to the additional overhead for passing message across

nodes. This overhead doesn’t increase as the number of nodes are increased to

1024 and shows very good scaling. Using more than 1024 nodes may increase

overhead as they involve using more than one rack. This could not be tested

due to non-availability of resources. Even though Clover-CG achieves maximum

efficiency of 29.1% and shows good weak scaling, care should be taken to ensure

the local sub-volume fits the cache for good throughput. This means running on

less or more number of nodes according to the simulated lattice volume.
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4.7 Iterative solvers for DWF

Computing the Quark propagators in a background gauge fields form the main

part in any Lattice QCD simulation. This involves solving

(D +mq)ψ(x) = η(x) (4.4)

where D is the Dirac matrix, mq is the quark mass, ψ(x) and η(x) are the

solution and source field respectively. This large sparse linear system can be only

solved using iterative methods (see eg. [Saad 03]). In a simulation, the above

step of solving the linear system is repeated for different gauge configurations

and different right hand sides. In case of Domain Wall fermion(DWF) action,

the solution to the linear system becomes difficult as the Dirac matrix is large,

indefinite and the eigen values are clustered around the origin. Also the matrix

becomes ill-conditioned as the simulated quark masses(mq) gets closer to physical

values and lattice spacing (a) gets smaller [Luscher 10]. The condition number

k(D) can be written as

k(D) = (
αmax
αmin

)
1
2 ∝ 1

ma
(4.5)

Using a suitable solver and preconditioner is a topic of intense research. The

following sections discuss iterative solvers namely Conjugate Gradient(CG),

Generalised Conjugate residual(GCR) [Saad 86] and Modified Conjugate resid-

ual(MCR) [Chandra 77] for solving DWF.

Data: Matrix A, source vector b
Result: Solution vector x, Ax = b
Initialisation: r0 = b− Ax0; p0 = r0

for j = 0, 1, 2, ...till convergence do

αj =
(rj ,rj)

(Apj ,pj)

xj+1 = xj + αjpj
rj+1 = rj − αjApj
βj =

(rj+1,rj+1)

(rj ,rj)

pj+1 = rj+1 + βjpj
end

Algorithm 2: Conjugate Gradient Algorithm
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4.7.1 CG, MCR and GCR

The iterative methods described in this section are Krylov subspace methods

based on projection methods(Petrov-Galerkin conditions). For solving a linear

system Ax = b, the Krylov subspace is defined by

Km(A, r0) ≡ span{r0, Av,A
2r0, . . . , A

m−1r0} (4.6)

where r0 = b − Ax0. The approximate solution xm is obtained by searching in

the subspace x0 +Km so that

b− Axm ⊥ Lm (4.7)

where Lm is also a subspace of dimension m.

Data: Matrix A, source vector b

Result: Solution vector x, Ax = b

Initialisation: r0 = b− Ax0; p0 = r0

for j=0, 1, 2, ...till convergence do

αj =
(rj ,Arj)

(Apj ,pj)

xj+1 = xj + αjpj

rj+1 = rj − αjApj
βj =

(rj+1,Arj+1)

(rj ,Arj)

pj+1 = rj+1 + βjpj

end
Algorithm 3: Modified Conjugate Residual Algorithm

Conjugate Gradient (CG) is the most popular method for solving sparse

symmetric, positive definite linear systems. CG uses orthogonal projection

(Lm = Km) on to Krylov subspace Km(A, r0). For symmetric, positive definite

matrices, that are hermitian, MCR improves by constructing residual vectors

that conjugate. For non-symmetric matrices, we can generalise by constructing

pi as a linear combination of current and all previous pis. This general method

is referred to as Generalised Conjugate Residual.
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Data: Matrix A, source vector b

Result: Solution vector x, Ax = b

Initialisation: r0 = b− Ax0; p0 = r0

for j = 0, 1, 2, ...till convergence do

αj =
(rj ,Apj)

(Apj ,Apj)

xj+1 = xj + αjpj

rj+1 = rj − αjApj
for i = 0, 1, 2, ...j do

βij =
(Arj+1,Api+1)

(Api,Api)

end

pj+1 = rj+1 +
∑j

i=0 βijpi

end
Algorithm 4: Generalised Conjugate Residual Algorithm

The exact steps of the CG, MCR and GCR algorithm are shown in Algo. 2,

Algo. 3 and Algo. 4 respectively. For CG, pis are A-orthogonal, whereas for MCR,

Apis are orthogonal or simply pis are A†A-orthogonal.

CG and MCR are very similar, but MCR requires storage for one more vector

and requires more operations than CG. GCR algorithm requires us to store all

previous pis (Apis) and this is practically not possible. The number of previous

pis that are stored are restricted to a lesser number (m). We can either restart

after m iterations or truncate the number of pis stored to the latest m entries.

The former is referred to as GCR(m) and the latter as OrthoMin(m).

4.8 Results

In simulating Domain Wall Fermion, the fermion matrix is represented asM†M
as it is positive definite and hermitian. In case of GCR and OrthoMin, we can

consider both M†M and M, to check if it works generally for non-symmetric

matrices. Also for GCR and OrthoMin, careful study is required to balance

the number of previous residuals to store and computation cost for better

performance.

In this work, we use a variant of CG called CGNE [Freund 92], which solves

Ax = b by solving AATy = b (x = ATy). We will refer to it as CG for simplicity.

GCR with fermion matrix M†M and M will be referred to as GCR-MM and
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GCR-M respectively. OrthoMin will also be referred to as O-MIN.
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Figure 4.7: Plot showing number of iterations(left axis) and time taken (right
axis) for DWF in a random gauge field with Ls = 16 using different solvers in
solving M†Mψ = χ.

The results described in this section uses gauge configuration with Nf= 2+1

dynamical flavors, generated from Iwasaki gauge action at β=2.13 (a−1=1.73(4)

GeV) and lattice volume of 163 × 32. All the iterative solvers discussed in this

section uses Ls=16 and quark mass of 0.01, unless specified otherwise. The

performance is measured on 128 nodes of Blue Gene-Q machine.

Fig. 4.7 shows the results for solvingM†Mψ = χ using different solvers. CG

and MCR and OrthoMin(1) are efficient when we compare both the number of

iterations and the time to converge. For restarted GCR, the most efficient solver

requires 16 pis to be stored before a restart and takes more than twice the time

as that for CG. OrthoMin behaves exactly same as MCR and we can easily say

MCR is equivalent to OrthoMin(1). Storing more residuals for OrthoMin doesn’t

make any difference as the number of iterations to converge and the residual at

each iteration remain similar.

Fig. 4.8 shows the results for solving Mψ = χ using GCR and OrthoMin

solvers. CG and MCR results in this plot, still useM†M and are added to the plot

for easier comparison. As expected GCR and OrthoMin solves M efficiently as

GCR(4) and OrthoMin(4) solves in almost half the time as that for CG and MCR.

Using GCR and OrthoMin withM, reduces the number of matrix operations by

half, even though it increases the number of vectors stored and the number of
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Figure 4.8: Plot showing number of iterations(left axis) and time taken (right
axis) for DWF in a random gauge field with Ls = 16 using different solvers in
solving M ψ = χ. CG and MCR solving M†Mψ = χ, are added for easier
comparison.
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Figure 4.9: Plot showing how the residual reduces with iterations for DWF in a
random gauge field, with Ls = 16 using different solvers. GCR-MM and GCR-M
denotes GCR solving M†Mψ = χ and Mψ = χ respectively.
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vector operations.

Fig. 4.9 shows convergence of residual as a function of iteration count. The

efficient solvers of GCR and OrthoMin are plotted for reference. The residual

reduce steeply for GCR, OrthoMin and MCR compared to CG. It is important

to note that where the former methods are based on conjugate residuals, the

latter method CG is based on gradients.
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Figure 4.10: Plot showing number of iterations(left axis) and time taken (right
axis) for DWF in a background QCD gauge field with Ls = 16 using different
solvers in solving M †M ψ = χ.

The results in Fig. 4.7 and Fig. 4.8 are of obtained for a random gauge. Using

a QCD gauge configuration generated using Hybrid Monte-Carlo simulation is

interesting as it changes the spectrum of the DWF Operator. Fig. 4.10 shows the

results for solving hermition system M†Mψ = χ using different solvers. We see

similar results as that for random gauge, but the fastest GCR solver is 40 times

slower than CG. For solving non hermitian systemMψ = χ, GCR and OrthoMin

do not converge. A closer study of the DWF operator and the impact of the fifth

dimension is shown in Fig. 4.11. As Ls increases linearly, the conditioning of the

M worsens and convergence of GCR suffers exponentially when compared to CG.

From numerical analysis in [Nachtigal 92a, Nachtigal 92b], we can conclude

that when the eigen values of the matrix lie in all four quadrants of the complex

plane, the convergence of non-hermitian solvers(GCR with M) is unreliable. In

such cases, normal equations is the best we can do. UsingM†M is therefore the

only option for good convergence. The GCR and OrthoMin solvers may perform
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Figure 4.11: Plot showing number of iterations(left axis) and time taken (right
axis) for DWF in a background QCD gauge field with increasing Ls using different
solvers in solving M ψ = χ.
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Figure 4.12: Plot showing how the residual reduces with iterations for DWF in
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M †M ψ = χ.
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better than the CG, if a good pre-conditioner is used as shown by the results from

random gauge. Fig. 4.12 shows a closer look at the convergence of residual as a

function of iterations. We can easily identify MCR as the most efficient algorithm

as it takes 20% lesser time and number of iterations to solve the system.

4.8.1 Multi-shift MCR

In solving (4.4), the solution is usually repeated for different quark masses(mq).

Instead of solving them separately, the solution for different quark masses

with same source field can be computed simultaneously using multi-shift meth-

ods [Osborn 08, Bloch 09]. This is based on the fact that the Krylov subspaces

are shift invariant

Km(D, b) = Km(D +m, b) (4.8)

Multi-shift solvers are a key part in the Rational Hybrid Monte Carlo(RHMC)

algorithm. This method can be used for any of the Kyrlov subspace methods.

For DWF, we have found out that MCR is an efficient algorithm. In this thesis,

we develop a multi-shift MCR algorithm that uses MCR as the solver for multiple

shifts. The multiple shifts corresponds to poles in the rational approximation.

For example the rational approximation of 1
4√x is given by

1
4
√
x

= 8.12 +
−6.46e−4

x+ 4.68e−3
+
−2.88e−3

x+ 2.5e−2
+
−9.44e−3

x+ 7.76e−2
+
−2.89e−4

x+ 2.05e−1
(4.9)

+
−8.71e−2

x+ 5.10e−1
+
−2.62e−1

x+ 1.24
+
−7.93e−1

x+ 3.01
+
−2.47

x+ 7.37

+
−8.19

x+ 1.85e1
+
−3.21e1

x+ 5.02e1
+
−1.94e2

x+ 1.68e2
+
−5.33e3

x+ 1.26e3

The above approximation has 13 shifts and the solutions are computed in parallel.

Fig. 4.13 shows how the rational function approximates 1
4√x .

The tests of this algorithm are performed on a 163× 32 volume with stopping

residual 1e-8 and Ls = 16. Table 4.1 compares the results from using Multi-

shift MCR as a iterative solver in HMC runs for generating gauge configuration

when compared to that for Multi-shift CG. In the table 4.1, efficiency refers to

the acceptance per (CG/MCR) iteration and δH refers to the extent of energy

conversation. We can infer from the table that multi-shift MCR runs 18.5%

faster compared to CG version. Hence, we have developed a new multi-shift
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Figure 4.13: Plot showing rational approximation of 1
4√x as shown in (4.10). The

inner plot zooms in for value of x < 1.

CG MCR

Metropolis Step Accepted Accepted
δH -9.717e-03 9.038e-03

iterationavg 905 658
iterationmin 74 63
iterationmax 8876 7951

efficiency 1.104e-03 1.506e-03
Inversion time 755s 611s
Elapsed time 904s 760s

Table 4.1: Comparison of results from using Multi-shift MCR and MCR as a
iterative solver in HMC runs for generating gauge configuration when compared
to that for Multi-shift CG and CG. δH refers to the extent of energy conservation.
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algorithm that accelerates the evaluation of rational function by 18.5% in RHMC

algorithm. In 2+1f Lattice simulations, the rational function evaluation takes 1/3

of the compute time and using this method will give a overall 6% gain in RHMC.
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Chapter 5

Probing method for estimating

the diagonal of the Dirac Matrix

Inverse

5.1 Introduction

In lattice QCD, hadronic properties such as masses, matrix elements, decay

constants and form factors can be computed in terms of correlation functions

(as discussed in Chap. 2). After performing the Wick contractions, correlation

functions are expressed as traces over products of quark propagators, Dirac

matrices and color-structures. The construction of quark propagators by means

of standard techniques of Lattice QCD usually involves statistical noise and

particularly for disconnected graphs, prevents accurate computations of many

physical observables. The reduction of this noise is always desirable.

On the lattice the quark propagator in coordinate space can be computed as

the solution of the linear system

DΦ = η, (5.1)

where D ∈ Cn×n is the lattice Dirac operator and η a source vector. In its simplest

form, η is taken to be a point source, i.e.1

η(x′) = δx′y . (5.2)

1For simplicity color and spinor indices are suppressed.
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This implies that the solution of (5.1) yields the quark propagator from a single

point y to any other point x, which corresponds to just one column of the

propagator matrix. In typical simulations of Lattice QCD, the sparse matrix D

has O(109 × 109) entries, and solving (5.1) to machine precision for all source

positions, i.e. computing the whole propagator exactly, is therefore beyond

the capabilities of even the most powerful supercomputers. Consequently the

computation of propagator that start and end at the same space-time position

poses a huge computational challenge and alternative methods are required.

Volume-filling random-noise sources have been proposed as a means to access

the full propagator matrix [Bernardson 93, Dong 94, de Divitiis 96, Michael 98]

by replacing it with a stochastic estimate. These stochastic “all-to-all” propa-

gators have been successfully applied in a number of different contexts [Dong 94,

de Divitiis 96, Michael 98, Foster 99, Struckmann 01, O’Cais 04, Boyle 08a] but

usually a large computational effort is required in order to sufficiently reduce the

intrinsic stochastic noise.

In this work, we apply a recently proposed “Probing” algorithm [Tang 11]

for computing the diagonal entries of a matrix inverse in the context of Lattice

QCD computations. These diagonal entries are those that enter into disconnected

wick contractions of the local operators like 〈ū(x)γ5u(x) ū(0)γ5u(0)〉, which is

understood to be the flavour singlet state. For a selection of small lattice volumes,

we compare the new probing method to the commonly used stochastic volume

technique and the exact computation of the entire propagator matrix by means

of point sources. While we use the new algorithm for the computation of mesonic

flavor-singlet two point functions, we point out that it might be suitable for a

wide range of applications.

5.1.1 Probing method

This section introduces the “Probing” method developed by Tang and Saad

[Tang 11] for computing the diagonal of the inverse of a matrix denoted by

diag(D−1) = diag(S). Probing is defined as a method of extracting entries

of some unknown matrix by application of matrix product to probing vectors.

For any unknown matrix, by constructing “s” vectors of length “n”: Vs :=

{v1, v2, . . . , vs}, we can estimate the diagonal of a matrix A ∈ [aij] using the
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relation

diag(A) =

[
s∑

k=1

vk � Avk

]
�

[
s∑

k=1

vk � vk

]
(5.3)

where � and � refers to the component wise multiplication and division. We can

rewrite the above relation as

diag(A) =
[
A� VsV T

s

]
�
[
VsV

T
s

]
(5.4)

To estimate the exact diagonal entries (aii), Vs ∈ Rn×s matrix should be

constructed such that the ith row of Vs is orthogonal to all other rows of j of

Vs, for which aij 6= 0 [Bekas 07]. This is a sufficient condition which requires the

knowledge of the non-zero pattern of the sparse matrix A. These methods have

been successfully used for solving non-linear systems [Coleman 83].

The efficiency of this method is determined by the number of probing vectors

and a value of s� n is desirable. In fact if s = n, Vn will be unitary matrix and

we will get the exact diagonal of A. This method is suited for sparse matrices

that are either banded or show decaying behaviour as we move away from the

diagonal.

We are interested in diagonal of the inverse of Dirac matrix (S = D−1). The

above method proposed in [Bekas 07] is for estimating the diagonal of a unknown

matrix. [Tang 11] extends the above method for estimating the diagonal of inverse

of a sparse matrix. For S, we can approximate (5.4) as

diag(S) ≈ diag(SVsV
T
s )diag(VsV

T
s )−1 (5.5)

Now we are left with the problem of finding the probing vectors Vs for S = D−1.

Even though the Dirac matrix is sparse, S is dense. If we ignore entries in S

that are small, then S can be approximated to a sparse and banded matrix. This

is based on the approximate inverse preconditioners [Tang 11]. We can define a

sparse matrix Sε that ignore elements in S less than some ε. The sparsity pattern

of Sε can be approximated to Dp, for some integer p. The value of p is dependent

on the chosen ε value and increases as ε is reduced.

The probing method amounts to finding a suitable choice of probing vectors

{vj} which recovers the non-zero entries of the matrix Sε. Since the structure

of Sε is unknown, this makes it even more difficult to find suitable choice of
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probing vectors. In an earlier work an unbiased stochastic estimator of the

inverse was constructed by using a sequence of random vectors [Bekas 07], but

the convergence is found to be slow.

[Tang 11] proposes a new method of finding probing vectors by coloring the

adjacency graph of the sparse matrix Dp, where the path length of at most

p are considered in the adjacency graph of D. We use Greedy Multicolouring

Algorithm to color the adjacency graph associated with Dp that has the same

sparsity pattern as that of Sε. The algorithm is summarised in Algo. 5.

Data: Adjacency graph corresponding to an n× n matrix

Result: Colours of the vertices of the graph

Initialisation:

for j=1 to n do
Set Color(j) = 0

end

for j=1 to n do
Set Color(j) = min{ k > 0 | k 6= Color(l) ∀l ∈ Adjacent(j) }

end
Algorithm 5: Greedy Multicolouring Algorithm

Having performed the colouring of the adjacency graph associated with Sε, the

probing matrix Vs = {v1, v2, . . . , vs} is derived from the coloured graph according

to (5.6).

(Vs)
jk =

1, if Color(j) = k

0, else
(5.6)

The number of probing vectors s is given by the number of required colours

during the colouring process, i.e. s = max{k}. Following the procedure of

(5.6), each row of Vs will contain a single nonzero entry and diag(VsV
T
s ) =

diag(VsV
T
s )−1 = I.

In order to illustrate the above steps, Fig. 5.1 shows example of colouring

the vertices of the adjacency graph associated with 3-dimensional matrix for

p=1 (left) and p=2 (right). No boundary conditions are assumed for the above

colouring example. The probing vectors corresponding to Colouring graphs in

Fig. 5.1 is shown in (5.7). As shown in Fig. 5.1, we need 2 colours and 11 colours
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Figure 5.1: Colouring a adjacency graph of 3D matrix (dimension 4 × 4 × 4)
for path lengths: p=1 (left) and p=2 (right) with no boundary conditions. The
Colouring is done starting in the left, front corner of the bottom plane. Then
moving from front to back, left to right and finally bottom to top. We require 2
and 11 different colours to color the adjacency graph corresponding to p=1 and
p=2 respectively

to color the adjacency graph for path lengths: p=1 and p=2 respectively. As a

result of this the probing vector in (5.7) has only 2 and 11 columns.

V2 =



1 0

0 1

1 0
...

...

1 0

0 1


, V11 =



1 0 0 . . . 0

0 1 0 · · · 0

0 0 1 · · · 0

1 0 0 . . . 0
...

...
... . . .

...

0 0 0 . . . 1


(5.7)

Having constructed Vs its columns are used as source vectors for solving the linear

system

Dxi = vi, (5.8)

yielding a set of solution vectors Xs := {x1, x2, . . . , xs} := SεVs. Assuming

diag(VsV
T
s )−1 = I, an estimate of the inverse of the sparsified matrix can be

estimated as

diag(Sε) ≈ diag(XsV
T
s ). (5.9)
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The probing method significantly reduces the computational effort by solving

only s � n linear equations which can be done by using any iterative solvers.

Applying this method for the Lattice Dirac operator the colouring is performed

in space and time only, i.e. the internal spin and color structure is not coloured

and periodic boundary conditions are used. In other words the ones in the matrix

Vs are a unit matrix in spin-color space, i.e. 1 , I12×12. Consequently a point

source is used for each of the spin-color indices and xi is evaluated separately for

each of the 12 spin-color indices. Algo. 6 summarises the probing algorithm used

for estimating the diagonal of the inverse lattice Dirac operator.

Data: Lattice Dirac operator D, matrix of dimension V × 12

Result: Estimate of the diagonal of the inverse D(D−1
ε ) = D(Sε)

Initialisation:

for any p do
Color the vertices of the adjacency graph in space and time

coordinates; no Colouring in spin and color indices. Apply the

corresponding boundary conditions.

Construct probing matrix Vs = {v1, v2, . . . , vs} according to (5.6), i.e.

(Vs)
ik = 112×12 if Color(i) = j, or 012×12 otherwise

for i=1 to s do

for j=1 to 12 do
Solve (5.8) for each spin-color index j using a Krylov subspace

method.
end

Construct xi
end

Construct Xs := {x1, x2, . . . , xs}
Compute D(D−1

ε ) = D(XsV
T
s )

Set D(S) := D(Sε) = D(D−1
ε )

end
Algorithm 6: Algorithm to probe the diagonal of the Dirac operator

In the above algorithm, the computation expense is proportional to p since s

increases with p. As the value of cutoff ε is reduced, the value of p increases and

the precision of diag(D) increases. Thus the value of p has to be chosen carefully

so that a balance of precision and cost is achieved. Also if a certain p does
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not achieve a required accuracy, a new distance p can not make use of previous

computations since its probing vectors are not related to the previous ones. A

recent advance referred to as hierarchical probing [Stathopoulos 13] allows to

reuse results from prior choices of p.

5.2 Results

For this work, we used gauge configurations with Nf = 2 flavors of dynamical

Wilson fermions. The configurations are generated using the deflation-accelerated

DD-HMC algorithm [Luscher 05] which combines domain-decomposition (DD)

methods [Saad 03] with the Hybrid Monte Carlo (HMC) algorithm [Duane 87]

and the Sexton-Weingarten multiple-time integration scheme [Sexton 92]. The

Wilson-Dirac operator of (5.1) is inverted using a iterative method called GCR

and Schwarz-preconditioner (SAP+GCR) algorithm [Luscher 04].

As part of the study two lattice volumes, 84 (β = 5.30, κ = 0.13625, 300

configurations) and 164 (β = 5.30, κ = 0.13620, 99 configurations) are considered.

This method is compared to the exact method and the volume-filling stochastic

method that uses sources with dilution in space, time and spin-color.

In addition to probing the diagonal of the inverse Dirac matrix and computing

the trace, we also compare physical observables by comparing the 2pt correlation

functions and its disconnected part

CFULL
2 (t) =

∑
~x,~y

γ5S
†(y, x)γ5ΓS(y, x)Γ′†−

∑
~y

γ5S
†(y, y)γ5Γ

∑
~x

S(x, x)Γ′† (5.10)

CDIS
2 (t) =

∑
~y

γ5S
†(y, y)γ5Γ

∑
~x

S(x, x)Γ′† (5.11)

In (5.10) and (5.11) we measure and compare scalar (Γ = 1), pseudo-scalar (Γ =

γ5) and axial (Γ = γ5γ0123) channels.

For the 84 volume, we estimate the diagonal of a single loop propagator

(S(x, x)Γ) from stochastic, probing and exact method . The “Exact” solution

is obtained by using point sources for all space-time locations. This method

estimates numerically the most accurate solution but is usually not used for real

lattice calculations. From these measurement we estimate the “Goodness” of the
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Figure 5.2: Goodness (5.12) of probing and stochastic method compared to exact
for the measurement of single loop scalar (1-top right), pseudo-scalar (γ5-bottom
right) and axial (γ0γ5-bottom left, γ3γ5-top left) channel in a 84 lattice with 300
configurations
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Figure 5.3: Comparison of measured value of single loop scalar (1-top right),
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Figure 5.4: Comparison of measured value of single loop scalar (1-top right),
pseudo-scalar (γ5-bottom right) and axial (γ0γ5-bottom left, γ3γ5-top left) channel
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method compared to exact method as shown in (5.12).

Goodness = 1− Tr[S(x, x)Γ]method
Tr[S(x, x)Γ]exact

, (5.12)

where method refers to either the stochastic or probing approach and the trace is

over space and time. The exact method is very expensive as it requires V olume×
12 inversion for lattice and for this reason the Goodness is not measured in the 164

volume. The method with Goodness closer to zero is considered as the method

closer to the exact solution. This Goodness is measured as a function of number

of inversions required and as number of inversions reach V olume × 12, we can

expect the Goodness to be exactly zero.

Fig.5.2 shows the Goodness (5.12) of probing and stochastic methods compared

to exact for the measurement of single loop propagator in 84 volume. Probing

solution is closer to the exact solution than that of stochastic for all channels.

We can see better improvement in Goodness as the number of inversion (p) for

probing are increased when compared to (nhits) stochastic. Fig.5.3 compares the

measured value of single loop propagator for probing and stochastic method in

the 84 volume. Even though the probing method is closer to the exact solution

(as shown by the Goodness plots) the measured propagator shows no statistical

difference between stochastic and probing method. Similar results are seen for

164 volume as shown in Fig.5.4 and we can conclude that Gauge noise is dominant

when compared to stochastic noise.

Fig. 5.6 and Fig. 5.5 compares the 2-pt correlation function and its dis-

connected part measured using both the probing and stochastic method. For

comparison, we consider p=4 for probing and nhits=50 for stochastic as they

have same number of inversions. Again we see similar results as the probing

shows almost little or no improvement over the stochastic method. We can see

that even though the probing method is closer to the exact solution the statistical

error obtained by using probing and stochastic method is almost same. This is

due to the dominating gauge noise which kills any improvement from using the

probing method.

From studying two different lattice volumes, we can clearly see that p=4

as a good candidate for lattice measurement, as the results are stable and the

statistical noise is minimal. An advantage of the probing method is that for a
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fixed p, the number of inversion is almost constant for increasing lattice volume.

When compared to stochastic method that uses dilution in time, the cost of

probing is considerable less as the cost for stochastic methods increase linearly

with increase in lattice volume. The main source of statistical noise comes from

gauge configurations and using probing methods for gauge generation should be

considered in future.
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Conclusions

In this thesis, we have successfully calculated the Kl3 form factor in Nf = 2 + 1

Lattice QCD using domain wall fermions. With three different lattice spacings

and near physical quark masses, these lattice simulations have helped us reduce

the systematic errors in the determination of the Kl3 form factor.

A significant improvement in the calculation was achieved through the use of

a new kinematic arrangement of the twisted boundary conditions as applied to

the pion and kaon and by motivating a new ansatz for the mass extrapolation to

the physical point. The final value of Kl3 form factor is

fKπ+ (0) = 0.9671(17)(+18
−46)

where the first error is statistical and the second error systematic. From the above

result for Kl3 form factor, we estimated the value of the CKM matrix element

|Vus|:
|Vus| = 0.2237(+13

− 8)

which confirmed unitarity of the first row CKM matrix in the Standard Model.

In this thesis, we have successfully ported the Clover Lattice fermion action

to Blue Gene/Q architecture. The optimised Clover term achieved a maximum

efficiency of 29.1% and 20.2% for single and double precision respectively

for iterative Conjugate Gradient solver for the Clover fermion action. This

optimised version showed good Weak scaling. Strong scaling showed local volume

dependency due to the effects of cache capacity and network bandwidth.

We have studied the different iterative solvers for Domain Wall Fermion action

(DWF) and found that Modified Conjugate Residual(MCR) as the most efficient

solver compared to CG and GCR. We have developed a new multi-shift MCR

algorithm that is 18.5% faster compared to multi-shift CG for the evaluation of
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rational functions in RHMC.

We have introduced a new probing technique for estimating the diagonal of

the inverse Dirac operator. This probing method is found to be closer to the

exact solution when compared to stochastic methods for the same cost. This is

important in the evaluation of disconnected correlation functions.
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