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Abstract

This thesis presents gauge fixed gluonic observable and a neutral Kaon mixing

matrix element measurements using nf=2+1 Domain Wall Fermion (DWF)

configurations. These were generated with the Iwasaki gauge action by the RBC

and UKQCD collaborations.

Results from the first measurement of the QCD strong coupling with these

ensembles using the triple gluon vertex are shown. We find that while a

very accurate measurement of the coupling is possible using this technique, the

systematic error from the perturbative matching at current lattice scales is large.

We also discuss the utilisation of this method as a probe for possible Technicolor

theories.

The calculation of the QCD strong coupling constant from the triple gluon vertex

required an implementation of a fast code to fix lattice gauge configurations.

I provide details on my implementation of a parallel and optimised Fourier-

accelerated algorithm for both Landau and Coulomb gauge fixing.

I include the first calculation of the highly accurate W0-scale using these

ensembles, allowing for percent-level scale setting. I show results from a wide

variety of smearing methods and present the first gluonic measurement of different

smearing radii.

This thesis also details the first nf=2+1 measurement of the BSM neutral Kaon

mixing renormalised matrix elements from lattice simulations with almost exact

chiral symmetry in the valence sector and the sea.
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Chapter 1

Background theory

The Lagrangian density for Minkowskian, strongly coupled, interacting gauge

fields (with field strength tensor Fµν(x)) with “nf” flavours of Dirac fermions

(Ψ(x)) is,

L(x) = −1

2
Tr [Fµν(x)F µν(x)] +

nf∑

i

Ψ̄i(x)(iγµDµ −m(i))Ψi(x). (1.1)

Where Dµ = ∂µ + igAµ(x), Aµ(x) our gauge field and g is our theory’s coupling

strength. The field strength tensor is defined as,

Fµν(x) = ∂µAν(x)− ∂νAµ(x) + ig [Aµ(x), Aν(x)] . (1.2)

For a four dimensional theory the action is S(Aµ, Ψ
i, Ψ̄i) =

∫
d4xL(x). The path

integral representation treats the theory as a statistical ensemble with weights

of paths of particles given by the exponential of the action. Introducing the

generating functional W for a single flavour of fermion,

W [η, η̄, J ] =

∫
DAµDΨDΨ̄ei

R

d4xL+JAµ+η̄Ψ+Ψ̄η, (1.3)

with source terms η, η̄, J and integral measures over all paths of fields D. We

can define a measurement of the (time ordered) observable O (normalised by the

partition function Z) by functionally differentiating the generating functional (the

1



indices j, k and l are dependent on the operator),

〈0|O|0〉 = 1

Z

δj

δJ j

δk

δηk

δl

δη̄l
W [η, η̄, J ]|J=η=η̄=0,

=
1

Z

∫
DAµ

nf∏

i

DΨ̄iDΨiOeiS(Aµ,Ψ̄i,Ψi),

Z =

∫
DAµ

nf∏

i

DΨ̄iDΨieiS(Aµ,Ψ̄i,Ψi). (1.4)

The gauge and fermionic contributions to the path integral can be separated and

the fermionic fields, being Grassmann variables can be integrated out giving the

usual fermionic determinant (det) and exponential weight of just the gauge action,

〈0|O|0〉 = 1

Z

∫
DAµO

nf∏

i

det
(
iγµDµ + m(i)

)
eiS(Aµ). (1.5)

We perform a Wick rotation to Euclidean space from Minkowski, we work with an

imaginary time direction which alters the gamma matrices γ0 = γ0, γi = −iγi(i =

1, 2, 3). This turns our path integral observable measurement into,

〈0|O|0〉 = 1

Z

∫
DAµO

nf∏

i

det
(
γµDµ + m(i)

)
e−S(Aµ). (1.6)

This integral has infinite degrees of freedom and can only be treated by either

perturbative expansion or numerical integration of a discretised and finite number

of degrees of freedom. We move the theory onto a discrete space-time lattice

which regularises the theory. The Euclidean generating functional (Eq.1.3) for

one flavour of fermion becomes (where M = (γµDµ + m)),

W [J, η, η̄] =

∫
DAµ det (M) e−S(Aµ)−

R

d4xη̄(M)−1η+JAµ . (1.7)

The path integral can be computed using importance sampling, as the path

integral only has a finite number of degrees of freedom. Our correlation function

can be written as,

〈O〉 = lim
N→∞

1

N

N∑

i=1

O(i) + O

(
1√
N

)
. (1.8)

With O(i) being a randomly sampled value from the probability distribution of

O, this describes a Monte Carlo integration procedure.
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Quark fields in the observable O are contracted together according to Wick’s

theorem, and will be equivalent to a product of propagators, S = M−1. The

probability distribution of our lattice fields is,

P (U) =
1

Z
e−S(Aµ)

nf∏

i

det(M (i)). (1.9)

Where U corresponds to the field of gauge links and M is the Dirac matrix.

Both of which will be discussed below, suffice to say that including an unbiased

estimate of the fermionic determinant in the importance sampling is by far the

most expensive part of dynamical simulations, setting this determinant to 1 is

called the quenched approximation.

An in depth discussion of the creation of gauge fields weighted with such a

probability distribution is beyond the scope of this thesis. All computations

performed in this thesis will be dynamical configurations generated with the

(Rational) Hybrid Monte Carlo algorithm (r)hmc [49, 63], which generates a

sequence of gluonic configurations in a Markov chain that importance samples

the path integral. This chain introduces a fictitious Monte Carlo time, it is with

this index that we use to identify configurations.

1.1 Lattice gauge fields

Our discretised lattice is a set of fields which may live on the lattice “sites” or

between sites on “links” depending on their spin. Gauge fields (Aµ

(
x + a µ̂

2

)
) on

the lattice are encoded via their parallel transport matrices (Uµ

(
x + a µ̂

2

)
) between

neighbouring sites and are the links, as in the equation,

Uµ

(
x + a µ̂

2

)
= eiag0Aµ(x+a µ̂

2 ). (1.10)

The links exist in the Lie group, Uµ

(
x + a µ̂

2

)
∈ SU(Nc). And the fields in the Lie

algebra Aµ

(
x + a µ̂

2

)
∈ su(Nc). The gauge fields are usually periodic in Euclidean

space-time, Aµ(Lµ + a µ̂
2
) = Aµ(a µ̂

2
).

The gauge fields, as Lie matrices, can be decomposed as Aµ

(
x + a µ̂

2

)
=

T aAµ

(
x + a µ̂

2

)a
, where the T’s are the N2

c − 1 generators of the group. Through-

out this work we use the following conventions for generic SU(Nc) matrices in

3



the fundamental representation,

A = AaT a,

Tr
[
T aT b

]
=

1

2
δab,

[
T a, T b

]
= ifabcT c,

{
T a, T b

}
= dabcT c +

1

Nc

δab. (1.11)

Following these rules, if one wishes to compute the antisymmetric structure

function fabc or the symmetric dabc, one uses,

fabc = −2iTr
[
[T a, T b]T c

]
,

dabc = 2Tr
[
{T a, T b}T c

]
. (1.12)

Following the discussion on importance sampling for the path integral, we wish

to weight our gauge fields exponentially by the gauge action. The simplest gauge

action S(Aµ), first introduced in lattice gauge theories by Wilson [140] is defined

by,

S(Aµ) =
β

2Nc

∑

x,ν 6=µ

1− ℜ (Tr [Pµν(x)]) . (1.13)

The parameter β is the bare coupling strength β = 2Nc

g2
0

, and the plaquette term
1 (Pµν(x)) being defined as the 1× 1 reverse-oriented Wilson loop,

Pµν(x)† = Uµ(x+aµ̂/2)Uν(x+aµ̂+aν̂/2)Uµ(x+aν̂+aµ̂/2)†Uν(x+aν̂/2)†. (1.14)

The plaquette is the smallest gauge invariant quantity measurable on the lattice.

Upon expansion of the exponential in powers of a and using the Baker Campbell

Hausdorff (BCH) [96] relation (and ignoring any higher order commutators/pow-

ers of ag0 beyond leading order) we find,

eaebeced = exp

(
a + b + c + d +

1

2
{[a, b] + [c, d] + [c, a] + [c, b] + [d, a] + [d, b]}

)
.

(1.15)

1I have used the notation of Chapter 5 for consistency.
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We perform a shift x′ = x− a µ̂
2 − a ν̂

2 , to define the variables,

a = iag0Aµ

(
x′ − a

ν̂

2

)
, b = iag0Aν

(
x′ + a

µ̂

2

)
,

c = −iag0Aµ

(
x′ + a

ν̂

2

)
, d = −iag0Aν

(
x′ − a

µ̂

2

)
. (1.16)

Upon defining the symmetric finite difference,

a∆µAµ(x′) = Aµ

(
x′ + a

µ̂

2

)
−Aµ

(
x′ − a

µ̂

2

)
, (1.17)

we obtain the expansion of the plaquette,

Pµν(x)† = 1 + ia2g0

(
∆µAν(x

′)−∆νAµ(x′)
)
− a2g2

0

[
Aµ(x′), Aν(x′)

]
+ O(a3). (1.18)

The relation between the plaquette and the field strength tensor is (where we have

re-shifted the x),

Pµν(x)† = eia2g0(Fµν(x+a µ̂
2
+a ν̂

2 )+O(a)). (1.19)

The field strength tensor in some sense lives in the centre of the plaquette. To

lowest order, we have the famous connection between the Wilson gauge action and

the continuum gauge field action [140],

S(Aµ) = − β

2Nc
a4g2

0

∑

x′,ν 6=µ

Tr
[
Fµν(x′)Fµν(x′)

]
. (1.20)

It is often the best idea to describe lattice objects in terms of their dimensionless

counterparts which are the variables in computer programs, e.g. Aµ

(
x + a µ̂

2

)
=

ag0Aµ

(
x + a µ̂

2

)
, Uµ

(
x + a µ̂

2

)
= eiAµ(x+a µ̂

2 ). This is the notation we will use from

now on.

1.2 Lattice fermions

The continuum fermionic contribution of one fermion, to the action is (in Nd = 4

dimensions) Sf =
∫

d4xΨ̄(x)(γµ∂µ +m)Ψ(x). Näıvely this can be put into a discretised

theory by turning the derivative into a symmetric finite difference and thus defining

the Dirac matrix M [56].
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1.2.1 Näıve fermions

The näıve fermionic discretised action can be written for a single fermion of mass m,

as (where roman indices are site indexes and Greek indices are spin),

Sf =
∑

xy;αβ

Ψ̄α(x)Mαβ(x, y)Ψβ(y),

Mαβ(x, y) =
1

2a

∑

µ

(
(γµ)αβδx+µ,y − (γµ)αβδx−µ,y

)
+ mδx,yδα,β (1.21)

The fermions hereon considered, will be periodic in the spatial directions and anti-

periodic in the temporal direction.

Upon taking the Fourier transform, we have,

M̃(p, q) =
1

V

∑

x,y

eipµxµM(x, y)eiqµyµ = δp,qM̃(p),

M̃(p, q) =
1

V

∑

x,y

eipµxµeiqµyµ

(
m +

1

a

∑

µ

γµ sin(pµ)

)
,

M̃ (p) =

(
m +

1

a

∑

µ

γµ sin(pµ)

)
. (1.22)

M̃(p) is our inverse propagator. Dropping the mass term for simplicity, we associate

poles in the propagator (i.e. times when
∑

µ γµ sin(pµ) = 0) as on shell states and have

the unavoidable conclusion that there is the physical pole at p=(0,0,0,0) and 15 others,

these come from all of the corners of the first Brillouin zone (BZ). These states can be

pair produced in an interacting theory and so will affect the dynamics.

The continuum Lagrangian for fermions is invariant under the local gauge transforma-

tions (where g(x) ∈ SU(Nc)),

Ψ(x) = g(x)Ψ(x) Ψ̄(x) = Ψ̄(x)g(x)†. (1.23)

This has to be preserved in our discretised theory and the derivatives in the discrete

fermion action have terms Ψ̄(x)Ψ(x + µ), which are not gauge invariant. To make

it so, we must insert the parallel transport matrices between the quark sites. The

combination Ψ̄(x)Uµ

(
x + a µ̂

2

)
Ψ(x + aµ̂) is now the correct, gauge invariant quantity.
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Inserting this into the näıve fermion action gives the interacting, näıve fermion action,

Sf =
∑

x

mΨ̄(x)Ψ(x)+

1

2a

∑

x,µ

(
Ψ̄(x)γµUµ

(
x + a µ̂

2

)
Ψ(x + aµ̂)− Ψ̄(x)γµUµ

(
x− a µ̂

2

)†
Ψ(x− aµ̂)

)
. (1.24)

1.2.2 Wilson fermions

One way to eliminate the unphysical modes in the näıve action is by using the Wilson

action [140], whereby an irrelevant operator is added so that the extra zeros of the

näıve prescription pick up an additional factor proportional to a−1. The modification

to our näıve action is to add the term,

Sw = − 1

2a

∑

x,µ

Ψ̄(x)

(
Uµ

(
x + a µ̂

2

)
Ψ(x + aµ̂)− 2Ψ(x) + Uµ

(
x− a µ̂

2

)†
Ψ(x− aµ̂)

)
.

(1.25)

The fermionic matrix to invert for the updating of gauge fields using the Wilson action

(i.e. incorporating the näıve discretisation and the Wilson term) is (omitting spin

indices),

M(x, y) = (4 + m)δx,y −
1

2a

4∑

µ=1

(
(1− γµ)Uµ

(
x + a µ̂

2

)
δx+aµ̂,y

+ (1 + γµ)Uµ

(
x− a µ̂

2

)†
δx−aµ̂,y

)
. (1.26)

The addition of the Wilson term means that chiral symmetry is explicitly broken for

this action [56, 115]. This is a serious problem for the computation of weak matrix

elements where the couplings to weak gauge bosons are chirally symmetric, and for

other objects that depend on chirality. For the case of weak matrix elements, which

can have operator mixings that do not arise in the continuum calculation due to the

discretisation of the fermion action.

One of the aspects of this work is to compute matrix elements, for this we should use a

chirally-symmetric action (or a very good approximation to one). We now introduce the

Domain Wall Fermion action, which will be used throughout this thesis and which has

good chiral symmetry properties. As an aside, “twisted mass” simulations are often

performed by adding a term to the Wilson action which is a rotation in the flavour

space of the theory, but does not preserve chiral symmetry.
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1.2.3 Domain Wall Fermions

To reproduce the continuum, chiral behaviour our action must satisfy the Ginsparg-

Wilson relation [83],

γ5D + Dγ5 = aDγ5D. (1.27)

Where D is the lattice Dirac operator. This is then associated with the lattice variant

of the continuum local chiral symmetry transformation,

Ψ(x)′ = exp

{
iα

(
1− a

D

2

)}
Ψ(x). (1.28)

The Domain Wall Fermion (DWF) action utilises the idea that a chiral four dimensional

lattice gauge theory could exist as the low energy effective limit of a five dimensional

gauge theory [102] with index s and five-dimensional length Ls, coupled to five

dimensional fermions. The corresponding 4D effective theory has been proven to satisfy

the Ginsparg-Wilson relation (Eq.1.27), after the subtraction of the Pauli-Villars fields

the usual DWF propagator is chirally symmetric in the Ls →∞ limit.

The non-interacting (infinite Ls) Euclidean continuum fermionic Lagrangian for such a

theory can be written (after separating the 4D and 5D components),

L(x) = Ψ̄(x, s) (γµ∂µ + γ5∂5 −M(s)) Ψ(x, s). (1.29)

Where M(s) is a 5 dimensional mass term, whose value varies with extent of the fifth

dimension as a step function such that M(s > 0) = M , M(s < 0) = −M .

Assuming our fermions can be described as Ψ(x, s) = eipµxµΨ(s), we have the solution

to the 5D Dirac equation with a zero mass chiral mode,

(γ5∂5 −M(s) + iγµpµ) Ψ(x, s) = 0. (1.30)

We can split the positive and negative chiralities of Ψ(s) = 1±γ5

2 u±, if iγµpµΨ(x, s) = 0,

we have the equation for the positive chirality fermion,

(γ5∂5 −M(s))
1 + γ5

2
eipµxµu+ = 0. (1.31)

Which has solution,

Ψ(x, s) = eipµxµe−M |x5|u+. (1.32)

This is in essence a single fermion of positive chirality stuck to the wall at s=0, with

exponential decay in the fifth dimension direction, this is the Callan-Harvey argument

[43]. Kaplan [102] proposed placing this model on a discrete lattice with a 5D Wilson
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term. With periodic fifth dimension we have two domain walls with chiral modes of

opposite chirality attached to each and exponentially decaying in the fifth dimensional

direction.

In implementing the Domain Wall action for a finite lattice volume it can be split into

its chiral 4D bulk theory and its five dimensional contribution [77]. The Dirac matrix

for this theory is [82] (suppressing color and spin indices and using x and y to indicate

4D indices and s,r to indicate 5D)

M(x, y; s, r) = δs,rM
bulk(x, y) + δx,yM

(5)(s, r). (1.33)

The bulk 4D Dirac matrix looks like the Wilson action with the inclusion of the

(negative) 5D mass term M ,

Mbulk(x, y) = (4−M)δx,y −
1

2a

4∑

µ=1

(
(1− γµ)Uµ

(
x + a µ̂

2

)
δx+aµ̂,y

+ (1 + γµ)Uµ

(
x− a µ̂

2

)†
δx−aµ̂,y

)
. (1.34)

The gauge field is the same for every four dimensional discrete “slice” in the fifth

dimension. The contribution from the fifth dimension is [56, 82]

M (5)(s, r) =δs,r − (1− δs,Ls−1)P−δs+1,r − (1− δs,0)P+δs−1,r

+ m(P−δs,Ls−1δ0,r + P+δs,0δLs−1,r). (1.35)

The parameter m is the simulated quark mass of the 4D theory. The projectors P± are

the usual chiral projection operators P± = (1± γ5)/2.

The 4D fermion fields are obtained from the 5D fermions at the boundaries s = 0, Ls−1

of the five-dimensional theory by (x is the 4D lattice index) [28],

Ψ(x) = P−Ψ(x, 0) + P+Ψ(x,Ls − 1),

Ψ̄(x) = Ψ̄(x,Ls − 1)P+ + Ψ̄(x,Ls − 1)P−. (1.36)

1.3 Chiral symmetry and mres

The Domain Wall action has a global vector flavour symmetry, Ψ(x, s)′ = eiαaT a
Ψ(x, s)

where T a is a generator of the SU(nf) flavour group, which gives rise to the five-
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dimensional currents [27],

ja
µ(x, s) =

(
Ψ(x + aµ̂, s)(1 + γµ)Uµ

(
x + a µ̂

2

)†
T aΨ(x, s)

− Ψ̄(x, s)(1 − γµ)Uµ

(
x + a µ̂

2

)
T aΨ(x + aµ̂, s)

)
,

ja
5 (x, s) =

(
Ψ(x, s + 1)(1 + γ5)T

aΨ(x, s)

− Ψ̄(x, s)(1 − γ5)T
aΨ(x, s + 1)

)
. (1.37)

Which act upon the nf-let of fermion flavours. There is a unique vector transformation

yielding a conserved 4D vector current,

V
a
µ(x) =

Ls−1∑

s=0

ja
µ(x, s). (1.38)

We can define a local vector current using the 4D quarks defined in Eq.1.2.3,

V a
µ (x) = 2Ψ(x)T aγµΨ(x). (1.39)

The connection between the two is the vector renormalisation factor ZV V a
µ (x) = Va

µ(x).

The 5D conserved axial current can be defined as [9],

A
a
µ(x) =

Ls−1∑

s=0

sign

(
1− Ls− 1

2

)
j5. (1.40)

Finite Ls, and the introduction of fermion masses breaks chiral symmetry, and so we

now have a Partially Conserved Axial Current (PCAC), which has a non-zero derivative,

δµA
a
µ(x) = 2

(
mfja

µ(x,Ls − 1) + ja
5

(
x,

Ls

2
− 1

))
. (1.41)

ja
5 (x, s) is exponentially suppressed so that in practice the axial current renormalises

multiplicatively, ZAAa
µ(x) = Aa

µ. The 4D local axial current (Aa
µ) is defined,

Aa
µ(x) = 2Ψ̄(x)γµγ5T

aΨ(x). (1.42)

In the continuum limit, the Ward identities must be restored, resulting in,

ZAδµA
a
µ(x) = 2ja

µ(x) (mf + mres) . (1.43)

ZA is the renormalisation factor for the PCAC (which is practically 1). The term

10



mres is so-called Domain Wall residual mass generated from the small breaking of

chiral symmetry due to the finite value of Ls we must use. Naturally, this can be

measured and allows for the definition of the chiral limit for Domain Wall Fermions to

be mf = −mres. As Ls is increased, or as the field strength coupling is increased the

residual mass shrinks [7].

1.4 Correlation functions

Considering Eq.1.7, with the operator O = Ψ̄(x)Ψ(y), and using Eq.1.4 we have,

〈Ψ̄(x)Ψ(y)〉 =

∫
DAµ det(M)M−1(x, y)e−S(Aµ). (1.44)

Defining S as the (Green’s) function that is the solution of,

M(x, z)S(z, y) = δx,y. (1.45)

We immediately recognise S(z, y) = M(y, z)−1, is the fermion propagator. A

contraction of Ψ̄(x)Ψ(y) yields the propagator S(x, y). Rows of S may be calculated

using standard sparse matrix inversion techniques.

Defining the local correlator c(t) at zero momenta as (with Γ1 and Γ2 being Dirac

matrices),

cΓ1,Γ2(t) =
∑

x

Tr
[
Ψ̄(x, t)Γ1Ψ(x, t)Ψ̄(0, 0)Γ2Ψ(0, 0)

]
. (1.46)

Where the Fourier Transform has been performed over the spatial directions of x only.

Performing the Wick contractions on the correlator, we find

cΓ1,Γ2(t) =
∑

x

Tr [S(x, t; 0, 0)Γ1S(0, 0;x, t)Γ2]

− Tr [S(x, t;x, t)Γ1] Tr [S(0, 0; 0, 0)Γ2 ] . (1.47)

The second term is the disconnected piece, which is 0 for all flavour non-singlet

correlators. The expression in Eq.1.47 gives the measurement of a quark being created

at the source (0,0) and being annihilated at the sink (x,t), and a quark propagating in

the opposite direction. As a quark propagating in the opposite time direction is the

same as an anti-quark propagating from (0,0) to (x,t), we can use the equation (for

fermions with γ5 Hermiticity, which is all we will consider in this work),

S(0, 0;x, t) = γ5S(x, t; 0, 0)†γ5. (1.48)

And only require one matrix inversion. Correlators of the form in Eq.1.47 are called
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point-source (or local to local) propagators.

Considering a correlator that has a non-local source, φ(y, z;x, t) for the position x on

the time slice t, we have the correlator,

cΓ1,Γ2(t) =
∑

x

∑

y,z,y′,z′

Tr
[
φ(y, z;x, t)φ(y′, z′; 0, 0)S(y, t; y′, 0)Γ1γ5S(z, t; z′, 0)†γ5Γ2

]
.

(1.49)

This is not manifestly gauge invariant [56], however if we fix to some smooth covariant

gauge (the use of Coulomb gauge is argued to be the best as it does not constrain the

temporally polarised links)2 and take φ to be a smooth function in x and y good overlap

with the hadronic ground state can be achieved. If we take the path φ to be the whole

gauge field on that slice, these correlation functions are called wall propagators.

It is common in Lattice QCD to label the different fermion flavours with their

corresponding quarks, e.g. for nf=2+1, DWF u, d and s. Meson correlation functions

are computed using Eq.1.47, with choice of Dirac matrices (Γ1,Γ2) such that the the

interpolating operator has the same quantum numbers as the physical particle. For

instance the pseudoscalar (P) mesons the Pion and the Kaon are computed from the

operators,

Oπ(x) = ū(x)γ5d(x),

OK(x) = s̄(x)γ5d(x). (1.50)

The large time behaviour of the zero momentum correlation function allows us to

compute the masses (m) and amplitudes (N) of the particles,

cΓ1,Γ2(t) =
∑

x

Tr
[
S(x, t; 0, 0)Γ1γ5S(x, t; 0, 0)†γ5Γ2

]
= Ne−mt|t>>0 (1.51)

Masses and decay constants

To obtain the relation in Eq.1.51, we use the fact that two interpolating operators at

large Euclidean time have the form [82] (where the summation is over energy levels n),

lim
t→∞
〈O(t)O(0)†〉 =

∑

n

〈0|O|n〉〈n|O†|0〉e−tEn . (1.52)

Expanding the sum, and only keeping the first term and using the identity 〈0|O|n〉 =

〈n|O†|0〉∗ we have,

lim
t→∞
〈O(t)O(0)†〉 = |〈0|O|n〉|

2

2mL3
e−mt (1.53)

2The methods to do so will be introduced in Chapter 3.
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The factor L3 is the spatial hypercube volume LxLyLz = L3. Upon fitting the

correlation function to an exponential at large enough times, and if there is sufficient

overlap between the interpolating fields and the required particle’s ground state the

particles mass in lattice units can be deduced, as well as its amplitude. From Eq.1.53

we can define the effective mass,

meff = log

(
cΓ1,Γ2(t)

cΓ1,Γ2(t + 1)

)
. (1.54)

When this function displays a plateau, we have an estimate for both when the

correlation function is describing the intended ground state particle, and what the

particle’s mass is in lattice units. In practice the effective mass is not used for an

accurate measurement of the particle’s mass. Instead (often simultaneous) fits to the

exponential in Eq.1.53 are used.

As our simulation is in a finite box, there will also be a propagator propagating

backwards in time from the other end of the temporal separation of the lattice. The

correlator’s large time behaviour is hence,

cΓ,Γ(t) = |〈0|O|n〉|2
(
e−mt ± e−m(Lt−1−t)

)
. (1.55)

Where the± depends on the eigenvalue of the interpolating operator under time reversal

symmetry. For a pseudoscalar the two propagators are summed and the function

behaves like a cosh, for an pseudoscalar-axial (P,A) interpolator the functions are

subtracted and behaves like a sinh.

The hadronic current between a pseudoscalar meson and the vacuum is defined by,

〈0|Aµ(0)|PS(p)〉 = iZApµfPSeipµxµ . (1.56)

Where f is called the pseudoscalar decay constant. We have to include the axial

renormalisation factor ZA because we are not using the conserved 5D current.

Defining the correlator in terms of the amplitude N s1,s2

O1,O2
where s1 and s2 are the sources

(Wall (W) or Point/Local (L)), we have,

cs1,s2

O1,O2
(t) =

〈0|O1
s1 |PS〉〈PS|O2

s2|0〉
2mPSL3

e−mPSt = N s1,s2

O1,O2
e−mPSt. (1.57)

And the correlator for the local axial Aµ (Γ1 = Γ2 = γµ) current and the pseudoscalar

P (Γ1 = Γ2 = γ5) can give us the pseudoscalar decay constant via the formula,

fPS = ZA

√√√√ 1

2L3mPS

NW,L
A0,A0

NW,L
A0,A0

NW,W
P,P

. (1.58)
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The pseudoscalar masses and the pseudoscalar decay constants for the Pion and Kaon

are well measured experimentally, and we can use these measurements to set our lattice

scale, i.e. the lattice spacing is the value where the lattice measured values in the chiral

limit take the experimentally measured values.

1.4.1 Four Quark operators

One of the studies presented in this thesis is to calculate Kaon mixing in and beyond

the standard model. This is achieved by computing the four quark operator matrix

element,

〈K0(ti)|O(t)|K̄0(tf )〉. (1.59)

This describes a neutral Kaon created at time ti oscillating to an neutral anti-Kaon,

and then annihilating at time tf . This is known as a matrix element and a one loop

contribution to this oscillation can be viewed diagrammatically for the standard model

by Diagram.1.

s

d

U1

U2

d

s

W±W∓

Diagram 1: One of the standard model one loop contributions to neutral Kaon
mixing, mediated by the Weak force. U1 and U2 are standard model quarks.

No known method exists for the inclusion of weak bosons with QCD on the lattice.

Instead we consider the Operator Product Expansion (OPE) whereby the box diagram

becomes effectively pinched into a point and a local four quark operator with the desired

symmetry properties can be used to effectively describe the interaction.

From now on I drop the 0 on the Kaon notation as it is implicit in the rest of this work

that they are neutral. The zero momentum correlator for such an object (using point

source propagators) is,

c(O)(ti, 0, tf )LLL =
∑

xi,xf

〈d̄(xf , tf )γ5s(xf , tf )O(0)d̄(xi, ti)γ5s(xi, ti)〉. (1.60)

For the Standard model, the neutral Kaon mixing four quark operator is the vector-
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axial (V-A),

OV −A,V −A(x, t) = s̄(x, t)γµ(1− γ5)d(x, t)s̄(x, t)γµ(1− γ5)d(x, t). (1.61)

Upon Wick contraction, we have the “trace-trace” and the “trace” constituent parts,

c(V −A,V −A)(ti, 0, tf )LLL =
∑

xi,xf

Tr [S(xf , tf ; 0, 0)γµ(1− γ5)S(0, 0;xf , tf )]

× Tr [S(xi, ti; 0, 0)γµ(1− γ5)S(0, 0;xi, ti)]

−Tr

[
S(xf , tf ; 0, 0)γµ(1− γ5)S(0, 0;xi, ti)

× S(xi, ti; 0, 0)γµ(1− γ5)S(0, 0;xf , tf )

]
. (1.62)

In practice the original method in Eq.1.62 is not a good way to measure the four quark

correlation function, due to its poor statistical resolution. Instead, wall sources are

used (at ti and tf ) for the two Kaons and the vertex position (t) is varied, giving much

higher statistical resolution for the matrix element (a factor of L3 better sampling).

The two separate traces are due to the summation over spin indices which have been

suppressed in the notation.

If we consider the quantity in Eq.1.60 in the limit of large correlation times, and ignoring

backwards propagation we have,

lim
tf >t>ti

c(V −A,V −A)(ti, t, tf )WLW =

〈0|PW |K̄〉〈K̄|OV −A,V −A(t)|K〉〈K|PW |0〉 1

4m2
kL6

e−mk(tf−ti). (1.63)

The desired matrix element is the piece sandwiched in the middle of Eq.1.4.1. As

seen earlier, we can compute the matrix elements of the pseudoscalar Kaons from their

correlation functions at large times,

c(ti, t)
W,L
P,A0

=
〈0|PW |K̄〉〈K̄|AL

0 |0〉
2mKL3

e−mK(t−ti),

c(t, tf )L,W
A0,P =

〈0|AL
0 |K〉〈K|PW |0〉

2mKL3
e−mK(tf−t). (1.64)

Upon taking the ratio (and only considering the parity even part so that V −A,V −A→
V V + AA),

c(V V +AA)(ti, t, tf )WW

c(ti, t)
WL
A4,P c(t, tf )LW

P,A4

=
〈K̄ |OV V +AA(t)|K〉
〈K̄ |A0|0〉〈0|A0|K〉

. (1.65)

This is the lattice evaluation of the quantity Bk. With appropriate normalisation factor
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8
3 ,

Bk(a) =
c(V V +AA)(ti, t, tf )WLW

8
3c(ti, t)WL

P,A0
c(t, tf )LW

A0,P

. (1.66)

Where the “a” is there to illustrate that at the moment this is a lattice measure, and

needs to be renormalised for comparing to continuum theory.

The full basis of (dimension-6) irrelevant operators that contribute to neutral Kaon

mixing are (with a and b being color indices),

O1 = (s̄γµ(1− γ5)d)(s̄γµ(1− γ5)d),

O2,3 = (s̄(1− γ5)d)(s̄(1− γ5)d), (unmixed,mixed)

O4,5 = (s̄(1 + γ5)d)(s̄(1 + γ5)d). (unmixed,mixed) (1.67)

The unmixed and mixed refer to the color indices that are being contracted, unmixed

means the quarks color indices within the parentheses are contracted and mixed means

the color contractions are performed across the two parentheses. The mixed and

unmixed cases are the same for the O1 operator. This basis is the so-called “SUSY-

basis” [39, 79], which is not what we measure directly, as will be discussed in Chapter

6.

1.5 Monte Carlo statistical analysis

Say we have a thermalised, finite set of N measurements of O computed from

our simulations at different, equally spaced Monte Carlo times t. Assuming such

measurements are uncorrelated, we have the sample average,

Ō =
1

N

N∑

t=1

O(t). (1.68)

And the unbiased sample variance,

σ2(O) =
1

N − 1

N∑

t=1

(O(t)− Ō)2. (1.69)

For more sophisticated methods for the estimation of the variance, we consider now the

jackknife and bootstrap techniques.
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1.5.1 Jackknife and Bootstrap error Analysis

The jackknife technique reuses elements in its series as a method of eliminating bias.

Considering again our N equally spaced measurements. We generate the jackknifed

distribution [104],

θ(i) =
1

N − 1

N∑

j 6=i

O(j). (1.70)

Where we eliminate each i’th element from each combined average, the variance is

computed from the θ’s and the jackknifed average θ̄ and sample average Ō are the

same,

σ2(θ) =
N − 1

N

N∑

i=1

(
θ(i)− Ō

)2
. (1.71)

The bootstrap analysis method is similar to the jackknife [70], in that it is a technique for

using the sample distribution as an estimator for the population probability distribution.

Unlike the jackknife, the bootstrap procedure is a random sampling with replacement

procedure, whereas the jackknife is a resampling without replacement. For bootstrap

resampling a length N subset of the original sample is generated by randomly picking

out (denoted rand) of all t measurements and averaging data from the original sample.

This is performed Nboots times,

φ(i) =
1

N

N∑

j=1

O(rand(j)). (1.72)

The estimate of the error can be computed with σ2(φ) deduced from all of the

bootstraps, assuming the distribution is normal, but it is a better idea to sort the data

and take confidence levels from above and below as a more robust error estimation.

Monte Carlo simulations are often correlated between successive updates. Such a

correlation between measurements must be measured and accounted for when quoting

results, where possible. One can cater for this error by the process of binning, whereby

at some finite bin length successive bins are uncorrelated. It is simple to tell whether

enough binning has been performed, because the errors for larger and larger bins stay

approximately the same. The procedure of binning is simple, we average within a local

subset of our time series into Nb individual bins of length t’,

η(b) =
1

t′

(b+1)t′∑

i=bt′

O(i). (1.73)

Jackknife and bootstrap analysis is then performed on the binned data. Even though

the binning method is effective, the correlation between successive measurements can
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be measured directly.

1.5.2 Autocorrelations

The autocorrelation function ρ(t) is measured by the quantity,

ρ(t) =
1

N − 1

N−t∑

t′=1

(
O(t)− Ō

) (
O(t + t′)− Ō

)
. (1.74)

At t=0, this function is the sample variance. This function is expected to decay

exponentially with measurement separation time t ρ(t) ≈ e−t/τint . The factor τint

is called the integrated autocorrelation time and can be computed using the formula,

τint(t
′) =

1

2
+

1

ρ(0)

t′∑

t=1

ρ(t′). (1.75)

Where we have defined a windowed measurement so that the function can be plotted

against the maximal measurement time t’. The first time this function plateau’s gives

the value of the integrated autocorrelation time.
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Chapter 2

Of matrices and their logarithms

Considering the parallel transport matrices of Eq.1.10, it is often the case that we

want to perform operations on the underlying gluon field Aµ

(
x + a µ̂

2

)
. This chapter

discusses some of the various techniques available for approximating the logarithm of

SU(Nc) matrices and exponentiating the Lie fields back to SU(Nc). The techniques

defined here will be of great importance for the following chapters on gauge fixing

(Chapter 3), gluonic observables (Chapter 4) and link smearing (Chapter 5). I first

discuss the technique for approximating the logarithm and finish with a discussion on

exactly exponentiating the resulting Lie matrix.

2.1 Defining Aµ

(
x + a µ̂

2

)
rom link variables

I discuss and compare several techniques for computing the logarithm (or an approxi-

mation thereof) of an arbitrary matrix U ∈ SU(Nc), U = eiA, A ∈ su(Nc). I discuss

two simple cases, SU(2) and SU(3). And try to make clear the extensions and possible

difficulties with generalising the procedures to SU(Nc) matrices.

2.1.1 Hermitian projection (Log-A)

Lattice gauge fields are often represented using the “Hermitian projection” or “linear

definition”, which is a sine approximation to the exact field. We call this “Log-A” for
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disambiguation later.

A =
1

2i

((
U − U †

)
− 1

Nc
Tr
[
U − U †

]
INc×Nc

)
+ O(A3). (2.1)

Where INc×Nc is the Nc × Nc identity matrix. In comparison to the lattice gauge

links of Eq.1.10, we note that we should absorb the factor ag0 into the definition of

Aµ

(
x + a µ̂

2

)
to make it dimensionless, this is commonplace in lattice calculations as

in renormalised quantities such factors must cancel.

It should be clear that this projection is a distributive function, i.e.

P (A + B) = P (A) + P (B). (2.2)

In all of our computations we store the full SU(Nc) matrix as a flat, one dimensional

array in row major format in computer memory. Often I will discuss elements of our

matrices in terms of the element index which I will indicate with a [ . ]. This storage

procedure cuts down on the number of operations required for matrix addition and

multiplication at the cost of computer memory.

For SU(2) the Log-A (Eq.2.1) of the matrix U = eiA can be directly written as1,

A =

(
ℑ(U [0]) −iU [1]

A[1]∗ −A[0]

)
. (2.3)

Where I have used the tracelessness and Hermiticity of the matrix A. As well as the

SU(2) symmetry of the matrix U U [1]− U [2]∗ = 2U [1].

For SU(3) matrices, one can again use the symmetries of the problem to alleviate the

number of operations. The Log-A of the matrix U in terms of its linearised matrix

indices which run from 0→ 8 inclusive in row-major order can be directly written as,

A =




1
3 (2ℑ(U [0])−ℑ(U [4])−ℑ(U [8])) 1

2i
(U [1]− U [3]∗) 1

2i
(U [2]− U [6]∗)

A[1]∗ 1
3 (2ℑ(U [4])−ℑ(U [0])−ℑ(U [8])) 1

2i
(U [5]− U [7]∗)

A[2]∗ A[5]∗ −A[0]−A[4]


 .

(2.4)

For generic SU(Nc) matrices, the procedure should compute only the upper or lower

triangular portion of A (we always use the upper) and fill in the rest by Hermiticity

and tracelessness.

Log-A is computationally the fastest method to calculate the Lie matrices of U, but is

inexact. The methods discussed in the following section are exact techniques to obtain

1Where I have assumed the procedure will be performed sequentially and the element A[0]
will be computed before the element A[3].
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the principle logarithm of the matrix.

2.1.2 The exact matrix logarithm (Log-B and Log-C)

The exact logarithm of U can be taken numerically either by diagonalisation (which a

variant will be called Log-D), an iterative process as described in the appendix of [67],

a rational approximation [78] or by specialised identities (which turn out to be much

faster numerically). I now describe the procedure for taking the exact logarithm of

SU(3) and SU(2) matrices, by first introducing a theorem.

Cayley Hamilton theorem

Cayley-Hamilton theorem states that “any matrix is a solution to its own characteristic

equation” (p(λ) = det (U − λI)). Hence an Nc-dimensional square matrix will have at

most only Nc elements in its Taylor-expansion,

U = eiA = f0INc×Nc + f1A + ..... + fNc−1A
Nc−1. (2.5)

One can substitute for higher powers (≥ Nc) in the expansion with lower powers via

the characteristic equation. All the information about the matrix is encapsulated in

the f-constants, which are necessarily complex for SU(Nc).

We can obtain the f-constants by considering the diagonalisation of A,

A = MΛAM−1. (2.6)

Where ΛA is defined below, where the q’s are the eigenvalues of A.

ΛA =




q1 0 0 · · · 0

0 q2 0 · · · 0

0 0 q3 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · qN




. (2.7)

The matrix ΛA can be written again as a Taylor expansion using the Cayley-Hamilton

theorem,

eiΛA = f0INc×Nc + f1ΛA + ..... + fNc−1Λ
Nc−1
A . (2.8)

If we multiply by the same diagonalising matrices we obtain the equation for the Cayley-

Hamilton theorem in Eq.2.5. The important point here is that the f-constants are

21



exactly the same for both eiΛA and eiA, if we know the eigenvalues eiq1, eiq2 , ...., eiqN we

can calculate the f’s and exponentiate the matrix A, or obtain the principle logarithm

of the matrix eiA if U is known. It is important to note that although in the discussion

we have introduced the diagonalisation matrices, this method requires no explicit

diagonalisation.

If we consider Eq.2.8, we see that it can be compactly expressed as a Vandermonde

system. 


1 q1 q2
1 · · · qN−1

1

1 q2 q2
2 · · · qN−1

2

1 q3 q2
3 · · · qN−1

3

· · · · · · · · · · · · · · ·
1 qN q2

N · · · qN−1
N







f0

f1

f2

· · ·
fN−1




=




eiq1

eiq2

eiq3

· · ·
eiqN




. (2.9)

The solution to this system of equations can either be calculated via a generic

Vandermonde equation solver e.g.[88]. This is what we call “Log-B” or in the case

of exponentiation the general Vandermonde method.

In the case of small, dense matrices the f’s can be obtained from analytically smooth

functions, which are more resistant to round-off errors. Using these for the logarithm

is what we call “Log-C”. We use these techniques instead of diagonalisation by an e.g

LU decomposition because they are seen to be numerically stable and because they are

not general they will be computationally faster.

2.1.3 Exact hermitian approximation (Log-C)

We can use Cayley-Hamilton theorem to compute the exact logarithm of matrices.

A process we call the “exact hermitian projection” and label Log-C in the text. The

procedure for two cases of interest, (SU(3) and SU(2) matrices) is detailed here, because

only for SU(3) and SU(2) are these methods computationally competitive with iterative

methods and more general techniques. The Log-B method uses the definition of the

logarithm from this method, the only difference between the two is whether the f’s are

computed by analytically smooth functions or by the generic Vandermonde equation

solver.

The SU(3) case

To compute the log of the matrix U using Matrix.2.9, we must first calculate the

eigenvalues of U, as they are the complex exponential of the eigenvalues of A.

22



Vieta’s formula [137] for the characteristic equation of general 3 × 3 matrices (with

eigenvalues qi) is

λ3 − (q1 + q2 + q3)λ
2 + (q1q2 + q1q3 + q2q3)λ− (q1q2q3) = 0. (2.10)

And using the identities,

Tr [U ] =
∑

i

qi, det (U) =
∏

i

qi, Tr
[
U−1

]
=
∑

i

1

qi
. (2.11)

We obtain the characteristic equation of an arbitrary 3× 3 matrix U.

λ3 − Tr [U ]λ2 + det (U) Tr
[
U−1

]
λ− det (U) = 0. (2.12)

Solving for λ yields the eigenvalues. This problem is a cubic equation which can be

solved numerically using a numerically stable version of Cardano’s method from [125],

and when the matrix U is very close to the identity we switch to eigenvalue solutions

for U-1, whose expressions are numerically better suited for small arguments [66] (we

describe this method below). Restricting to SU(3) group, the determinant is guaranteed

1 and the trace of the inverse is the complex conjugate of the trace.

The solution we use for the roots of the SU(3) characteristic equation is based on the

value of one variable,

a =
1

3
Tr[U ]. (2.13)

If we then compute the variables Q and R,

Q = (a2 + a∗) R = a

(
Q +

a∗

2

)
− 1

2
,

T = R2 −Q3. (2.14)

And then compute the variable t,

t =





(
R +
√

T
)1/3

;ℜ
(
T ∗√T

)
> 0

(
R−
√

T
)1/3

;ℜ
(
T ∗√T

)
< 0

Where the square root and cube-root can be computed by taking the first available root

using de-Moivre’s formula. We can then build the two variables P and M,

P = −t− Q

t
, M =

√
3

(
−t +

Q

t

)
. (2.15)
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If t is exactly zero, Q
t is set to zero. We can immediately write down the eigenvalues,

q0 = P − a,

q1 =
1

2
(M − P )− a,

q2 = q1 −M. (2.16)

This defines the round-off resistant form for solving the SU(3) characteristic equation.

If a is very close to 1 (we use 1− Tr [U ] < 10−12 and always work in double precision)

all we need to do is switch the values of R and Q to (these expressions are designed for

Tr [U ] ≈ 3)[66],

a = 1− 1

3
Tr(U),

Q = − (a∗ + a(2− a)) R =
3

2

(
a
(
1− a∗ − 2a

(
1− a

3

))
+ a∗

)
. (2.17)

Where I have written the polynomial in “a” using Horner’s rule. The solution procedure

for the eigenvalues is the same as before, but we need to add 1 to each eigenvalue at

the end as we were solving for the eigenvalues of U − I3×3.

We now wish to compute the f ’s of Eq.2.5. Generically this is a case of solving an

interpolating polynomial problem and a numerically fast algorithm is available from [88],

but this is known to have numerical difficulties [125] especially when the eigenvalues

of A become near-degenerate. The way around this is to compute the f ’s using the

eigenvalues of A by taking the logarithm of the eigenvalues of U, for which there are

smooth, numerically stable, standard methods which we borrow from the technique of

exact exponentiation [117], which will be discussed in Sec.2.2.3.

Once the eigenvalues of U are computed their complex argument is taken to determine

the eigenvalues of A. This is allowed because the eigenvalues of U are explicitly

constrained to live on the circumference of the unit circle in the complex plane. We

need not compute all 3 of the eigenvalues of U as the final one “q3” is (q1q2)
∗.

If we consider Eq.2.8 for a generic SU(3) matrix and its conjugate transpose we obtain,

U = f0I + f1A + f2A
2,

U † = f∗
0 I + f∗

1 A† + f∗
2

(
A†
)2

. (2.18)

We know that A is hermitian and so
(
A†)2 = A2 and so upon multiplying top and

bottom lines by f∗
0 and f0 respectively and subtracting, we get,

f∗
2 U − f2U

† = (f0f
∗
2 − f∗

0 f2) + (f1f
∗
2 − f∗

1 f2)A, (2.19)
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which can be used to define the A matrix by,

A =
f∗
2 U − f2U

† −ℑ(f0f
∗
2 )

ℑ(f1f∗
2 )

. (2.20)

We have defined a method to exactly compute the logarithm for a generic SU(3) matrix

which does not need explicit diagonalisation and is observed to be numerically stable,

as shown in the plots in Sec.2.1.5. This method was introduced because it allows for the

taking of the logarithm without matrix multiplication and without iterative methods.

The SU(2) case

A generic SU(2) matrix “U” has the form,

U =

(
a b

−b∗ a∗

)
. (2.21)

Which has characteristic equation,

λ2 − λ(a∗ + a) + (aa∗ + bb∗) = 0,

λ2 − λ(Tr [U ]) + det (U) = 0. (2.22)

Which is just Vieta’s formulae for 2x2 matrices. We know that for SU(2) the

determinant is 1 and the combination a∗+a is real, so solving the characteristic equation

we have,

q± =
2ℜ (a)±

√
4ℜ (a)2 − 4

2
. (2.23)

We know that the rows and columns are normalised, so the quantity
√

4ℜ (a)2 − 4 is

purely imaginary or 0. Taking the complex square root is expensive so we pull the

complex part out,

q± = ℜ(a)± i
√

(1−ℜ(a)2). (2.24)

And so we can solve the system from Matrix.2.9 exactly. With solutions,

θ = arg (q) ,

f0 = cos(θ) = ℜ(q),

f1 = i
sin (θ)

θ
= i
ℑ (q)

θ
. (2.25)

Some care is needed for the numerical stability of the parameter f1 when q goes to 0 (this
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is the case when the matrix U approaches the identity), and a Taylor expansion of the

sinc function is needed when q is below a small value (0.05 in practice is acceptable).

Again, we can take the complex argument to get the eigenvalues of A, because the

eigenvalues of U are on the unit circle in the complex plane. The only trigonometric

function used in this definition is that of the “atan2” in the complex argument, so this

routine is computationally fast.

Taking the logarithm is much simpler than the SU(3) case, and can be computed with,

U = f0I2×2 + f1A,

A =
U − f0I2×2

f1
. (2.26)

Both the SU(3) and SU(2) methods work well, but smooth analytic solutions for Nc > 3

for the f’s are yet to be found, and the quintic polynomial does not have a direct solution

for the analytic determination of the eigenvalues. Generic methods for the eigenvalues

will have to be used for larger Nc.

2.1.4 Diagonalisation logarithm (Log-D)

The final logarithm method (Log-D), is based on diagonalisation and is taken from [67].

It is however, not based on generic LU decomposition as one would expect (as in practice

these are observed to have numerical stability issues), but rather direct eigenvalue

methods as the Log-B and Log-C. Its implementation for SU(3) and SU(2) shares a

lot of similarity to the Log-C method, as it uses direct solving of the characteristic

equation. Its extension to generic SU(Nc) with a generic eigen-solver is more tractable

than Log-B and Log-C.

Any square matrix can be diagonalised as U = V ΛUV −1, and we know that ΛU = eiΛA .

Upon taking the logarithm of the diagonal elements of ΛU and multiplying back through

by the diagonalisation matrices we obtain the matrix A.

What we require are the eigenvalues of U and the matrix V to perform this. The

diagonalisation matrix V has the eigenvectors of U as its column entries. We find the

eigenvectors by considering the eigenvalue problem (for eigenvalue qi and eigenvectors

vi),

S(i) = (U − qiINc×Nc) S(i)v(i) = 0. (2.27)

The matrix S is singular. If we take its Adjugate (or Classical Adjoint defined by the

cofactor matrix built of the signed minors of U), and use the definition of the Adjugate
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of a matrix,

S(i)adj
(
S(i)

)
= det

(
S(i)

)
I. (2.28)

We see that the Adjugate of S satifies the eigenvalue equation S(i)adj
(
S(i)

)
= 0, and

we conclude that the non-zero column of the Adjugate matrix must be proportional to

an eigenvector of the matrix U. In practice, we must normalise the resulting non-zero

column to obtain the eigenvector for the eigenvalue “i”.

We use the solutions for the characteristic equations outlined in Sec.2.1.3 to compute

the eigenvalues, or a general method for SU(Nc). We then compute the Adjugate of

S for each eigenvalue to determine its corresponding eigenvector. We can then take

the logarithm of our eigenvalues and multiply them through with the diagonalisation

matrices with columns built from the eigenvectors to obtain the principal logarithm of

U.

An issue with this method is that occasionally we end up on the wrong Riemann sheet

for the logarithm [67], which is represented by the trace of Q being −2π or 2π. This is

never the case for the Log-B and Log-C method. To remove this issue, we must add 2π

to an eigenvalue if the trace is negative, and subtract 2π if it is positive, and re-perform

the multiplication with the diagonalisation matrices. We do not need to recompute the

diagonalisation matrix though, as it the same.

As an aside, the first matrix multiplication ΛAv† does not need to call a full matrix

multiply method, as the result is the top row of v† is multiplied by q1 the second by q2

and so on.

2.1.5 Comparison of the field definitions

If we take the exact Hermitian projection (Log-C, Eq.2.20), the Hermitian projection

(Log-A, Eq.2.1) or directly solving the generic Vandermonde equation for the f’s and

using these for the logarithm evaluation defined in Log-C (Log-B, Eq.2.9), or by the

diagonalisation (Log-D). Then use the technique of exact exponentiation from [117]

(which is discussed in 2.2.3), for Log-B,Log-C and Log-D one would expect that we

should recover the same matrix that we started with up to round off errors, and näıvely

expect a small difference for Log-A because it is only an O(A3) approximation to the

logarithm of the link.

The way we test this is to compute,

ǫ(x) =
1

NdN2
c

∑

µ

N2
c −1∑

a=0

||U [a]′ − U [a]||, (2.29)
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where the prime denotes the logarithm and subsequent exponentiation. And the ||..||
denotes the complex absolute value and the “a” is a matrix element index.
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(c) Log-C histogram.
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Figure 2.1 Invertibility tests for various logarithm procedures, using Eq.2.29
and 40,000 random SU(3) matrices.

Figs.2.1 and 2.2 illustrate the invertibility (or lack thereof) of our four methods for

determining the logarithm of our link matrices using the measure from Eq.2.29. The

“diagonalisation logarithm” (Log-D) does a good job of providing an invertible map

between the two procedures, the “Exact Hermitian projection” (Log-C) analytical

method within appreciable numerical tolerance appears to accurately represent the

inverse of the exact exponentiation technique and is arguably more accurate than the

Log-D. As seen by having a narrower histogram and smaller fluctuations (extrema). In
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Figure 2.2 Invertibility of the Log-A procedure from 40,000 random SU(3)
matrices using Eq.2.29.

Fig.2.1(e) the generic Vandermonde solver looks to be reproducing an invertible map,

but on occasion suffers from sizable numerical instabilities seen in Fig.2.1(f), and the

Hermitian projection (Log-A) method does not reproduce the original matrix at all

under exact exponentiation.

Either Log-D or Log-C seem to be good candidates for an exact logarithm, with

Log-C being a slightly more accurate determination. Log-B performs an accurate

approximation but is unstable in its extreme cases, using generic Vandermonde methods

for the calculation of the f constants is dangerous.

Logarithm definition SU(3) SU(2)
Log-A (hermitian projection) 1.0 1.0

Log-B (Vandermonde logarithm) 28.6(3) 17.0(3)
Log-C (exact hermitian projection) 29.2(3) 9.9(2)

Log-D (diagonalisation) 41.2(4) 22.7(4)

Table 2.1 The computational cost of logarithm definitions, normalised by the
time taken for the Hermitian projection. Errors are from a jackknife
analysis over 250 measurements of the time taken to take the
logarithm of 525,000 random SU(3) and SU(2) matrices.

Table.2.1 shows our implementation speeds for the numerical matrix logarithms,

normalised by the fastest method (Log-A) for SU(3) and SU(2), to illustrate the cost

of these techniques. Generally, we see that as the complexity of the problem increases

(Nc becomes large) the cost of performing the exact logarithm grows much faster than

for taking the hermitian projection. For both SU(3) and SU(2) Log-B and Log-C

are computationally cheaper to perform, this is due to not having to perform the

diagonalisation and not having to re-perform operations depending on whether the

output matrix is traceless. It could be surprising that the generic Vandermonde solver

is almost twice as slow for SU(2) than the analytic solution, but this is due to the fast

identities discussed earlier and the fact that calling a generic routine to solve a small,
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dense matrix problem is inherently costly.

From the information in Tab.2.1 and the invertibility graphs for SU(3) as shown in

Fig.2.1, we choose to use the Log-C definition for the exact logarithm of the matrix for

SU(3) and SU(2) because it is the fastest of the numerically stable techniques. To our

knowledge this is the first implementation of this method for taking the logarithm of

these small, dense matrices.

2.2 Projection and exponentiation

I now move on to discuss the method for projecting general matrices to SU(Nc), and

Lie matrices by exponentiation. The first method is for arbitrary projection to SU(Nc).

The second method is for approximating the exponential for Lie matrices and the final

is for computing the exact exponential for Lie matrices back into the group.

2.2.1 Projection to SU(N)

Projection of an arbitrary matrix V to SU(Nc) is often performed by a trace

maximisation routine [69], and fields which have been projected this way are not usable

in the HMC field update [142] due to not having a smooth derivative. For the update

of a link variable it can be defined by the iterative procedure,

V = V
(
U ′)† . (2.30)

Where the matrix V is not SU(Nc). The matrix U ′ ∈ SU(Nc) is the matrix which

maximises the trace of V. The replacement method is iterative and stops once the

difference between successive traces has reached some tolerance (for single precision we

use 10−6 and double precision 10−14). If this method is being used in a projection for

e.g. the APE smearing update, the original link matrix is replaced by U ′.

The matrix U’ is updated via successive SU(2), Cabbibo-Marinari [41] or (generalised

for SU(Nc) group) Givens rotations [88] via the procedure (where Si is an SU(2)

subgroup),

U ′ = SiU
′. (2.31)
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As a concrete example, for SU(3) the subgroup matrices are,

S1 =
1√

s0s
∗
0 + s1s

∗
1




s0 s1 0

−s1∗ s∗0 0

0 0 1


 , S2 =

1√
s0s

∗
0 + s1s

∗
1




1 0 0

0 s0 s1

0 −s∗1 s∗0


 ,

S3 =
1√

s0s
∗
0 + s1s

∗
1




s0 0 s1

0 1 0

s∗1 0 s∗0


 .

Where the s’s are built from (in terms of the linearised matrix indices 0→ N2
c − 1),

(S1) s0 = V [0] + V [4]∗ s1 = V [1] − V [3]∗,

(S2) s0 = V [4] + V [8]∗ s1 = V [5] − V [7]∗,

(S3) s0 = V [0] + V [8]∗ s1 = V [2] − V [6]∗. (2.32)

Note that the V’s on the second and third line of Eq.2.32 have been multiplied by the

previous subgroup rotation due to Eq.2.31. As a speedup for SU(3), we see that there

are many zeros in the rotation matrices and so we have hand-unrolled computations for

the subgroup updates that implicitly do not compute multiplications with exact zeros

(this meant a 2× speed up in the projection).

For generic SU(Nc) this update requires the computation of the Nc(Nc− 1)/2 rotation

matrices. Otherwise the procedure is the same as SU(3). As Nc grows we have seen

that this procedure requires more iterations to converge to an adequate solution, similar

issues have been seen in the context of large Nc heat bath updates in [74]. As an aside,

the matrix multiplication U ′ = SiU
′ ∈ SU(Nc), whereas the multiplication V = V S†

i is

not. If one were to use group-specific matrix multiplies there is some speed up available

in the first matrix multiply.

As the matrix multiplication of the rotation matrices only affects the same rows of the

matrix we are multiplying (columns if performing the daggered operation) we have the

following two functions to compute the SU(2) subgroup multiplications. Where the

Algorithm 1 Computes U = SiU .

for j = 0→ Nc do
U [Ncrow(Si[s0]) + j]← s0U [Ncrow(Si[s0]) + j] + s1U [Ncrow(Si[s

∗
1]) + j]

U [Ncrow(Si[s
∗
1]) + j]← −s∗1U [Ncrow(Si[s0]) + j] + s∗0U [Ncrow(Si[s

∗
1]) + j]

end for

functions row and col indicate which row or column index the element of the rotation

matrix would have, the matrices are assumed to be stored in the usual row-major format

and the element Si[s
∗
1] is to be understood as the index of the matrix Si for the element
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Algorithm 2 Computes V = V S†
i .

for j = 0→ Nc do

V [col(Si[s0]) + jNc]← s∗0V [col(Si[s0]) + jNc]− s1V [col(Si[s1]) + jNc]
V [col(Si[s1]) + jNc]← s∗1V [col(Si[s0]) + jNc] + s0V [col(Si[s1]) + jNc]

end for

s∗1. For instance S3[s
∗
1] for SU(3) is the array element [6]. Upon using these functions

instead of the general matrix multiplies we got a 10× speed up for our APE smearing

procedure for SU(8).

2.2.2 Expansion and reunitarisation

The first method for exponentiating the Lie matrix A to SU(N) is a trivial Taylor

expansion of the exponential in U = eiA and a reunitarisation. This method is used

extensively in the gauge fixing procedure discussed in chapter 2, where we wish to

compute gauge transformation matrices of the form g(x) = ei∂µAµ(x). Considering our

generic U matrix again, the technique is to compute,

U = 1 + iA + O(A2). (2.33)

And reunitarise. The method we choose for reunitarising the matrix (because it is

the fastest) is to normalise a column or row of the matrix U (denoted u) in 2.33, and

compute the orthogonal column/row vector to that and normalise (denoted v). This

gives us two columns/rows which are orthonormalised, and we can force the determinant

to be unity by computing the signed conjugate minors of the two, i.e. the matrix U in

SU(3) can be considered as U = (u, v, (u× v)∗). As only one Gram-Schmidt procedure

is needed for SU(3), numerical stability is not an issue. For SU(Nc) a modified, stable

Gram-Schmidt method is required [88].

This technique is not unique, and if being used to project gauge links, not gauge

covariant. And so cannot be used in a smearing procedure where we are reunitarising

the parallel transport matrix, which lies between sites. This technique is fine [55] for

small perturbations of the gauge transformation matrices though, which live on the

sites.
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2.2.3 Exact exponentiation

As mentioned in Sec.2.1.2 by Cayley-Hamilton theorem, the exponential of an NxN,

invertible matrix can be written as,

U = eiA = f0INc×Nc + f1A + · · ·+ fNc−1A
Nc−1.

And the f’s can be found once the eigenvalues are known by solving the generic

Vandermonde system (Eq.2.9).

For exponentiation, we solve for the eigenvalues of A to compute the f’s, and use Eq.2.34

to compute the resulting matrix U. I will provide an example of the technique for SU(2),

with Hermitian matrix A being exponentiated to U ∈ SU(2), as the method for SU(3)

is well described in the original paper [117].

The eigenvalues of A ∈ su(2) are,

q± = ±
√
ℜ (A[0])2 + A[1]A[1]∗. (2.34)

The argument of the square root is real and positive. And hence so the eigenvalues are

real. The f’s are,

f0 = cos(q), f1 = i
sin(q)

q
. (2.35)

Care must be taken when the values of z are small (this problem arises in SU(3) also

[117]), and is alleviated by taking the Taylor expansion of the sinc function when

z < 0.0001 (0.05 for SU(3)). If z < 0.0001, we use the form (polynomial expansion

using Horner’s rule),

f1 = i
(
1− q

6

(
1− q

20

(
1− q

42

)))
. (2.36)

We are left with the resulting matrix for U,

(
f0 + f1ℜ (A[0]) f1A[1]

f1A[1]∗ f0 − f1ℜ (A[0])

)
.

Since f0 is purely real and f1 is purely imaginary we can readily see that f1A[1]∗ =

−(f1A[1])∗ and that f0−f1ℜ (A[0]) = (f0+f1ℜ (A[0]))∗, satisfying the SU(2) symmetry

requirements.

For our implementation, because analytic expressions exist only for the exact exponen-

tiation to SU(2) and SU(3) a more general method is required. For which we have two

options. One is to compute the matrix exponential in a brute-force fashion by Taylor

Series in A (for a more refined approach see the appendices in [67]), which is iterative

and requires control over the convergence. Or we use a library such as Lapack [6] or
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GSL [80] to compute the Eigenvalues of the Hermitian matrix A and use the generic

Vandermonde solver to compute the f’s. Caution is necessary with this method though,

because as we have seen from using the generic Vandermonde solver in the case for

taking the Logarithm (Log-C) there are occasional large instabilities corresponding to

close eigenvalues, and so this should only be used in a HMC update with vary careful

error handling.
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Chapter 3

Fixing the gauge

Gauge invariant lattice measures do not, by definition, require one to fix the gauge.

In perturbation theory however, the perturbative series is well defined only after this

excess degree of freedom in the fields is removed [138]. Gauge fixing on the lattice is

performed so that direct comparison to continuum perturbation theory can be made.

It would be ideal to fix to a perturbatively simple gauge such as Feynman gauge, but

the gauge fixing condition is difficult to implement on the lattice, apart from trivial

cases such as non-compact QED [54, 64].

One must instead look at smooth gauge fixing regimes for which an iterative procedure

can be followed to minimise a cost functional. Fixing to Landau gauge and Coulomb

gauge are two of the most common procedures. We will discuss the procedure for

Landau gauge as it completely fixes all the available degrees of freedom, and can

be used to match continuum perturbative calculations. A brief discussion on our

implementation for Coulomb gauge is also given, which will be useful in the context of

gauge fixed wall source propagators used in Chapter.6.

The Landau gauge fixing condition in the continuum theory for QCD is,

∂µAa
µ(x) = 0. (3.1)

If one were to restrict the summation range of µ, to one less than the dimension of our

theory we would have the Coulomb gauge fixing procedure, which has uses in lattice

simulations beyond matching to perturbation theory. I begin by discussing the case for

continuum four-dimensional U(1) gauge theory and then extend to non-Abelian lattice

gauge fixing.
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Considering the continuum functional,

F [A] =

∫
d4xAµ(x)Aµ(x). (3.2)

If we are at the minimum (min) of this function, and perform a gauge transformation,

Aµ(x) = Amin
µ (x) + ∂µΛ(x), (3.3)

away from it (where Λ is a smooth differentiable function of x),

∫
d4xAmin

µ (x)Amin
µ (x) ≤

∫
d4x

(
Amin

µ (x) + ∂µΛ(x)
)2

. (3.4)

Expanding out the square and integrating by parts we obtain,

0 ≤ −2

∫
d4x

(
∂µAmin

µ (x)
)
Λ(x) +

∫
d4x (∂µΛ(x))2 . (3.5)

If the gauge transformation is infinitesimal the Λ(x)2 term may be ignored and the

equality must hold order by order in Λ(x), so that at the minimum of the functional

the gauge condition is satisfied.

This allows for a method to minimise the cost functional under pure gauge transfor-

mations and obtain fields that satisfy the gauge condition. Upon expanding out the

integrand of a gauge transformed field, we have,

Aµ(x)Aµ(x) + 2 (∂µΛ(x)) Aµ(x) + (∂µΛ(x))2 (3.6)

If the gauge transformation Λ(x) = −α∂νAν(x), for small enough α the gauge

transformation step decreases the functional and describes a steepest descent step along

the gradient of ∂µAµ(x).

And so the g(x) ∈ SU(Nc), Aµ(x) ∈ su(Nc), non-Abelian continuum analog of Eq.3.3

can be written directly,

Aµ(x) = g(x)Aµ(x)g(x)† − ig(x) (α∂µ∂νAν(x)) g(x)†. (3.7)

3.0.4 Gribov copies

Unfortunately, as pointed out in [92] there are often many different solutions for

the Landau gauge fixing condition Eq.3.1 for continuum, non-Abelian field theories.

Smooth gauge-fixed lattice simulations also suffer from the Gribov ambiguity.

In lattice simulations, when fixing the gauge there can exist many independent local
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solutions to a smooth covariant gauge such that a∆µAµ(x) = 0. This can be illustrated

on the lattice by gauge fixing our configuration, then performing local random gauge

transformations over our original lattice links and running our gauge fixing algorithm

again [84]. Ideally, this would provide us with the same result for the gauge fixing

functionals (Eq.3.24), but in practice does not. The differing ensembles determined

from such a procedure can be viewed as the lattice variant of the Gribov copies for that

configuration.

One method to attempt to control the affect of having numerous local minima of the

gauge fixing functional is to rerun the gauge fixing from random gauge transforms many

times keeping the “best” configuration (the best copy “bc”), the one that does the best

job of minimising the functional. However, no numerical minimisation heuristic can

ever guarantee we have found the global minimum. A comparison between the best

copy (bc) and the worst copy (wc) drawn from a sufficient number of copies should be

able to illustrate whether Gribov copies play a systematically important rôle in gluonic

observables.

3.1 Lattice gauge fixing

Gauge parallel transport matrices (links) are (Eq.1.10) defined to lie halfway between

sites in the lattice theory,

Uµ

(
x + a µ̂

2

)
= eiAµ(x+a µ̂

2 ).

Starting from the continuum definition of our gauge fixing procedure in Eq.3.7, we first

note that the continuum gauge transformation is translated to the lattice by,

Uµ

(
x + a µ̂

2

)
= eiAµ(x+a µ̂

2 ),

Uµ

(
x + a µ̂

2

)g
= g(x)eiAµ(x+a µ̂

2 )g(x + aµ̂)†,

Uµ

(
x + a µ̂

2

)g
= g(x)(1 + iAµ

(
x + a µ̂

2

)
+ O(A2))(g(x)† + a∂µg(x)† + O(a2)),

Uµ

(
x + a µ̂

2

)g
= 1 + ig(x)Aµ

(
x + a µ̂

2

)
g(x)† + ag(x)∂µg(x)† + O(a2),

Uµ

(
x + a µ̂

2

)g
= eiAµ(x+a µ̂

2 )
g

, (3.8)

where we have used the definition of the gauge-transformed gluon fields.

Aµ

(
x + a µ̂

2

)g
= g(x)Aµ

(
x + a µ̂

2

)
g(x)† − ig(x)∂µg(x)†. (3.9)
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Under Taylor expansion to leading order in a, we can see that the definition,

g(x) = eiαa∆µAµ(x), (3.10)

recreates the continuum condition from Eq.3.7. Where we use the finite difference

definition of the derivative (Eq.1.17),

a∆µAµ(x) =
(
Aµ

(
x + a µ̂

2

)
−Aµ

(
x− a µ̂

2

))
+ O(a3).

Pulling the definitions from Eq.3.8 and Eq.3.10, the procedure for iteratively fixing to

a smooth gauge on the lattice is.

g(x) = eia∆µAµ(x),

Uµ

(
x + a µ̂

2

)
= g(x)Uµ

(
x + a µ̂

2

)
g (x + aµ̂)† . (3.11)

This method describes a local minimisation procedure.

3.1.1 Improved numerical derivative

The definition of the derivative we use for our fields is symmetric because the links lie

halfway between the sites of our lattice, and hence automatically a2-improved. We can

take the neighbouring terms into consideration and push the error in the derivative to

O(a4) in a weak field approximation and Taylor expansion in Aµ

(
x + a µ̂

2

)
. The linear

combination,

a∆µAµ(x) = +
9

8

(
Aµ

(
x + a µ̂

2

)
−Aµ

(
x− a µ̂

2

))
,

− 1

24

(
Aµ

(
x + a

3µ̂

2

)
−Aµ

(
x− a

3µ̂

2

))
+ O(a5∆5

µA(x)), (3.12)

suffices. Although this definition of the derivative is accurate to O(a5) unless the

fields are defined exactly, or the next term in the sine approximation is taken in the

Hermitian projection (Log-A) the order of the error remains the same. As described

later in Sec.3.2.1, this definition of the derivative leads to a slightly different definition

of the lattice momentum.

38



One could eliminate the O(a5) errors by taking the combination,

a∆µAµ(x) = +
75

64

(
Aµ

(
x + a µ̂

2

)
−Aµ

(
x− a µ̂

2

))
,

− 25

384

(
Aµ

(
x + a

3µ̂

2

)
−Aµ

(
x− a

3µ̂

2

))
,

+
3

640

(
Aµ

(
x + a

5µ̂

2

)
−Aµ

(
x− a

5µ̂

2

))
+ O(a7∆7

µA(x)). (3.13)

In practice this is a poor idea, as often gauge actions with O(a2) errors are used, and

to see the benefits of higher order improvements we need to control the other leading

order errors in the procedure.

3.1.2 Exponentiation

Once we have computed the derivative using one of the definitions of the gauge field

(Chapter.2) and one of the definitions of the derivative (Sec.3.1.1), we can now perform

one iteration of the steepest-descents step of Eq.3.1. We must exponentiate our

calculated derivative to the gauge transformation matrices.

The authors in [55] suggest the Log-A definition of the fields and a Taylor expansion

of the exponential up to the derivative term and a reunitarisation back into the group

is acceptable (Sec.2.2.2), this one of the most common procedures and is often called

the Cornell type [135]. When it comes to computing different Landau gauge fixing

procedures we call it Fixing-α (Sec.3.8).

The leading error for the procedure is ambiguous because there is either a term

proportional to O(αa3∆
(3)
µ Aµ(x)) from the derivative or O(αA3) from the Log-A

definition of the fields. There is a also an error term of O(α2a∆µAµ(x)) from the

truncated exponential. The term from the truncated exponential is expected to be

small as α must be small to ensure we are minimising a∆µAµ(x).

We can classically, systematically, remove errors from the procedure by improving the

approximations in each sector. Although the reunitarisation procedure does suffice, we

can do much better by utilising Cayley-Hamilton theorem allowing us to exponentiate

αa∆µAµ(x) exactly. The tools for doing so in the context of link variables have been

known since the publication of the STOUT smearing technique [117] and are discussed

in 2.2.3. Even before the advent of the exact exponentiation technique, accurate

exponentials (often by high order Taylor expansions of the matrix A) of Hermitian

matrices have play a pivotal rôle in the Hybrid Monte Carlo (HMC) update [89].

Being an exact expression for the exponential we remove the terms O(α2) and higher in
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the estimation of the error of our procedure coming from the exponential, which I have

just argued is sub-leading. Exact exponentiation used in conjunction with the exact

Hermitian projection (Log-C) of the fields should leave the error from the derivative as

the only error term. We can then use the derivative form in 3.12 to obtain an O(a5)

accurate and beyond algorithm, although we are then limited to the accuracy of our

action and other discretisation errors.

3.2 Fourier acceleration

I switch back to the case of electromagnetism for simplicity for now. The steepest

descents method in Eq.3.1 suffers from critical slowing down. This can be shown by

taking the Fourier transform of the derivative of the updating procedure,

pµAµ(p)(n+1) = pµAµ(p)(n) − αp2pµAµ(p)(n). (3.14)

Rearranging, we see that there is a recurrence (where the final step is correct for small

α),

pµAµ(p)(n+1) = pµAµ(p)(n)
(
1− αp2

)
,

pµAµ(p)(n+1) = pµAµ(p)(n−1)
(
1− αp2

)2
,

pµAµ(p)(n+1) = pµAµ(p)(0)
(
1− αp2

)n
,

pµAµ(p)(n+1) = pµAµ(p)(0)e−nαp2
. (3.15)

This illustrates that the momentum modes close to zero will take much longer to

converge than the largest momentum modes. There is an exponential inequivalence

in the convergence speed of the momentum modes.

Fourier acceleration [55] attempts to ameliorate this effect by forcing each mode at each

iteration of the steepest descents to converge at the same rate. This is performed by

rescaling the p2 dependence in momentum space, as illustrated below (where F and

F̃ are forward and backward discrete Fourier transforms, and the factor of the volume

(V) is to normalise the result),

a∆µAµ(x)(n+1) = a∆µAµ(x)(n) − α

V
F̃

p2
Max

p2
F
(
a2∆(2)

µ

)
a∆µAµ(x)(n). (3.16)

At the cost of two discrete Fourier transforms, critical slowing down is removed. For

this to be a viable updating procedure, Fast Fourier Transforms (FFTs) need to be

used, for our implementation the auto-tuning library FFTW has been used [76].
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Considering the lattice analog of Eq.3.7, the derivative of the gauge field update is,

a∆µAµ(x)(n+1) = a∆µAµ(x)(n) − αa∆µDµ

(
a∆νAν(x)(n)

)
. (3.17)

Where DµΛ(x) = a∆µΛ(x) − i [Aµ(x),Λ(x)], for g(x) = eiΛ(x). We see that for non-

Abelian fields it is no longer the slow eigenvalues of a2∆
(2)
µ that we wish to eliminate,

but rather a∆µDµ which depend on the field. It was seen in [55] that in momentum

space the difference between these two is seemingly small, and the Abelian Fourier

acceleration technique for non-Abelian fields was still effective, and is what we shall

use.

The Fourier accelerated algorithm for SU(Nc) lattice gauge fields we use is,

g(x) = exp

(
i
α

V
F̃

p2
Max

p2
F a∆µAµ(x)

)
,

Uµ

(
x + a µ̂

2

)
= g(x)Uµ

(
x + a µ̂

2

)
g(x + aµ̂)†. (3.18)

3.2.1 Momentum space gluon fields

The Fourier transform of the gauge field Aµ

(
x + a µ̂

2

)
is performed element-by-element

on the matrix, we define the momentum-space matrices,

Aµ(p) = eipµ/2
∑

x

eipµxµAµ

(
x + a µ̂

2

)
. (3.19)

The factor eipµ/2 must be present because we do not perform the Fourier transform

over x’s living halfway between the sites, but rather on the sites. And this needs to be

corrected. The momenta pµ are defined as,

pµ =

(
2πnµ

Lµ

)
. (3.20)

where the nµ’s are the integer-valued Fourier modes which lie between
−Lµ

2 and
Lµ−1

2

where the Lµ’s are the length of the lattice in the µ direction.

If we consider the symmetric derivative Eq.1.17 of our fields again, but this time in
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momentum space,

∑

x

eipµxµAµ

(
x + a µ̂

2

)
= eipµ/2Aµ(p),

∑

x

eipµxµAµ

(
x− a µ̂

2

)
= e−ipµ/2Aµ(p),

∑

x

eipµxµ∆µAµ(x) = 2i sin(pµ/2)Aµ(p). (3.21)

This equation tells us that the minimisation condition ∂µAµ(x) = 0 in momentum space

is best described by 2 sin(pµ/2)Aµ(p) = 0, suggesting that the momentum definition

for our gauge fields we should use is the so-called “sinus” definition [36].

Going back to the Fourier accelerated algorithm in Eq.3.2, we see that I did not define

the values p2 and p2
Max, we define them as (for the unimproved derivative)

p2 = 2

(
Nd −

∑

µ

cos(pµ)

)
. (3.22)

where p2
Max = 4Nd.

If we consider the nearest-neighbour improved numerical derivative, we obtain a slightly

different Landau condition in momentum space,

2i

(
9

8
sin (pµ/2)− 1

24
sin (3pµ/2)

)
Aµ(p) = 0. (3.23)

Again we associate our momentum with this quantity, pµ = 2
(

9
8 sin (pµ/2) − 1

24 sin (3pµ/2)
)
,

and similarly for the O(a7) derivative, pµ = 2
(

75
64 sin (pµ/2) − 25

384 sin (3pµ/2) + 3
640 sin (5pµ/2)

)
.

This then, similarly affects p2
MAX, which are included as 7

64Nd and 1170
960 4Nd.

3.3 Linear and Logarithmic fields

The gauge fixing procedure fixes the description of the gauge fields and if using

a different description of the derivative, the momentum definition. If one were to

check the momentum space Landau or Coulomb condition one would need to use the

respective field definition used in the gauge fixing procedure. This has been seen in

[99] and not in terms of the logarithm of links but links of gauge fields defined as

Aµ

(
x + a µ̂

2

)
=

Uµ(x+ µ̂
2 )

2−Uµ(x− µ̂
2 )

2

4i

∣∣
traceless

in [85]. This is because the two functionals

that we fix to are different.

Denoting the Hermitian projected (Log-A) links with a superscript “lin” and the
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logarithmic with a superscript “log”, the logarithmic functional is just the lattice analog

of the continuum one,

F log(U) =
1

NcNdV

∑

x,µ

Tr

2

[
Alog

µ

(
x + a

µ̂

2

)
Alog

µ

(
x + a

µ̂

2

)]
. (3.24)

Taylor expanding the link matrices to the order of the linear field definition, we can see

that the linear field cost function can be described by,

F lin(U) =
1

NdV

∑

x,µ

Fµ(x). (3.25)

as is shown by,

Fµ(x) = 1− Tr

2Nc

[
Uµ

(
x + a µ̂

2

)
+ Uµ

(
x + a µ̂

2

)†]
,

Uµ

(
x + a µ̂

2

)
= 1 + iAµ

(
x + a µ̂

2

)
− 1

2
Aµ

(
x + a µ̂

2

)2
+ O(a3),

Uµ

(
x + a µ̂

2

)†
= 1− iAµ

(
x + a µ̂

2

)
− 1

2
Aµ

(
x + a µ̂

2

)2
−O(a3),

Fµ(x) =
Tr

2Nc

[
Aµ

(
x + a µ̂

2

)2
]

+ O(a4). (3.26)

Therefore our gauge fixing functional for the linear definition of the gauge fields is,

F lin(U) = 1− 1

NcNdV

∑

x,µ

ℜ
(
Tr
[
Uµ

(
x + a µ̂

2

)])
. (3.27)

Effective minimisation of this quantity, means effective maximisation of the link trace,

this is not necessarily true for the log fields.

The gauge fixing algorithm to fix the logarithmic links is exactly the same as the

algorithm for fixing the Hermitian projected. With the caveat that in practice one

should use either the Vandermonde approximate (Log-B) definition or the Hermitian

projected definition (Log-A) for the logarithm of the matrix for very early convergence

times (we use the Vandermonde approximation for θ > 0.1).

A similar issue was found in [99]. This is likely due to the finite difference approximation

being a poor estimate for large fluctuations of the fields and is simply a numeric

difficulty, the generic Vandermonde method compared to the analytic method (Eq.2.20)

is favoured as it is likely to underestimate field fluctuations but still represent the

analytical logarithm of the link more accurately than the Hermitian projection (Log-A)

(as can be seen in Fig.2.1), this method heuristically always converges, although this

is never guaranteed.
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3.4 Measuring the gauge fixing accuracy

Controlling the algorithm and knowing at what accuracy to stop is a vital aspect of

minimisation routines. If one does not fix to a high enough precision there is a possibility

that you cannot accurately match to continuum perturbation theory in a specific gauge.

This will be discussed in greater detail in Chapter 2, in the context of the measurement

of gluonic two and three point correlation functions.

Now, I will address several ways to measure the convergence of the algorithm, and the

merits of each. One should probably check many of these in conjunction to be satisfied

with the result.

We have shown in Sec.3.3, Eq.3.27 that for the linear definition of the fields (Log-A) the

cost function is the maximisation of the average link trace, we can use this to monitor

the gauge fixing accuracy Φ, by the term,

Φ = 1− Ū ′

Ū
,

Ū =
1

NcNdV

∑

x,µ

ℜ
(
Tr
[
Uµ

(
x + a µ̂

2

)])
.

Where the primed link is the updated link of the procedure. Apart from needing to

calculate the average link trace at every step, this method also requires subtraction from

unity and numerical division. This is problematic as we will only be able to describe the

gauge fixing accuracy to the order of the unit in the last place (ULP) before this measure

becomes unstable, this is the measurement made by the Chroma software library [69]

in their implementation of a Landau gauge fixing routine . It should also be noted that

this method cannot be used to measure the accuracy of a logarithmic field definition

gauge fixing routine as the gauge fixing functional is different, and trace maximisation

does not necessarily mean minimisation of the logarithmic field functional.

Another method to monitor the accuracy would be to note that at each iteration of the

update, the gauge transformation matrices should tend to the identity matrix because

each update is exp (ia∆µAµ(x)) and we are minimising a∆µAµ(x). The measure would

be,

Ω = 1− 1

NcV

∑

x

ℜ (Tr [g(x)]) . (3.28)

This method is a factor of Nd cheaper than the Φ measure (Eq.3.4), as the sum runs

over sites and not links, which require a sum over polarisations as well. The same

arguments about numerical stability apply to this method as the Φ measure, because

we are performing a comparison with 1. Unlike the Φ method, this measure is not

dependent on the definition of the field.
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The method that we choose to determine the accuracy of our gauge fixing procedure is

a direct lattice measurement of the gauge condition (i.e. the absolute-valued squared

lattice average of the divergence of the fields),

Θ =
2

NcV

∑

x

Tr
[
(a∆µAµ(x))2

]
. (3.29)

We choose this for several reasons, first the quantity (a∆µAµ(x))2 is purely real and is

equivalent to (the factor of 2 disappears due to Eq.4.16),

Θ =
1

NcV

∑

x

N2
c −1∑

a

|a∆µAa
µ(x)|2. (3.30)

i.e. The sum of every Lie element of the matrix multiplied by its conjugate, which

is computationally cheap to perform. The second reason for using this quantity to

monitor the accuracy is that a∆µAµ(x) is already computed in the algorithm, and Θ

can easily be computed in step. Thirdly, this measure does not suffer from the same

numerical accuracy problems as the two above, as long as each a∆µAµ(x) in the sum

is of approximately similar magnitude (which is the case) this measure is stable. This

measure by definition incorporates the field and derivative definition.

There is also another measure that can be used to illustrate the accuracy of the gauge

fixing procedure, advocated in [122] and first suggested in [113] and seen from the zero

momentum temporally polarised gluon propagator in [94], this involves a check of the

constancy of the sum of temporal fields per time slice,

Γ =
1

(Lt − 1) (N2
c − 1)

∑

i∈x,y,z.. 6=t,t6=0

|At(i, t = 0)−At(i, t)| . (3.31)

this is a very similar measure to that of Eq.3.29, as the minimisation procedure suggests,

At

(
i, t + a

1

2

)
−At

(
i, t− a

1

2

)
= 0. (3.32)

and hence for periodic boundary conditions this implies constancy between time-slices.

This is an expensive measure and is not well suited for monitoring the accuracy as the

algorithm progresses, but it is a useful check to ensure sufficient gauge fixing accuracy.

It is also dependent on the definition of the gauge fields used in the steepest descent

derivative.

Fig.3.1 illustrates the methods that could be used to determine the gauge fixing

accuracy. The Θ (green, second from the top) measure is the one we use, and is

seen to be pessimistic compared to the Ω and Φ (red and black, bottom two lines). The

Ω and the Φ measures are consistent, but suffer from round-off error at the order of
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Figure 3.1 The gauge fixing accuracy measures Φ,Ω,Θ and Γ for an arbitrary
163 × 32 configuration, fixed to Landau gauge using the Fourier-
accelerated algorithm.

the double precision ULP (10−16).

3.5 Lattice Coulomb gauge

Much of the discussion for the Landau gauge fixing is applicable for fixing to the

Coulomb gauge, as the Coulomb condition is very similar to the Landau,

a∆iAi(x) = 0, i ∈ x, y, z, .. 6= t. (3.33)

where instead of Greek indices I use Latin indices to signify that we are working in

spatial coordinates.

The Fourier acceleration algorithm is again,

g(x) = exp

(
F̃Nd−1

iαp2
Nd−1,Max

L3p2
Nd−1

FNd−1 a∆iAi(x)

)
,

Uµ

(
x + a

î

2

)
= g(x)Uµ

(
x + a

î

2

)
g(x + aµ̂)†. (3.34)

It has been written this way to illustrate that although we are minimising the spatial

derivative, we still need to gauge transform the temporal links to ensure we are applying

a pure gauge transform. The momenta are spatial in extent and the Fourier transforms

are on the Nd − 1 subspace. The computation of the gauge transformation matrices is
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completely t-independent and this allows for a time-slice by time-slice procedure, this

turns out to be a fast and computer memory-wise cheap method.

The method I propose requires the storing of three time-slice’s worth of gauge

transformation matrices, and contrary to the Landau gauge fixing procedure (where

the links are overwritten each iteration) the gauge transformation to rotate the links is

performed only after convergence. This requires the storage of the gauge transformation

matrices as the accumulated product,

g(n)(x) = g′(n)(x)g′(n−1)(x).....g′(0)(x), g′(0)(x) = I. (3.35)

Where the index “n” means the nth iteration of the gauge fixing algorithm and the prime

means the gauge transformation generated by that iteration. This means that the fields

Uµ

(
x + a µ̂

2

)′
and Uµ

(
x− a µ̂

2

)′
must be computed within the derivative of the steepest

descents. Moving to a slice-by-slice iteration scheme is a big advantage, as we see that

the number of iterations to convergence varies considerably on a slice-by-slice basis (see

Fig.3.2). If we proceeded as in the Landau case performing an Nd-dimensional Fourier

transform and not regarding the temporal independence, we would waste iterations on

time-slices that have already converged to our desired accuracy.

We require three temporary time slice’s worth of gauge transformation matrices because

the rotation of the temporal links needs to be performed, and so one must converge

the algorithm on the above time-slice so that this can be performed (we employ this

technique as a computer memory saving procedure in the context of link smearing in

Chapter.5).

The layout for this algorithm is as follows. First we set the three time-slice wide gauge

transformation matrices to the identity we will call these “gauge slice end, gauge slice”

and “gauge slice up”. Second, one must compute the gauge transformation matrices of

the time-slice t = 0 and the one above it at t = 1. We put the gauge transformation

matrices of time t = 0 in “gauge slice end” and t = 1 in “gauge slice”.

We then gauge transform the link matrices on the time-slice t = 0. We then loop over

the rest of the time-slices from t = 2 up to t = Lt − 1, setting “gauge slice up” to the

identity and computing the gauge transformation at t + 1 (we already have the gauge

transformation matrices at t in “gauge slice”). Then gauge transforming the links for

t and copying the matrices from “slice gauge up” to “slice gauge” and repeating. The

final gauge transformation at time-slice t = Lt − 1 is performed using the matrices in

“slice gauge up” and “slice gauge end”. It should be noted that the link matrices “U(t)”

are all of the matrices on the timeslice “t”.

The algorithm for this is shown in 3, where it should be understood that the function
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Algorithm 3 The slice-by-slice iterative Coulomb gauge fixing algorithm.

gauge slice end← gauge slice← INc×Nc

Fourier Accelerate( gauge slice end , U( t=0 ) )
Fourier Accelerate( gauge slice , U( t=1 ) )
gauge transform( gauge slice end , U( t=0 ) , gauge slice )
for t = 2→ Lt − 1 do

gauge slice up← INc×Nc

Fourier Accelerate( gauge slice up , U( t ) )
gauge transform( gauge slice , U( t - 1 ) , gauge slice up )
gauge slice← gauge slice up

end for

gauge transform( gauge slice , U( t ) , gauge slice end )

“Fourier accelerate” produces the gauge transformation matrices on that time-slice

via Eq.3.34 accumulating them until convergence á la Eq.3.35, and “gauge transform”

performs the gauge transformation for all of the links on that time-slice.

Variations in the procedure

To illustrate the slice-by-slice variation of the Coulomb gauge fixing procedure we plot

a graph of the average (estimated from a bootstrap procedure) number of iterations

required to meet Θ < 10−14. Also plotted are the maximum and minimum variations

from this average for 50 Gribov copies on the same, example 163 × 32 configuration.

This is shown in Fig.3.2.
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Figure 3.2 Average iterations to convergence per time-slice for Fourier
Accelerated Coulomb gauge fixing, black circles show the average
and 68% confidence limit from a bootstrap analysis. The error bars
illustrate the maximum and minimum number of iterations from this
value. The distribution is created with a single configuration over 50
random gauge transformations of the initial configuration.
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Fig.3.2 shows that the slice-by-slice variation can be very large, the minimum number

of iterations was 327 and the maximum 5004, which is over 14× larger. Although the

average number of iterations is small and does not fluctuate much per slice, illustrative

of a convergence issue with some initial starting fields which should be avoided.

3.6 The tuning parameter

To obtain the best performance from the algorithm the parameter α must be tuned

sufficiently. We consider many copies of the same β = 2.13, Iwasaki gauge, 163 ×
32 configuration as a simple example, and claim there is a very mild lattice spacing

dependence for the tuning.
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Figure 3.3 Variation of the tuning parameter α versus the total number of
iterations of the algorithm for the Coulomb (Fig.(a)) and the Landau
(Fig.(b)) gauge fixing procedures to attain an accuracy of Θ < 10−14

with Fourier acceleration for an example 163 × 32 configuration.

Fig.3.3 shows the total number of iterations needed to attain an accuracy of Θ < 10−14

for the Fourier Accelerated Coulomb and Landau gauge fixing routines versus the tuning

parameter α, the error bars are from a bootstrap analysis over 150 Gribov Copies of

a thermalised 163 × 32, β = 2.13 Iwasaki gauge nf = 2 + 1 Domain Wall Fermions

configuration. We see that poor selection of the tuning parameter could yield a slow-

down in the algorithm of a factor of 4 for the Landau and nearly a factor of 5 for the

Coulomb. Although the Coulomb gauge fixing takes many more iterations to achieve

the required accuracy, each iteration over the (Nd−1) spatial hypercube is much cheaper

than a Landau iteration, it may be surprising to note that the Coulomb gauge fixing

routine converges in about half the time of the Landau gauge fixing routine. Effective

tuning of the parameter α can lead to a ≈ 3× speed up for the procedure.

49



3.6.1 A note on convergence

One would hope that the algorithm succeeds at fixing the gauge to some (appropriately

chosen) accuracy, but we would not want our algorithm to continue indefinitely,

especially if it gets stuck in a local minimum and does not reach convergence.

We could enforce a flexible cut-off on the number of iterations that we perform the

Fourier acceleration with, stressing that it should be semi-definite because we should

allow leeway if we are close to our convergence criteria, due to the cost in restarting. We

can then use our the fact that our algorithm is local to our advantage, if the algorithm

has not converged we start again but perform a random gauge transformation of the

fields deforming the initial state with the goal of attaining an easier path to convergence.

We allow for only a small number of these random transformation steps after non-

convergence to again stop the algorithm from continuing forever, which could happen

with a particularly poor choice of the tuning parameter. Usually, a maximum cut-off

on the number of iterations (O(8000) over the whole lattice for Landau or per slice for

Coulomb) and the maximum number of restarts being around seven has been enough

to obtain convergence on all of our ensembles. Although there does exist very minor

volume dependence for the Fourier accelerated algorithm compared to the number of

iterations required to meet fixed convergence (As is seen later in Fig.3.8), so some care

is needed to tune the maximum number of iterations for the procedure also.

This method is very beneficial for fixing to Coulomb gauge. As can be seen in Fig.3.2,

the variations in the procedure are large but the average is orders of magnitude lower

than the extrema. Putting an upper limit on the number of iterations allows for

faster convergence of the algorithm, by removing the need to converge exceptional,

ill-convergent initial configurations. As our routine is a time-slice by time-slice

implementation, only a random restart on that time-slice is necessary. Making this

a cheap technique.

It is quite common for our Coulomb gauge fixing routine to have time slices not converge,

for a set of 12 643 × 128, β = 2.25 configurations fixed to Θ = 10−14 accuracy with

maximum number of iterations 9000 and with 102 leeway for convergence, around 7%

of the time-slices failed to converge.

3.7 Improvements in smooth lattice gauge fixing

In this section I detail various improvement measures investigated to allow for

computationally faster or more accurate fixing procedures. I discuss first algorithmic
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improvements and finish with theoretical improvement techniques such as smeared

preconditioning, Maximal Axial Gauge fixing as a precomputation step and residual

gauge fixing for a post-processing step only available for Coulomb gauge fixing.

3.7.1 Accelerating the accelerator

If we consider the algorithm in Eq.3.2, we note that the parameter
iαp2

Max
V p2 is independent

of the stage of the procedure and can be precomputed as a look up table at the beginning.

For the next improvement we specialise to SU(3).

The matrix dAµ(x) = a∆µAµ(x) is guaranteed to be traceless and Hermitian and has

the structure, 


dAµ[0] dAµ[1] dAµ[2]

dAµ[1]∗ dAµ[4] dAµ[5]

dAµ[2]∗ dAµ[5]∗ −(dAµ[0] + dAµ[4])




For the Fourier acceleration, there is no need in Fourier transforming all of the elements

backward and forward, instead only the elements 0,1,2,4 and 5 need to be transformed

as after the backward transform we can rebuild the resulting Hermitian matrix by

symmetry. This accounts to performing 10 (5 forward and backward) complex to

complex FFTs instead of 18. We can save on one more FFT each way (bringing the

total to 8) by noting that the elements A[0],A[4] and hence A[8] are necessarily real.

This means that a complex to complex transform on A[0] or A[4] is wasting its time

Fourier transforming the imaginary part which is 0. What we do is pack the real element

of A[4] into the imaginary part of A[0]. In general, for SU(Nc) we only perform the

FFTs on the (Nc(Nc + 1)/2 − 1 independent elements of the Hermitian matrix, where

the -1 comes from the fact that we can reproduce the last element by tracelessness.

The Fourier accelerated algorithm should be considered to be two distinct parts. The

gauge transformation part should perform generically as O(V ) where V is the lattice

volume, but the Fourier acceleration part should perform as O(V log(V )). At large

enough volume we will be spending most of our time performing Fourier transforms

and so effectively minimising the number we perform is vital for decent volume scaling.

Thread parallelism

Effective parallelism can be achieved in two ways. As we are Fourier transforming

each element of the matrix separately, each Fourier transform could be performed by a

single thread. In fact, it is more pertinent to let each thread perform the forward and

backward Fourier transform, as there are fewer calls for synchronisation. This method
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works well for a small small number of threads, logically when the number of threads is

greater than Nc(Nc + 1)/2− 1 (where integer division has been used) then some of the

threads are being left idle. Some Fourier transform libraries (such as v3.3 of FFTW

[76]) allow for parallel FFTs to be performed, which is preferred when many threads

are available and the problem size is large.

3.7.2 Maximal Axial Gauge improvement

To help alleviate the problems due to Gribov copies in our gauge fixing procedure, one

could attempt to gauge fix to an absolute (or as near as possible) gauge to locate a

singular gauge orbit and then apply the smooth gauge fixing procedure with the hope

that one stays on that gauge orbit. We considered the improvement of fixing to the

Maximal Axial Gauge (MAG) which sets many gauge links to unity in a gauge invariant

manner, as detailed in [143].

This gauge is achieved by selecting a starting point at index “0”. And rotating all

of the links in the x-direction to the identity, which is done by setting the gauge

transformation matrix at site x + ax̂ to be the product of the links previously and

the gauge transformation matrix at site 0 to be the identity.

g(0) = I, g(x) =

x−1∏

i

Uµ

(
i + a

µ̂

2

)
(3.36)

This leaves the link at x = Lx−a x̂
2 to hold all of the gauge-invariant information such as

the Polyakov loop. The algorithm sets all of the links in the y-direction to the identity

in the same way, by starting from the sites with links rotated in the x direction (and

setting the gauge transformation matrices at these sites to the identity) and travelling

up the y-direction rotating the links. This is repeated for the rest of the directions, this

improvement can be used in conjunction with the Landau gauge fixing procedure as it

does not completely fix the lattice degrees of freedom and so can be performed with

random restarts to control convergence.

It is impractical to use this when fixing to Coulomb gauge using our implementation,

because to use MAG fixing we need to converge each slice fully without randomly

restarting, and so we remove many benefits from having a convergence cut-off.

Fig.3.4 shows two overlain histograms of the distribution of Gribov copies’ functionals,

one (the blue) having been preconditioned with the MAG treatment, and the other

(the red) being from the standard gauge fixing treatment. We see that the MAG

preconditioning for Landau gauge fixes us to minima, which do not for the majority
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Figure 3.4 Histogram of the gauge functional histogram from 600 Landau gauge
Gribov copies for an example 163 × 32 β = 2.13 Iwasaki gauge,
Nf=2+1 DWF configuration. Showing the functional from the MAG
preconditioning and the Fourier accelerated gauge fixing algorithm,
and using the Hermitian projection of the links and the symmetric
finite difference derivative.

of copies minimise the the functional effectively compared to the un MAG fixed. This

is in our opinion a detrimental effect, and so MAG improvement will not be discussed

further.

3.7.3 Smeared-preconditioned improvement

We also looked at a smeared “preconditioned” improvement, whereby one smears the

original gauge field using some procedure (the details of smearing procedures will be

introduced in Chapter.5) to obtain a smoother background field. This field is then

gauge fixed to some accuracy and the complete gauge transformation matrices from

the smeared and fixed fields are used to gauge rotate or “precondition” the original

configuration. This was first suggested in [97] and the usual gauge fixing method was

then run on top of the preconditioned field. This method was first seen to provide a

unique Gribov copy for several randomly gauge transformed versions of the same very

small lattices.

53



The idea behind this procedure is that the algorithm on “rough” gauge ensembles gets

stuck in one of the many local minima and so the smearing transformation smooths the

gauge field by reducing UV fluctuations in the gauge field (by a kind of neighbouring

field average which minimises the gauge action). So that it is easier for the algorithm

to find a global maximum, with the hope that the information of the original field is

not lost. By rotating our original field with the solution to the smeared gauge field we

attempt to start the configuration in a space that is likely closer to the global maximum.

In practice this method does not and cannot guarantee a global minimum, but can

often provide a better minimum of the gauge fixing functional. This procedure can be

randomly restarted, but this must occur at the beginning of the algorithm and so is

expensive as a re-read, and re-smear and fix must be performed.

I propose a method whereby we use the smearing preconditioning over several random

gauge transforms of the original ensemble and select the one which minimises the

functional the best, this is empirically seen to be better than obtaining copies from

just a random transform. The gauge fixing for both the smearing and the comparing

of copies can be done “roughly” i.e. to a small accuracy of Θ ≈ 10−8 and then the final

best copy can be fixed to the desired accuracy. This makes the algorithm considerably

cheaper.

0.1569 0.157 0.1571 0.1572 0.1573 0.1574 0.1575 0.1576 0.1577

Functional

0

10

20

30

40

50

Fr
eq

ue
nc

y

5 Hits STOUT preconditioned
Unpreconditioned

Figure 3.5 Smeared preconditioning improvement compared with the normal
Fourier accelerated gauge fixing algorithm for 150 copies of a
163 × 32, β = 2.13, nf = 2 + 1, aml = 0.01 DWF thermalised
configuration.
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Fig.3.5 illustrates the ability for this method to find better Gribov copies than the

unpreconditioned. As there is a much greater frequency of copies with a lower

functional for the smeared-preconditioned, and a few copies with lower functionals than

the unpreconditioned. Upon comparison of the best copies from the preconditioned

compared to the best copies from the unpreconditioned for 20 more configurations and

150 Gribov copies we see that 14 out of the 20 of the smeared-preconditioned best

copies had a lower functional than the unpreconditioned.

For the same reason the MAG precomputation has incompatibilities with the slice-

by-slice Coulomb gauge fixing technique, smeared-preconditioning also cannot be

effectively used.

3.7.4 Fixing the residual gauge degrees of freedom

As the continuum Coulomb gauge expression suggests (∂iAi = 0), we have not put

any constraints on the temporally polarised gauge fields. One might be concerned that

as we are allowing for an unaccounted-for extra degree of freedom in our procedure,

we might have large fluctuations of the field in the unfixed direction. The proposed

solution ([40, 52] and [118]) is to fix to the so-called lattice Minimal Coulomb Gauge, by

a procedure of fixing the residual degree of freedom. This technique is gauge invariant

and can easily be performed as a post-processing step in the gauge fixing.

Once we have our Coulomb gauge fixed fields, we compute the quantity,

Y (t) = ProjSU(Nc)

(
1

LxLyLz...LNd−2

∑

x

UNd−1(x, t)

)
(3.37)

Where the projection is a trace maximisation routine as described in Sec.2.2.1. We

then perform the gauge transformation by the recurrence,

U ′
t(x, t) = g(t)Ut(x, t)g(t + 1)†

U ′
i(x, t) = g(t)Ui(x, t)g(t)†. (3.38)

Where the gauge transformation matrices are defined,

g(t + 1) = g(t)Y (t), g(0) = I. (3.39)

And hence set the quantity Y (t) to the identity for every time-slice but the last. This

is akin to the method for fixing to a lattice axial gauge insofar as we are selecting

rotations that automatically rotate the links in one direction to the identity, and the

gauge invariant information exists in the final links.
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Figure 3.6 The average spatial and temporal link trace for 163×32,243×64 and
483 × 96, β = 2.13 Iwasaki gauge, nf=2+1 Domain Wall Fermion
configurations against the logarithm of the number of lattice sites.

Fig.3.6 shows the average spatial and temporal links after Coulomb gauge fixing and

residual gauge fixing post-processing for fixed β and hence lattice spacing. We see

that in this regime the spatial link value is constant with volume, but the temporal

link varies strongly with volume. Similar scaling with lattice volume was seen in [118].

Without residual gauge fixing the average temporal link will be consistent with 0.

3.8 Benchmarks

I consider four different types of Landau gauge fixing to investigate various states of

improvement, and investigate their tuning and the relative computational cost. The

four types considered are all Fourier accelerated variants and the difference between

each is the definition of the field, the order of the exponentiation for the gauge

transformation matrices and the order of the derivative.

We call Fixing-α the standard Fourier-accelerated Cornell approach, being the usual

symmetric difference derivative of the Log-A definition of the fields and reunitarisation

(2.2.2) in the exponentiation. Fixing-β is the same field definition and exponentiation,

but with the O(a5) next-nearest neighbour derivative term (3.12). Fixing-χ is the Log-
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C (2.1.3) definition of the fields with symmetric derivative and exact exponentiation

(2.2.3) for the gauge transformation matrix. Fixing-δ is the same as Fixing-χ but with

the next-nearest neighbour derivative.
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Figure 3.7 The tuning parameter α, and the number of iterations to reach
sufficient convergence Θ = 10−14 for a single 43×8, β = 2.13 nf=2+1
DWF ensemble, and a sample over 250 Gribov copies.

Fig.3.7 shows the number of iterations required to reach sufficient convergence, for a

test 43 × 8 ensemble. The level of theoretical improvement can be read from top to

bottom. As can be seen, going to an all orders exponential and an exact field definition

does speed up convergence compared to the standard procedure (Fixing-χ vs. Fixing-

α), its average speed up over all of the α’s is about 15%. If Fixing-χ takes less than

15% more time per iteration than Fixing-α then it would be pertinent to use the Log-C

field definition in the gauge fixing, as long as the definition does not change the physics.

We will see in Chapter.4 that changing the gauge field definition amounts to a

multiplicative renormalisation factor in the gluon fields for Landau gauge as was seen

in [85, 99]. I investigate the cost of each fixing method by computing the time taken per

iteration of the procedure as a percentage of the time taken for the Fixing-α procedure

which is presumed fastest. The results are in Tab.3.1.

Tab.3.1 shows that although one can speed up the gauge fixing procedure by improving

the field approximation, incorporating a higher order approximation to the derivative

and exponentiation of the fields the methods’ computational cost far outweighs their
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Fixing cost per iteration (%) speed-up (%)
β 33 10
χ 363 15
δ 671 24

Table 3.1 The computational cost of implementing several different Landau
gauge fixing methods. The cost per iteration is as a percentage
increase in the time taken for the routine compared to the Fixing-
α method. The speed up is derived from Fig.3.7 as the percentage
decrease in the number of iterations required to attain a fixed accuracy
compared to the Fixing-α method.

benefit if just being used to speed up the procedure.

3.8.1 Scaling with Volume

We have investigated the scaling of the gauge fixing procedure with and without Fourier

Acceleration for the Fixing-α method, for fixed β = 2.13 and a wide range of lattice

sizes from the very small 43 × 8 to the intermediate 163 × 32 and 243 × 64 and finally

our largest, physical point ensemble (on this renormalisation trajectory) 483 × 96. We

plot the logarithm of the number of iterations required to gauge fix to an accuracy of

Θ = 10−14 versus the logarithm of the number of sites on the lattice. The results are

shown in Fig.3.8.

Fig.3.8 illustrates the vast difference between Fourier accelerated Landau gauge fixing

and the standard steepest descents approach. In both cases the number of iterations

required to meet an acceptable accuracy grows as a power-law behaviour with the

volume, because as the volume grows the degrees of freedom grows allowing for greater

freedom in the algorithm and greater difficulty in converging to a minimum. It is

surprising that the Fourier acceleration does a very good job of ameliorating critical

slowing down considering it uses an Abelian approximation of the field content.

The least-squares fit results to the data are,

log10[Iterations(SD)] = 1.9009 + 0.55778 log10(V )

log10[Iterations(FA)] = 1.6618 + 0.33096 log10(V ) (3.40)

We did not compute the number of iterations required for the un-accelerated algorithm

for our largest volume (483× 96) because it was taking too long. We can use the fits to

predict the result though and it gives an estimate of 660,479 iterations. If we compare

this estimate to the number of iterations required for the Fourier accelerated algorithm
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Figure 3.8 The logarithm of the average number of iterations from 50 Gribov
copies required to reach an accuracy of 10−14, versus the logarithm of
the number of lattice sites for fixed β for our Iwasaki gauge nf=2+1
DWF configurations and fixed tuning parameter α = 0.08. Errors
are from a Jackknife analysis and the straight lines are linear least
squares fits.

(10,900(600)) we are getting a 60× speed up (and even more for large volumes) with

Fourier acceleration.

These measures are at a fixed β but dependence on the lattice spacing is benign. We

could use our fits to predict the the number of iterations to gauge fix our largest 643×128

configuration. The predicted number for the steepest descents is 1,255,000. And for

the Fourier accelerated 14,207, giving a projected speed up factor of 88. I have made

many mild assumptions, including continual power law behaviour between these two

measures at large volumes and that a Fourier acceleration step continues to be the same

as the steepest descent step, this is clearly an approximation as the Fourier acceleration

is the steepest descent with two Fourier transforms sandwiched in the middle.

The most time spent in this algorithm is in the gauge transformation step after each

iteration, according to the profiler Callgrind [59], up to moderately large volumes (243×
64), and the Fourier Acceleration part of the iteration is nearly negligible. At some

point the FFT’s O(V log(V )) behaviour will dominate, but we have not reached this

region even on our largest lattices.

59



We have discussed in some detail some of the techniques to fix to a smooth covariant

gauge on the lattice. We have introduced methods for classical improvement of the

gauge fixing technique using exact logarithmic methods, improved derivatives and exact

exponentiation, and we see that while these methods do allow for improvement in the

convergence of the procedure they are computationally expensive. We have discussed

the implementation of both Landau and Coulomb Fourier accelerated gauge fixing and

seen that its ability to ameliorate critical slowing down is impressive, especially as the

lattice volume is increased. We have illustrated that there is still some mild volume

dependence in the procedure, and it is our opinion that comparisons at fixed accuracy

and not at fixed number of iterations should be made when illustrating the properties

of this algorithm.

In comparison to a näıve steepest descent (Los-Alamos) method of the Columbia

Physics System (CPS) and fixing to Coulomb gauge for our largest 643 × 128

configuration, our implementation took ≈ 9 hours to fix to an accuracy of Θ = 10−14 on

a 32-core AMD Opteron system, whereas the CPS implementation took four rack-days

on the BlueGene/Q supercomputer at the Argonne National Research Facility.
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Chapter 4

The strong coupling αs

I now focus on using the gauge fixing methods developed in the previous chapter to

define a measure of the renormalised strong coupling αs. The method we chose to use

is that of a direct, first principles measurement of the coupling via the lattice triple

gluon vertex in Landau gauge. I will discuss the building blocks of the method and

their generic Nc extensions.

4.1 More on momentum space gluon fields

As was first discussed in 3.2.1, we represent our gluon fields as,

Aµ

(
x + a µ̂

2

)
=

1

i
log
(
Uµ

(
x + a µ̂

2

))
,

Aµ(p) = ei
pµ
2

∑

x

eipµxµAµ

(
x + a µ̂

2

)
(4.1)

With the logarithm being either the Hermitian projection (Log-A 2.1.1) or the exact

Hermitian projection (Log-C 2.1.3).

The fields Aµ(p) are traceless, but the spatial fields’ Hermiticity is translated to p,−p

conjugacy. This can be seen by,

Aµ(p) = Aµ(−p)†,

ei
pµ
2

∑

x

eipµxµAµ

(
x + a µ̂

2

)
=
(
e−i

pµ
2

)∗∑

x

(
e−ipµxµ

)∗
Aµ

(
x + a µ̂

2

)†
. (4.2)

where, Aµ

(
x + a µ̂

2

)†
= Aµ

(
x + a µ̂

2

)
.
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If one wishes to obtain the different Lie elements of the field itself (we choose to use

trace identities of the fields in this work, but the following will provide a useful check

for our identities). It is common to use [2, 36],

Aa
µ(p) = ei

pµ
2 Tr

[
∑

x

eipµxµAµ

(
x + a µ̂

2

)
T a

]
. (4.3)

Where the T a’s are the generators for SU(Nc) (and satisfy the relations 1.1). As the

Fourier transform is performed element by element, the matrix multiplication of the

generator can be performed outside of the Fourier transform,

Aa
µ(p) = ei

pµ
2 Tr

[(
∑

x

eipµxµAµ

(
x + a µ̂

2

))
T a

]
. (4.4)

For SU(3) the matrix form of Aµ(p) can be expressed in terms of its constituent Lie

elements as,

Aµ(p) =
eipµ/2

2




A3
µ(p) +

A8
µ(p)√

3
A1

µ(p) + iA2
µ(p) A4

µ(p) + iA5
µ(p)

A1
µ(p)− iA2

µ(p) −A3
µ(p) +

A8
µ(p)√

3
A6

µ(p) + iA7
µ(p)

A4
µ(p)− iA5

µ(p) A6
µ(p)− iA7

µ(p) −2
A8

µ(p)√
3




And specific Lie components can be taken by linear combinations, e.g

A1
µ(p) = (Aµ(p)[1] + Aµ(p)[3]). (4.5)

Instead of performing unnecessary matrix multiplications with the generators that have

numerous exact zero elements as in Eq.4.3. Computations based upon the Lie elements

will perform a part of a useful check on the correctness of the identities we use to

compute Green’s functions.

Computationally, for generic Nc we use the matrix operation in Eq.4.3 to pick out

Lie elements. To compute the generators, one embeds the Nc − 1 × Nc − 1 generator

matrices into the top left of the Nc × Nc matrices, and then fills in the final row and

final column using the fact that the generators are Hermitian. The final generator is the

diagonal 1√
Nc(Nc−1)

(1, 1, 1, ....,−Nc). To compute the structure functions for SU(Nc)

one should create a table of the non-zero values, indexing the color indices and use,

fabc = −2i
(
Tr
[
T aT bT c

]
− Tr

[
T bT aT c

])
,

dabc = 2
(
Tr
[
T aT bT c

]
+ Tr

[
T bT aT c

])
. (4.6)

With explicit form for the trace of the product of three matrices (as is written in Alg.4).

This saves on unnecessary matrix multiplications, providing computational speedup by
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eliminating the need for temporary matrices and by not performing operations that do

not contribute to the final result, and means f and d can be computed at the same

time.

4.2 Lattice Green’s functions

Non-perturbative lattice Green’s functions are defined in position space as,

G
(n) a1a2···an
µ1µ2···µn (x1, x2 · · · xn) = 〈Aa1

µ1
(x1)A

a2
µ2

(x2) · · ·Aan
µn

(xn)〉. (4.7)

Where index “a” represents one of the color charges, µ the Lorentz polarisation and

〈· · · 〉 a Monte-Carlo average. This has momentum-space counterpart,

G
(n) a1a2···an
µ1µ2···µn (p1, p2 · · · pn)δNd(p1 + p2 + · · · pn). (4.8)

With some abuse of notation I have used the Dirac delta function, which is related to

the discrete Kronecker delta by,

∫
dNdxeipµxµ = (2π)Nd δdirac(p) = V δKronecker

p = aNd
∑

x

eipµxµ . (4.9)

One can form correlation functions of the Fourier transformed fields,

G
(n) a1a2···an
µ1µ2···µn

(
p1, p2, · · · ,−

(
n−1∑

i=1

pi

))
=

1

V
〈Aa1

µ1
(p1)A

a2
µ2

(p2) · · ·Aan
µn

(
−

n−1∑

i=1

pi

)
〉.

(4.10)

4.3 Momentum space gluon propagator

I now begin to specialise to areas of interest, first the lattice Landau-gauge gluon

propagator. As the two point function of Eq.4.10,

G(2) ab
µν (p,−p) =

1

V
〈Aa

µ(p)Ab
ν(−p)〉. (4.11)

This defines the gluon correlator, it has the following Lorentz structure and may be

reduced to scalar functions, the transverse G and longitudinal F,

G(2) ab
µν (p,−p) = δab

(
gµν −

pµpν

p2

)
G(2)(p2) +

pµpν

p2
F (p2). (4.12)
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We can project out the scalar form factor G(2)(p2), with

G(2)(p2) =
1

(Nd − 1) (N2
c − 1)

δab

(
gµν −

pµpν

p2

)
G(2) ab

µν (p,−p). (4.13)

Where we have used the fact that δabδab = N2
c − 1. In Landau gauge, the longitudinal

term
pµpν

p2 Gab
µν(p,−p) is zero. If we were considering a propagator in a gauge with gauge

parameter ǫ 6= 0, then there would be a longitudinal contribution. To extract this the

projection,
1

N2
c − 1

pµpν

p2
δabGab

µν(p2) = F
(
p2
)
, (4.14)

can be used. The form factor F will be proportional to the gauge parameter ǫ.

There exists an issue with these derivations, as we have projected the term
pµpν

p2 , without

considering the case for pµ = 0. It is convention within the community to use the

normalisation 1
Nd for Landau gauge instead of 1

Nd−1 for the zero momentum component.

The argument is that the Landau condition is trivially satisfied for p=0, and there is

an unconstrained degree of freedom in the system [30, 51, 121]. This factor will be of

considerable interest for our study.

We do not project out the Lie components of our fields, instead if we consider the

usual group-theoretic definitions for fundamental SU(Nc) matrices. The T’s are the

generators of the group,

T aT b =
1

2

([
T a, T b

]
+
{
T a, T b

})
,

T aT b =
1

2

((
ifabc + dabc

)
T c +

1

Nc
δabI

)
. (4.15)

Considering the trace of the product Aµ(p)Aν(−p), we have in terms of Lie elements,

Tr (Aµ(p)Aν(−p)) = Tr
(
Aa

µ(p)T aAb
µ(−p)T b

)
,

= Aa
µ(p)Ab

µ(−p)Tr
(
T aT b

)
,

=
1

2
Aa

µ(p)Ab
µ(−p)δab. (4.16)

Specialising to Landau gauge (ǫ = 0) and using the result in Eq.4.16, we associate the

non-perturbative lattice gluon propagator with the quantity,

G(2)(p2) =
1

V

2

(N2
c − 1) (Nd − 1)

〈Tr [Aµ(p)Aµ(−p)]〉. (4.17)

We know there is a p,−p symmetry from Eq.4.1, we can write the propagator as,

G(2)(p2) =
1

V

2

(N2
c − 1) (Nd − 1)

〈Tr
[
Aµ(p)Aµ(p)†

]
〉. (4.18)
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Which is guaranteed to be real, and is simply, (in terms of a linearised matrix element

index “a”)

Tr
[
Aµ(p)Aµ(p)†

]
=

N2
c −1∑

a=0

Aµ(p)[a]Aµ(p)[a]∗. (4.19)

It should also be noted that although we perform the multiplicative ei
pµ
2 correction on

the fields to ensure the correct momentum space evaluation of the Landau condition

(pµAµ(p) = 0) for our fields, as discussed in Sec.3.2.1. This is not necessary for the

computation of the gluon propagator as this factor explicitly cancels.

If we wish to extract the longitudinal factor F (q2) one can use the relation,

Tr [qµAµ(q)qνAν(−q)] = Tr
[
(qµAµ(q)) (qνAν(q))

†
]
. (4.20)

Computationally, one only has to compute the object T = qµAµ(q), and then compute

Tr
[
TT †]. Where Eq.4.19 can be used.

4.3.1 The gluon field renormalisation

To connect with continuum physics and continuum perturbation theory, renormalisa-

tion of bare quantities in some scheme and at some scale must be performed. The gluon

field renormalisation ZAµ(p2) is defined by ensuring that the non-perturbative gluon

propagator at very large momenta tends to the tree level continuum propagator, i.e. as
1
p2 .

We define the renormalisation factor as follows,

ZAµ(µ2) = G(2)(p2)p2|p2=µ2 . (4.21)

Upon renormalisation, this is the same as a redefinition of the field Aµ(µ) =
Aµ(p)√

p2G(2)(p2)
|p2=µ2 .

4.3.2 Momentum cuts

One expects simulations to only be justifiably comparable to continuum physics when

renormalisation scales within the Rome Southampton window are used (where a is the

lattice spacing of our simulation and Λ is the “Landau pole” of the theory)[15], this is

defined by the window,

Λ2 << µ2 <<
(π

a

)2
. (4.22)
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The degree to which this inequality must be satisfied is subjective, but does provide a

rough guide for where one could realistically match their lattice theory to continuum

physics if applicable.

The upper bound is sensible as this is around the region that large differences between

momentum definitions matter, i.e pµ 6≈ 2 sin(pµ/2). In practice, with current technology,

this is not an easy condition to satisfy. To minimise errors in the matching to continuum

perturbation theory often it is advisable to sit as close to the high end of the Rome-

Southampton window as one can afford while not believing lattice artifacts dominate.

We perform an FFT over the entire configuration space lattice gluon fields Aµ

(
x + a µ̂

2

)

to obtain our momentum-space gluon fields. We therefore have an abundance of

momentum space fields, and a filtering method should be utilised to ensure we are using

only momentum modes we believe are least affected by lattice artifacts. The simplest

filter being a spherical cut in momenta, whereby only momenta (Fourier modes) lying

within a hypersphere (perhaps with a cavity neglecting small momenta).

Special care must be taken if there is asymmetry (Lx,y,z... 6= Lt) in the lattice volume to

make sure that roughly equivalent in magnitude momenta are taken. If performing the

cut with Fourier modes, this is ensured by computing the anisotropy ratios Sµ =
Lµ

Lsm
,

where Lsm is the smallest direction in lattice units. Then the spherical cut becomes

(nµSµ)2 < n2
max. Another possible cut is the “hyper-cubic” cut, which one specifies a

maximum on-axis momentum (e.g (p, 0, · · · , 0) = pmax and its hyper-cubic rotations),

this allows the inclusion of more diagonal momenta, and fewer on-axis contributions

compared to the spherical cut.

Both of these cuts allow for the inclusion of momenta which are particularly “hard” in

one direction, in the free field case this would not be wise since the lattice momentum

2 sin
(pµ

2

)
is more deviant from the continuum propagator for this orientation. It is

therefore understood that the largest errors from gluon propagator measures are in

the regime when there are zero-momentum Fourier transforms. A popular method to

alleviate this difficulty is to perform a cylinder cut [105, 106] in momenta. This entails

the inclusion of momenta that only lie within a cylinder along the body-diagonals of

the momentum-space lattice, and is argued to reduce the O(Nd) rotational symmetry

breaking by the lattice.

Following [2], we create a reference direction n̂ = 1√
Nd

(1, 1, 1, ..., 1) (or one of its 2(Nd−1)

symmetrisation) and compute the variation away from this body diagonal,

∆q̂ = (q̂ − (q · n)n̂) . (4.23)

Where q =
2πnµ

Lµ
. We then reject any momenta where |∆q̂| < 2π

Lsm
. This definition
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has the quality that it incorporates any lattice asymmetry directly into the definition,

because we are using the lattice momentum directly.

4.3.3 The exact log propagator

We have investigated the renormalised Landau gauge gluon propagators in four

dimensions (renormalised at 2.5 GeV) of the same fields with the four gauge fixings

discussed in Sec.3.8 and their field renormalisation ZAµ(p2) (Eq.4.21) for 24, 163 ×
32, β = 2.13, aml = 0.01 configurations separated by Monte Carlo time of 100. The

results are shown in Fig.4.1.
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Figure 4.1 The Landau gauge gluon field renormalisation ZAµ(p2) is shown in
(a) for the Landau gauge fixing methods detailed in Sec.3.8. Their
propagators renormalised at µ = 2.5 GeV are shown in (b). A
cylinder cut was applied and the momentum definition used in the
scale was the sine definition. Some O(4)-breaking scatter is evident
in the renormalisation constants, due to the small volume.

Although the field renormalisation factors of Fig.4.1 are different for the logarithmic

definition (Log-C 2.1.3) of the gauge fields compared to the linear definition (Log-A

2.1.1) (fixings α and χ), we see that after renormalisation all of the gluon propagators

from all the fixing types are comparable within error. This is evidence to suggest that

renormalised quantities are not affected by the field definition and the gauge fixing

functional definition. There appears to be no reduction in the error by using any of

the improved fixing methods and derivatives, and so we continue our study with the

computationally cheapest (as seen in Tab.3.1) standard method of [55], that of Fixing-

α i.e. The linear (Log-A) definition of the fields and the symmetric finite difference

derivative with reunitarisation in the exponentiation (2.2.2).
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4.3.4 Gribov copies

To assess the impact of Gribov copies in our work, we computed the so called worst and

best copies for a set of thermalised 163 × 32 configurations. The worst copy being the

copy that gave the largest gauge fixing functional from 150 randomly gauge transformed

copies of each configuration, and the best copy being the one that minimised the gauge

fixing functional. The best copies were attained using the smeared-preconditioned

method, described in Chapter 1, Sec.3.7.3.

Once this had been performed for an appreciable number of configurations (30 with

separation 100 in Monte Carlo time), we measured the unrenormalised gluon propagator

G(2)(p2).
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(a) Log-Log plot of the propagator.
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Figure 4.2 The unrenormalised gluon propagator for the best and worst from
150 random gauge transformations per 30 well-separated 163 × 32
nf=2+1 Domain Wall configurations. The zero momentum mode
has been shifted so that it can be included in the log-log plot.

Fig.4.2 illustrates a measurement of the Landau gauge gluon propagator using the worst

and best from 150 Gribov copies of 30 configurations. It seems that whatever effect

Gribov copies play for this measure it is slight (as long as we are properly sampling

the space of copies effectively and the gauge fixing functional is the best measure for

Gribov effects) as also seen in [132] and exists in the low momentum region (IR), with

only one mode (the (0,0,0,1)) not overlapping between copies within statistical errors.

As in Fig.4.1, we see the expected 1
p2 behaviour, but in the low momentum IR region

we see a change from this. This is widely construed as the gluon having an effective

dynamically-generated mass [113]. A form for the gluon propagator of G(2) = 1
p2+m2

would cause this, however phenomenology of the IR limit of QCD is difficult in a finite

volume (as we will see in Sec.4.3.5) and not the subject of this thesis.

There appears to be little distinction from the zero momentum mode and the first

Fourier mode, but both require different normalsation (Sec.4.3). There appears to be
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a trend in the IR for the best copy having a lower-valued gluon propagator compared

to the worst copy, although this could just be due to statistical fluctuations, similar

effects have been seen in previous studies [29, 133]. In an earlier study on smaller 124

quenched (nf=0) lattices [129] with the unimproved Wilson plaquette action, slightly

more significant deviation between copies was found, perhaps due to less precise gauge

fixing than that used here (Θ = 10−20).

Ultimately, apart from the very lowest modes, Gribov copies play a seemingly negligible

rôle in the high renormalisation scale gluon phenomenology we are interested in

at the level of statistical resolution we have available. However, our exceptional

scheme evaluation of the amputated Landau gauge triple gluon vertex does require

the amputation of a zero momentum propagator. So one could worry that Gribov

effects will be manifest, but this is not the only issue with amputation of a maximally

infra-red propagator.

4.3.5 The zero momentum propagator

The definitions of the gluon propagator thus far hold for an isotropic lattice. Our

configurations are asymmetric, with larger temporal extent than spatial. It is assumed

that this does not, and should not affect the physics of obsevables dependent only

on shorter length scales than this volume and does not change quantities such as the

lattice spacing. We intend to follow previous work and compute the renormalised strong

coupling αs(µ) using the Landau gauge triple gluon vertex, and one of the schemes we

use (the exceptional kinematic Sec.4.4.1) requires amputation by a zero momentum

gluon propagator. One might suspect (with hindsight) that the propagator at zero

momentum will be the most sensitive to the lattice geometry as any deviation between

polarisations should only be a finite volume affect and the zero momentum propagator

is clearly the most susceptible to finite volume corrections.

For asymmetric lattices, studies have found that the polarisations of the zero

momentum gluon are in general distinct [105]. We study whether this is the case

for our ensembles via the ratios at some high-scale reference point p0 (where i is the

spatial polarisation index and t is the temporal, we average over the spatial indices i

hence the Nd − 1 norm),

∑
i6=t Gii(0)

(Nd − 1)G(2)(p2
0)

,
Gtt(0)

G(2)(p2
0)

. (4.24)

If the zero momentum gluon propagator is a well motivated observable for matching to

infinte volume perturbation theory then any asymmetry induced in the zero momentum

propagator should disappear in the infinite volume limit. Since this ratio is the field
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being renormalised at the point p0 multiplied by p2
0, if we fix the reference scale p0,

direct comparison between all of our available ensembles can be made, up to lattice

artifacts that are mild because both the zero momentum mode and the reference scale

p0 are well below the cut-off scale.
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Figure 4.3 Normalised Landau gauge gluon propagators. Fig.(a) shows the
self-normalised at 2 GeV temporally and spatially polarised gluon
propagators. We see large finite volume effects at low momentum.
Fig.(b) shows that this effect is present for different physical spatial
volumes. The aspect ratio induces a breaking of Euclidean symmetry
at zero momentum even for our largest volume.

Fig.4.3 shows that in the infra-red region there is a very large discrepancy between the

temporally and spatially polarised zero momentum gluon propagator normalised at a

reference scale that should be available to all of the configurations. Furthermore, by

plotting this ratio versus the physical spatial lattice length Li, we see that no coherent

infinite volume limit is reached for our ensembles. We conclude that the asymmetry in

our lattice volume is influencing the zero momentum gluon propagator and we do not

see any theoretically correct way for one to match the exceptional three gluon vertex

with a zero momentum propagator leg, to infinite volume perturbation theory.

Attempts have been made to normalise the zero momentum gluon propagator in such

a way to account for this difference between polarisations [130] but it is not obvious

this has any theoretical control. As one can ask, which polarisation (the anisotropic

or the isotropic) direction’s propagator is the more physical? This discussion makes

prescriptions such as the 1
Nd

norm seem ad-hoc.

Our study casts large doubt on the computation of the QCD strong coupling using an

exceptional kinematic triple gluon vertex measurement as it is unclear how we normalise

the zero-momentum gluon leg appropriately. Although it appears that in the infra red

of our theory the gluon propagator suffers from large finite volume errors, at higher

momenta (> 1GeV ) from Fig.4.3(a) we see that the gluon polarisations all behave

similarly. We take this as motivation to study a kinematic which requires gluon legs to
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retain p2 = µ2, and therefore we need perform no zero-momentum gluon amputation.

This is the non-exceptional kinematic that we will include in our study.

4.4 αs from the triple gluon vertex

Following from the gluon propagator measurements we can also define three point

correlation functions,

G(3) abc
µνρ (p, q, r) =

1

V
〈Aa

µ(p)Ab
ν(q)Ac

ρ(r)〉. (4.25)

Analogously to the two point function, and using the relations from Eq.1.1 we have the

trace identity for generic SU(Nc) matrices in the fundamental representation,

Tr [ABC] = AaBbCcTr
[
T aT bT c

]
,

T aT bT c =
1

2

((
ifabc + dabc

)
T cT c +

1

2Nc
δabT c

)
. (4.26)

And so, in terms of our fields,

Tr [Aµ(p)Aν(q)Aρ(r)] = Aa
µ(p)Ab

ν(r)A
c
ρ(q)Tr

[
T aT bT c

]
,

= Aa
µ(p)Ab

ν(r)A
c
ρ(q)

1

2

(
ifabc + dabc

)
Tr [T cT c] ,

= Aa
µ(p)Ab

ν(r)A
c
ρ(q)

1

4

(
ifabc + dabc

)
. (4.27)

The method to calculate the coupling is straightforward, and follows the standard

textbook field-theoretic approach. We pick a momentum configuration satisfying a

specific kinematic and compute the vertex function Γ, this is related to the three point

Green’s function thusly,

G(3) abc
µνρ (p, q,−(p + q)) = G

(2) ad
µµ′ (p,−p)G

(2) be
νν′ (q,−q)G

(2) cf
ρρ′ (−(p + q), p + q)

Γdef
µ′ν′ρ′(p, q,−(p + q)). (4.28)

The three point Green’s function is the vertex function contracted with three external

gluon propagator legs.

We work in a momentum subtraction (MOM) scheme, the one particle irreducible (1PI)

vertex function can be decomposed as,

Γabc
µνρ(p, q, r) = −igfabc

∑

i

T i
µνρ(p, q, r), (4.29)
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where the T’s are tensors of the polarisation and momentum, and one of these can be

set to the standard tree level vertex,

Γµνρ(p, q, r) = −igfabc (gµν(p− q)ρ + gνρ(q − r)ν + gρµ(r − p)µ) , (4.30)

but the others will be dependent on the kinematic we use to define our scheme.

The method for determining the running coupling g(µ2), requires the non-perturbative

lattice calculation of the amputated renormalised vertex function at the scale µ to take

its tree level continuum perturbative value at the renormalisation point µ2 = p2 = q2 =

r2.

We now discuss the exceptional or “asymmetric” scheme and the non-exceptional or

“symmetric” scheme.

4.4.1 The exceptional scheme

The exceptional scheme we use is called the M̃OMgg, and was first used in lattice

studies in [122], and is defined at the renormalisation point µ as p2 = µ2, q = −p, r = 0,

with zero-momentum gluon polarised parallel to the direction of the momenta, and the

two gluons polarised perpendicular to their momenta.

The 1PI vertex (from Eq.4.29) for an exceptional gluon configuration has Lorentz

structure,

Γabc
µνρ(p,−p, 0) = −igfabc

(
(2gµνpρ − gµρpν − gρνpµ)T1(p

2)

(
gµν −

pµpν

p2

)
pρT2(p

2)

)
. (4.31)

The M̃OMgg scheme is defined by the renormalisation condition [45],

T1(µ
2)− 1

2
T2(µ

2) = 1. (4.32)

The projector required to act upon the vertex in Eq.4.31 to pick out the scalar T’s is

[3, 33],

P abc
µνρ(p,−p, 0) =

ifabc

2(D − 1)Nc(N2
c − 1)

(
δµν −

pµpν

p2

)
pρ

p2
. (4.33)

Continuum perturbative expressions for the matching of this scheme to the modified

minimal subtraction (MS) in Landau gauge up to three loops exist [45]. As the projector

in Eq.4.33 is projecting onto the gluonic three point function in Landau gauge the term
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pµpνpρ

p4 is proportional to the Ward identity and is zero, and so can be dropped. In

analogy to the gluon propagator we define the exceptional scalar three point function,

G(3) M̃OMgg(p2) =
1

V

4

2(Nd − 1)Nc(N2
c − 1)

δµν
pρ

p2
〈ℜ (Tr [Aµ(p)Aν(−p)Aρ(0)])〉. (4.34)

Where we have used the trace identity from Eq.4.27 to absorb the factor of 1
4 ifabc, and

noting that the contribution from dabc will be 0 because the vertex is antisymmetric.

And so we need only take the real part of the vertex function.

Once we have the computed the exceptional scalar three point function, we extract the

coupling by first amputating the gluon propagator legs to leave the 1PI vertex function,

and performing the gluon field renormalisation at the momentum scale µ to obtain our

M̃OMgg coupling. We define the coupling as,

g(µ2) = Z
3/2
Aµ

(
p2
) G(3) M̃OMgg(p2)
(
G(2)(p2)

)2
G(2)(0)

∣∣∣∣
p2=µ2

. (4.35)

Which, when considering the definition of ZAµ

(
p2
)

from Eq.4.21, can be more succinctly

written as,

g(µ2) = p3 G(3) M̃OMgg(p2)√
G(2)(p2)G(2)(0)

∣∣∣∣
p2=µ2

. (4.36)

4.4.2 The non-exceptional scheme

The scheme defined in Sec.4.4.1, is not the only one possible for defining the lattice

triple gluon vertex function. There is another combination of momenta that can be

used, a triplet of non-exceptional momenta defined as,

p2 = q2 = r2 = µ2, p + q + r = 0. (4.37)

This has the benefit that no one momentum is zero, and hence evades the thorny issue

of normalising by a zero momentum propagator (Sec.4.3.5).

In terms of lattice Fourier modes, this combination is not trivial to achieve. And only

lattice simulations with an integer aspect ration Lt/Lx,y,z... can provide statistically

significant data.

The first attempt to compute the non-exceptional triple gluon vertex was [36]. We

disagree with this prescription however. We instead follow [90], which provides the

matching from this scheme, the MOMggg to MS at two loop order in continuum

perturbation theory and has a projector for the vertex we agree with. The number

of independent Lorentz form factors (3) identified in [90] is greater than that of [36],
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and we have concluded that the projection of [36] was incorrect as discussed in the

appendices of [91].

The scalar vertex function in the MOMggg scheme is defined through the projection,

fabcG(3)(p, q)j = Mk,l
(
P l,j

µνρG
abc
µνρ(p, q, p − q)

)
. (4.38)

The matrix “M” is a normalisation matrix and “P” is one of the 14 Tensor structures

allowed by the scheme. I define the quantity,

P̃ j
µνρ = Mk,lP l,j. (4.39)

As the projector that picks out the “jth” scalar vertex function.

The projection matrix is defined as the inverse of the matrix,

Nk,l =
(
Pµ1...µD

k Pµ1...µD
l

)
. (4.40)

With the projectors,

P 1
µνρ(p, q) = δµνpρ, P 2

µνρ(p, q) = δνρpµ, P 3
µνρ(p, q) = δρµpν

P 4
µνρ(p, q) = δµνqρ, P 5

µνρ(p, q) = δνρqµ, P 6
µνρ(p, q) = δρµqν

P 7
µνρ(p, q) =

pµpνpρ

p2
, P 8

µνρ(p, q) =
pµpνqρ

p2
, P 9

µνρ(p, q) =
pµqνpρ

p2
, P 10

µνρ(p, q) =
qµpνpρ

p2
,

P 11
µνρ(p, q) =

pµqνqρ

p2
, P 12

µνρ(p, q) =
qµpνqρ

p2
, P 13

µνρ(p, q) =
qµqνpρ

p2
, P 14

µνρ(p, q) =
qµqνqρ

p2
.

(4.41)

The first six tensor structures appear in the tree-level Feynman rule. The normalisation

matrix for generic Nd is, defined in block matrix order,

M =
1

27(Nd − 2)p2




M11 M12 M13

M21 M22 M23

M31 M32 M33




which is real and symmetric. The sub-matrices are,

M11 =




36 0 0 18 0 0

0 36 0 0 18 0

0 0 36 0 0 18

18 0 0 36 0 0

0 18 0 0 36 0

0 0 18 0 0 36




,M12 = −




48 24 24 24

48 24 24 24

48 24 12 12

24 48 12 12

24 12 12 48

24 12 48 12




,
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M13 = −




12 12 48 24

48 12 12 24

12 48 12 24

24 24 24 48

24 24 24 48

24 24 24 48




,

M22 =




64(Nd + 1) 32(Nd + 1) 32(Nd + 1) 32(Nd + 1)

32(Nd + 1) 32(2Nd − 1) 16(Nd + 1) 16(Nd + 1)

32(Nd + 1) 16(Nd + 1) 32(2Nd − 1) 16(Nd + 1)

32(Nd + 1) 16(Nd + 1) 16(Nd + 1) 32(2Nd − 1)




,

M23 = −




16(Nd + 4) 16(Nd + 4) 16(Nd + 4) 8(Nd + 10)

8(4Nd + 4) 8(4Nd + 1) 8(Nd + 4) 16(Nd + 4)

8(4Nd + 4) 8(Nd + 4) 8(4Nd + 1) 16(Nd + 4)

8(Nd + 4) 8(4Nd + 1) 8(4Nd + 1) 16(Nd + 4)




,

M33 =




32(2Nd − 1) 16(Nd + 1) 16(Nd + 1) 32(Nd + 1)

16(Nd + 1) 32(2Nd − 1) 16(Nd + 1) 32(Nd + 1)

16(Nd + 1) 16(Nd + 1) 32(2Nd − 1) 32(Nd + 1)

32(Nd + 1) 32(Nd + 1) 32(Nd + 1) 64(Nd + 1)




.

And the M21,M31,M32 can be obtained from the transpose of the M12,M13,M23

matrices.

Our normalisation matrix has for the off-diagonal block matrices the opposite sign

than that in [90] because their renormalisation condition is p2 = −µ2. We also have

the extra factor of 1
p2 in our normalisation, which comes from each PlPk term producing

the normalisation factor p2.

The projector used to match from the MOMggg to MS in [90] was P̃ 1
µνρ(p, q). The first

six projectors are numerically related, and we check this by computing the ratio,

Ri =
G(3)(p, q)1
G(3)(p, q)i

. (4.42)

For the first five scalar three point functions (i = 2, 3, 4, 5, 6), the ratios should equal

1,−1
2 ,−1, 1

2 ,−1.

Fig.4.4 shows the ratios of projectors from a Jackknife analysis, allowing for direct

cancellation of the underlying field content and directly yielding the projector ratios.

We obtain the expected ratios from [90], and so have confidence in the procedure.
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Figure 4.4 Ratios of the respective non-exceptional projectors from Eq.4.42,
from a 323 × 64, am = 0.004, ams = 0.3, β = 2.25 Iwasaki gauge
ensemble. Errors are from a Jackknife analysis, R4 and R6 have
been shifted in momentum slightly for clarity.

These numerical relations allow us to define the projector,

P̃µνρ(p, q) =
1

6

(
P̃ 1

µνρ(p, q) + P̃ 2
µνρ(p, q)

− 1

2
P̃ 3

µνρ(p, q)− P̃ 4
µνρ(p, q)

+
1

2
P̃ 5

µνρ(p, q)− P̃ 6
µνρ(p, q)

)
. (4.43)

which is,

P̃µνρ(p, q) =
1

18(Nd − 2)p2

(
(2δµν(qρ − pρ)− δνρ(4qµ + 5pµ) + δρµ(5qν + 4pν))

+
2

p2
(pµqρ(qν − pν) + qνpρ(qµ − pµ))

+
4

p2
(pνpρ(qµ − pµ)− qµqρ(qν + pν))

)
. (4.44)

It should be noted that this is a different projector than the one defined in [35, 36], even

though they are supposedly describing the same scheme. We have tested this projector

by contracting it with the tree level vertex function and it gives a value of 1.

And in complete analogy with the exceptional M̃OMgg case, we define the non-
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exceptional scalar three point function,

G(3) MOMggg(p2) =
1

V

4

Nc(N2
c − 1)

〈P̃µνρ(p, q)ℜ (Tr [Aµ(p)Aν(q)Aρ(−(p + q))])〉.
(4.45)

To check our calculation, we perform a test with four 163 × 32 configurations fixed to

Landau gauge. With which, we check the color structure and antisymmetric nature

of the vertex function. This is performed via the Lie elements of our gauge fields and

using either the symmetric or antisymmetric structure functions. From Fig.4.5 we note
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Figure 4.5 The color symmetric and antisymmetric parts of our unrenormalised,
non-exceptional gluonic three point correlation function calculation.
From four Landau gauge-fixed 163×32, β = 2.13 nf = 2+1 Domain
Wall configurations. The errors are from a jackknife procedure.

that the symmetric contribution is zero within statistical errors, and only the real part

of the ifabc color projection contributes.

Eq.4.45 allows us to directly write the coupling for this scheme,

g(µ2)MOMggg = Z
3/2
Aµ

(
p2
) G(3) MOMggg(p2)

(
G(2)(p2)

)3
∣∣∣∣
p2=µ2

. (4.46)

Once we have computed the renormalised gauge coupling g(µ2) from our lattice

simulation in our desired scheme, we convert it to the more commonly used measure

the strong coupling αs(µ),

αs

(
µ2
)

=
g
(
µ2
)2

4π
. (4.47)

We then must match to continuum perturbation theory and perform the running of

the coupling defined by that scheme’s β-function to obtain our result at the oft-quoted

Z-boson mass scale Mz (91.1876 GeV) [22].
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4.4.3 Technical remarks

Picking the relevant momenta that satisfy the momentum condition p+ q + r = 0, p2 =

q2 = (p + q)2 is difficult. Our implementation requires several steps, first a spherical

cut to remove the high p2 edge effects from the Brillouin zone and then a recursive

iteration through momenta checking the momentum conservation at the vertex, we do

this recursively so that the routine can be Nd-generic. At every p2 we generate a list of

the triplets that satisfy the momentum condition, we then compute the N3
d projectors

(one for each polarisation combination µνρ), and store these as well. These two caching

techniques are invaluable in this analysis.

For both the M̃OMgg and the MOMggg schemes, we require the computation of the

trace of the product of three matrices Tr [Aµ(p)Aν(q)Aρ(r)]. And up to N3
d times per

triplet for the MOMggg. We have a general expression for the trace of the product

of three generic matrices, which is shown in Alg.4 and provides significant (O(3×) for

SU(3)) speed-up over performing the product and then taking the trace.

Algorithm 4 Generic trace of the product of three (ABC) lexicographically-
ordered row-major Nc ×Nc matrices.

tr ← 0
for i = 0→ N2

c do

Prod← 0
for j = 0→ Nc do

Prod← Prod + A[j + Nc(i%Nc)]B[jNc + ⌊i/Nc⌋]
end for

tr ← tr + C[i] ∗ Prod
end for

4.4.4 Investigation of the gauge fixing accuracy

In [122] it was noted that high gauge fixing accuracy was necessary for reliable

measurement of the gluonic three point function, where the author worked with

fixed number of gauge fixing iterations rather than overall accuracy, and saw a large

discrepancy for a 243 × 48 quenched lattice ensemble for the M̃OMgg scheme gluonic

three point function. The author compared the results of the scalar three point function

on a single configuration with 500,1400 and 1600 iterations of their Landau gauge fixing

code. As we have seen in the previous chapter, a fixed number of iterations does not

provide a fixed accuracy and while the steepest descent’s algorithm is still integrating

out Fourier modes the gauge fixing accuracy fluctuates quite wildly. This can be seen

in Fig.3.1. In later publications the author uses fixed accuracy of 10−11[3], which was

the best they could do as they were working in single precision.
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To investigate the level of Landau gauge fixing accuracy required for the compu-

tation of the gluon propagator and three point function we measured 80 163 × 32

configurations’ gluonic two and M̃OMgg three point functions at fixed accuracies

of Θ = 10−5, 10−8, 10−11, 10−14 and 10−20, the three point function was the most

illustrative in this study, as the gluon propagator fluctuated far less with varied gauge

fixing accuracy, and so is not shown. A cylinder cut in momenta has been taken, as well

as a fuzzy momentum average where momenta within a range
∣∣(ap)2 − (ap′)2

∣∣ < 0.05

are considered indistinct and averaged for visual clarity.

0 1 2 3 4 5 6
p [ GeV ]

1

10

100

1000

G
(3

)  (
p2 )

10
-5

10
-8

10
-11

10
-14

10
-20

(a) G(3)(p2) for an individual config-
uration.

2.05 2.06 2.07 2.08 2.09
p [ GeV ]

27.814

27.815

27.816

27.817

G
(3

)  (
p2 )

10
-11

10
-14

10
-20

(b) Zoom for higher accuracies.

0 1 2 3 4 5 6
p [ GeV ]

10

100

1000

10000

G
(3

) (p
2 )

10
-5

10
-20

(c) Average over 80 configurations.

Figure 4.6 (a) and (b) show an individual 163×32 configuration’s G(3)(p2) using
the exceptional kinematic for various gauge fixing accuracies Θ =
10−5, 10−8, 10−11, 10−14 and 10−20 against physical momenta, with
(b) being a zoom around the closest momentum point to 2 GeV to
illustrate convergence. (c) is an average over the 80 configurations
with Jackknife errors for accuracies 10−5 and 10−20.

From Fig.4.6 we can see that there is sensitivity to the gauge fixing accuracy for a single

configuration, although we must note that the scatter of data is large. For this single

example configuration the discrepancy between 10−8 and 10−11 can be large for many

momenta, and that after 10−11 it appears we have converged. If we consider the zoom,

we see that we are still converging even between accuracies of 10−14 and 10−20, although

the correction here is very small. The correction for this example configuration from

accuracy 10−11 to 10−14 is 0.007% and between 10−14 to 10−20 is 0.0002%.
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If we then consider Fig.4.6(c), we can see that for 80 configurations there are only a few

momenta that disagree within statistical errors over the range of accuracies measured.

Illustrating that for this measure statistical error appears to dominate, this can be seen

by the scatter of the data in (a). Considering the error of the point at 2 GeV in (c),

which is measured to be 6.7%, and assuming the usual Monte-Carlo error reduction

of 1√
N

, to be able to see a correction of 0.007% we would need O(106) configurations,

which is unfeasible.

This does not entirely mean we should not fix to an accuracy of Θ = 10−14 or higher,

as for individual configurations the point at which all Fourier modes have converged

in the gauge fixing is difficult to ascertain apriori, although it appears that for this

coupling and volume, fixing to around 10−11 suffices. To make sure corrections due

to the accuracy of the fixing in the procedure are as small as possible it does make

sense to converge to as high an accuracy if the resources and particularly fast routines

are available. This argument applies as well for the non-exceptional kinematic which

suffers from larger statistical fluctuations.

The gluon propagator is even better behaved, with all momenta overlapping statistically

between 10−5 and 10−20 gauge fixing accuracy for the average over the 80 configurations

and is not shown for this reason. It is common in the field to err on the side of caution

and fix to ≈ 10−15 accuracy, and then justifiably remove this effect from the systematic

error estimation.

4.5 Matching and running

Ideally we wish to match our lattice result to continuum physics. To do so, we must

use continuum perturbation theory. Expressions for the scheme-dependent β functions

in the exceptional and non-exceptional schemes for the coupling, are known at four

and three loop order respectively in continuum perturbation theory. And so, matching

coefficients from these schemes to MS are known at the two and three loop order

respectively.

The β-function and the scale evolution of the coupling for any gauge theory in scheme

M is defined by [46, 93, 124, 141],

d
(
α(M)(µ2)

)

d ln(µ2)
= β(M)

(
α(µ2)

)
= −4π

∑

i≥0

β
(M)
(i)

(
h(M)

(
µ2
))i+2

. (4.48)

If the coupling is calculated for our MOM schemes

(
hMOM

(
µ2
)

=
αMOM(µ2)

4π

)
in terms
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of the MS coupling

(
h
(
µ2
)

=
αMS(µ2)

4π

)
. In Landau gauge the following relation holds

[45],

βMOM (hMOM
(
µ2
)
) =

∂hMOM
(
µ2
)

∂hMS (µ2)
βMS

(
µ2
)
. (4.49)

Where the coefficients of the MS β function are known to five loop order from [126].

The following expressions relating the couplings in our scheme’s to those of MS below

are valid for any generic SU(Nc), 4D gauge theory with number of fermions nf , fermion

representation Tf and group theoretical Casimirs CF and CA and coupling h in the

Landau gauge.

Factor Fundamental Adjoint 2 S 2 AS
CA Nc Nc Nc Nc

Tf
1
2

Nc
Nc+2

2
Nc−2

2

CF N2
c −1

2Nc
Nc

N2
c −1

2Nc

2(Nc+2)
Nc+1

N2
c −1
2Nc

2(Nc−2)
Nc−1

Table 4.1 Table of the group theoretical factors for several different fermion
representations, the Fundamental, the Adjoint, the Two Index
Symmetric and the Two Index Antisymmetric. For an SU(Nc) gauge
theory.

hM̃OMgg = h+h2(7.777777778 CA− 4.888888889 nf Tf)

+h3( + 94.47015477 CA2 − 98.22139350 CA nf Tf

− 7.100422883 CF nf Tf + 18.56790123 nf2 Tf2)

+h4( + 1395.382550 CA3 − 46.29934612 CA2 CF

− 2022.356053 CA2 nf Tf− 133.0854651 CA CF nf Tf

− 11.52771527 CF2 nf Tf + 778.9761348 CA nf2 Tf2

+ 54.98235669 CF nf2Tf2 − 62.33196159 nf3 Tf3). (4.50)

The coupling in the non-exceptional scheme in terms of the MS one is known to one

fewer order in perturbation theory, [90],

hMOMggg = h+h2(+8.830829625 CA− 6.833612869 nf Tf)

+h3( + 106.7180798 CA2 − 130.1598169 CA nf Tf

− 10.26792816 CF nf Tf + 30.74957207 nf2 Tf2). (4.51)

By comparing term by term the expansion of the MOM-scheme couplings in terms of

the MS, we can readily see that the two schemes are similar in magnitude and sign of
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their respective nf, CF and CA terms. Suggestive of the two schemes behaving similarly

and having similar perturbative errors. The generic β functions for the M̃OMgg and

the MOMggg schemes in Landau gauge are written in numerical form beneath.

βM̃OMgg = −h2( + 3.666666667 CA− 1.333333333 nf Tf)

−h3( + 11.33333333 CA2 − 6.666666667 CA nf Tf− 4.0 CF nf Tf)

−h4( + 89.33912715 CA3 − 71.74729115 CA2 nf Tf

− 17.70155057 CA CF nf Tf + 2.000000000 CF2 nf Tf

− 16.73361526 CA nf2 Tf2 − 5.199436156 CF nf2 Tf2

+ 7.111111111 nf3 Tf3)

−h5( + 1135.391008 CA4 − 339.5285382 CA3 CF + 409.7906966 Nc2

+ 11.38307490 N4
c − 76.23150084 Nc nf− 12.70525014 N3

c nf

− 7.933051411 nf2 +
23.79915423 nf2

N2
c

+ 1.322175235N2
c nf2

− 1589.590058 CA3 nf Tf + 416.3021772 CA2 CF nf Tf

− 224.3376123 CA CF2 nf Tf + 46.00000000 CF3 nf Tf

+ 771.3583269 CA2 nf2 Tf2 − 371.3790348 CA CF nf2 Tf2

+ 6.342641472 CF2 nf2 Tf2 − 328.9674000 CA nf3 Tf3

+ 88.35330018 CF nf3 Tf3 + 63.20987654 nf4 Tf4

+ 59.83572140 CA CF nf2 Tf2). (4.52)

The β-function is scheme independent until O(h4) terms and higher. For the non-

exceptional M̃OMgg scheme for generic SU(Nc) and representation of fermions, and

only including the scheme dependent part of the β-function, we have,

βMOMggg = βM̃OMgg(2 loops)

−h4(− 58.18460726 CA3 − 10.88782370 CA2 nf Tf

+ 25.10352918 CA CF nf Tf− 2.000000000 CF2 nf Tf

+ 85.56160742 CA nf2 Tf2 + 8.754991712 CF nf2 Tf2

− 21.26492370 nf3 Tf3). (4.53)

The simulations we use are β = 2.13, 2.25, nf = 2+1 Domain Wall Fermion simulations

with inverse lattice spacings a−1 = 1.73(3), 2.28(3) GeV respectively. We intend to

match to continuum perturbation theory near the edge of our Rome Southampton

window, where the perturbative errors are smallest and we still have control over our

discretisation errors. This suggests that we intend on matching our simulation to theory

at a scale above that of the Charm quark threshold. As our simulated theory is nf=3
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in a region where physically there are four active quark flavours at accessible momenta.

We need to perform perturbative running to the charm threshold using nf=3 running

and match to nf=4 running. To quote our result at Mz we also have to run our coupling

numerically.

4.5.1 Running the coupling

To run the perturbative coupling in some scheme M to some scale µ, we must integrate

Eq.4.48. This is performed numerically, and it is pertinent to consider the running in

logarithmic scale, consider the Taylor expansion,

α

(
ln(µ) +

h

2

)
= α(ln(µ)) +

h

2

dα(µ)

d ln(µ)
+ O(h2). (4.54)

The derivative term is the β-function, and so the prescription for numerically integrating

the coupling is the evaluation,

α

(
ln(µ) +

h

2

)
= α(ln(µ)) + hβ(µ) + O(h2),

µ = µ e
h
2 . (4.55)

This defines a typical Euler integration step, extension to an RK4 procedure is simple

and it is common to use an adaptive RK4 procedure [128], we use the embedded Cash-

Karp adaptive RK4[125]. If we have a fixed step size integrator we can precompute

the exponential and the method only requires computation of the β-function and the

updating of the scale. If we overstep past our target scale µ′ to some scale µ, we must

perform the adjustment step in the procedure (by a single RK4 step),

h = ln

(
µ

µ′

)
. (4.56)

To illustrate the differences between our two MOM-schemes and the MS, we compute

the running of αMS(µ) using Eq.4.5.1 with fixed step-size RK4 integration procedure

and step h = 0.001 for fixed nf=3, for SU(3) gauge theory with fermions in the

fundamental representation. We choose a value α(MS)(Mz) = 0.106, and run it to

µ = 2 GeV , we also compute the couplings in Eqs.4.50, 4.50 from the MS coupling

for comparison. We fix the number of flavours so that we do not have to incorporate

threshold matching for the MS scheme.

Fig.4.7 shows the magnitude of the couplings as they approach a low energy scale from

a frozen-in nf=3 high scale. We see there is little difference between the two MOM-

schemes and both have significantly larger couplings than the MS scheme, and both
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Figure 4.7 The convergence at different loop orders for frozen nf=3 QCD.

seem to diverge at low scales. This is a surprise as it is quite often the case that

non-exceptional schemes are much better behaved than their exceptional counterparts

for fermionic quantities, for example in the renormalisation of fermionic bilinears large

reductions in the next leading order term were seen [134], and one may have hopep

this translated to gluonic Green’s functions. As a rough estimate for the next-order

correction to the coupling in the MOMggg scheme we might take the correction between

two and three loops in the M̃OMgg scheme.

There are some causes for concern from Fig.4.7, because we see that the perturbative

series is not particularly well-behaved for the MOM-schemes at matching scales

available to current lattice simulations. We note that there is a 5% correction between

two and three loop order for the M̃OMgg scheme even at 10 GeV! Suggestive of the

series converging very slowly. It is also of great concern that the MOM-scheme couplings

are diverging at around 2 GeV, in practice for QCD this means we cannot run to the

Charm mass threshold and match to the physical nf=4 theory in either of the MOM-

schemes. Instead, we must match directly to MS at our lattice scale, and run in that

scheme. For this theory, MS is a much better behaved scheme at the scales we currently

have available, a similar argument was made in [112] where running in the MS was used

instead of a MOM-scheme to alleviate higher order perturbative truncation errors.
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If there are two perturbative schemes with known matching between them, one of which

is perturbatively benign around the Charm mass and one which is sick in the IR around

the Charm mass, one could convert between the sick and benign schemes at a high scale

where both schemes are convergent, and run down to Charm mass in the benign scheme

to match to the correct nf . It would clearly be better to repeat the calculation with a

fine lattice spacing and nf=2+1+1 (i.e. a dynamical Charm quark), but this option is

not available.

To determine the coupling in MS for QCD we use a Newton-Raphson method (Halley’s)

with initial guess for the coupling as that of the MOM-scheme, and solve for the real

root of Eqs.4.51 and 4.50 in terms of the MS coupling h. We then run to the on-shell

Charm quark mass (1.6 GeV) to match to the physical nf=4 theory at that scale. A

successive matching to nf=5 theory through the Bottom quark mass (4.7GeV) threshold

is also required for quoting our results at Mz.

4.5.2 Threshold matching

We will be performing the running in MS, we must match through quark mass

thresholds from a theory with nf − 1 to nf quark flavours, or vice versa. This is

performed explicitly using the language of effective field theories, whereby we have a

heavy quark mass mh much above our scale µ which does not interact with our light

flavours. It is said to have decoupled from the theory.

At some scale µ ≈ mh the heavy quark interactions are turned on by hand explicitly,

and we go from a nf − 1 to an nf theory. There is some arbitrary-ness in the precise

scale at which one performs the matching between the two theories. Fortunately in

MS threshold matching is an O(α2) effect, so at leading order and next leading order

α(nf−1) = α(nf). To perform the matching consistently, threshold matching at the order

of one loop less than the running should be used [46, 47].

As we wish to perform the running and flavour matching for QCD, we express the

threshold matching coefficients in terms of the on-shell scheme, and turn on the

threshold matching at the point where µ = Mh, the physical on shell mass. This

choice benefits us by cancelling any log
(

µ2

M2
h

)
terms in the series.

We are left with the following numerical form for the matching down from nf to nf-1,

α(nf−1)(µ) = ζ2(µ)α(nf)(µ), (4.57)
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where ζ2(µ) for 4 loop running of the β-function for QCD in the on-shell scheme is,

ζ2(µ = mh) = 1− 0.02955201190(α(nf))2+

(− 0.1717036285 + (nf − 1)0.008465086429)(α(nf))3. (4.58)

Although it is quite common to use an inverse series for the upward (nf-1 → nf)

threshold matching [46, 47, 128], we instead solve Eq.4.58 for the real root of α(nf−1)

using a Newton-Raphson method, so that if we run forward through a threshold and

then backward through the same threshold to the same starting point we have the

same initial coupling that we started with up to the accuracy of the integrator, this

behaviour is not guaranteed by using the inverse series.

To illustrate the contribution threshold matching makes, we run the perturbative

coupling in MS from αnf=5(Mz) = 0.118 down to the on-shell Bottom quark mass

threshold Mb = 4.7 GeV , perform the matching from Eq.4.58 and then run down to

the on-shell Charm quark mass Mc = 1.6 GeV . At successive perturbative orders, with

and without threshold matching.

Perturbative order αMS
nf=4(Mc) (with decoupling) αMS

nf=4(Mc) (without)

1 0.291790 0.291790
2 0.331858 0.331858
3 0.336412 0.337191
4 0.337862 0.339470

Table 4.2 Table illustrating the effect threshold matching (decoupling) has, when
running through the Bottom mass threshold.

Tab.4.2 shows that the inclusion of threshold matching in our region of interest is small,

of the order of half a percent or so with the four loop expression for the β-function.

4.6 Numerical results

Our numerical procedure is as follows, where the final bullet only applies to QCD,� Configuration space gauge fix to Landau gauge to an acceptably high accuracy.� Take the logarithm of all of our gauge fields, using the same field definition as

was used in the gauge fixing.� (Fast) Fourier transform our gauge fields to momentum space.

86



� Filter our momentum so that only theoretically acceptable momenta are included.� Perform the ei
pµ
2 correction on our cut fields, test the momentum space Landau

condition.� Compute the normalised gluon propagators and normalised and projected three

point functions in either kinematic.� Compute the renormalised lattice coupling using Eqs.4.35 and 4.46.� Fit our data to a reasonable ansatz.� Match our fitted data to continuum MS , run down to the Charm threshold (1.6

GeV) using the nf=3 β-function, threshold match to nf=4 theory, run to the

Bottom mass threshold (4.7 GeV) using the nf=4 β-function threshold match to

nf=5 theory. Run using nf=5 β-function to Mz (91.1876 GeV)[22].

I will go over each step in a little more detail now. We fix our configurations to

the accuracy of Θ = 10−25, to ensure that the gauge fixing accuracy plays no part

in our systematics. We fix to such a high level because it is cheap with an effective

algorithm (and after a certain albeit high accuracy Θ behaves linearly with the number

of iterations) and we can fix to such a high level because we work solely in double

precision.

FFT-ing all of our configuration space fields allows us to easily select many momenta,

and for large lattices is a much cheaper alternative than Discrete Fourier transforming

(DFT) every momenta you want. For the exceptional scheme we always use a cylinder

cut, because of its removal of hard, on axis propagators with the exception of the 0-mode.

The eipµ/2 correction and computation of the momentum space Landau condition is a

vital sanity check.

We compute the gluon correlation functions using excessive use of the identities

previously discussed (e.g Eq.4.19 and Alg.4) to speed up numerical efficiency. We store

these as a list for the analysis. In the analysis part of the method the renormalised

coupling is computed and the result is bootstrapped (1.5.1), so that we can extrapolate

between different ensembles with differing number of configurations while still including

as much statistical information as possible. We then perform a fit of the form,

α(p2) = a + b log

(
p2

p2
0

)
+ c log2

(
p2

p2
0

)
, (4.59)

where p0 is a reference momentum at the middle of our fit range, and hence a is the

value of α at p0.
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The fit ansatz we use is theoretically motivated by the Taylor expansion of the explicit

solution of Eq.4.48. By having explicit forms for the fit function and values computed

between a specific range µ→ µ′ we can continuum extrapolate the results of our lattice

spacings which we could not with just their physical momenta. For our analysis it is

easier to continuum extrapolate our fitted data, match to MS by solving numerically

for h in Eq.4.51 or 4.50 and running to Mz numerically using Eq.4.5.1.

Our analysis is different from previous attempts [33, 37], where an explicit fit to the

perturbative form of the coupling was used to compute the Landau pole (ΛQCD) of the

theory, and corrections of O
(

1
p2

)
(justified by the gluon condensate term in the OPE)

were required to reconcile the result with evaluations of (ΛQCD) in MS. Or by an explicit

conversion of the coupling to ΛQCD as in [3]. We instead follow a simpler route and

expect that any discretisation effects to the physics will not survive the extrapolation

of a2 → 0 within our Rome-Southampton window.

4.7 QCD

The strong coupling αs of QCD is one of the very few free parameters of the

standard model, it is a fundamental constant of nature. The running coupling between

gluons, ghosts and quarks determines many facets of the rich dynamics of QCD. Its

renormalised value at some scale must be determined accurately by experiment, either

numerical or physical and by as many different avenues as possible to ensure we are

measuring it correctly.

The ensembles used for this analysis were (the lattice spacings for the β = 2.13 and

β = 2.25 ensembles were taken from [12] and that of the β = 2.23 was estimated from a

Wilson flow analysis 5, and aml is the simulated degenerate light quark mass and ams

the simulated strange quark mass),

4.7.1 The exceptional scheme

We have seen from Fig.4.6 that the gluonic three point function is a statistically noisy

observable, and so we really have to use as many configurations as we can. Fortunately,

the objects we are measuring, the gluon propagator and the gluon three point function

are ultra-local having integrated autocorrelation time of no greater than 5 Monte

Carlo time steps, so we have no qualms in using every configuration available after

thermalisation. We must first extrapolate our result to the chiral limit, and then a2

extrapolate to the infinite volume limit.
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163 × 32 243 × 64 323 × 64

aml 0.01 0.02 0.03 0.01 0.02 0.005 0.01 0.02 0.004 0.006 0.008
Configurations 738 750 1463 774 774 1555 802 572 519 746 450

ams 0.04 0.031 0.04 0.03

a−1 (GeV) 1.73(3) 2.19(6) 1.73(3) 2.28(3)

Table 4.3 SU(3) nf=2+1 Domain Wall Fermion ensembles used in the QCD
coupling analysis. The two 163 × 32 and 323 × 64 ensembles were
used for the MOMggg analysis and the larger 243 × 64 and 323 × 64

for the M̃OMgg determination. We use the Iwasaki gauge action and
fifth dimension length 16.

Our first plot (Fig.4.8) is of the coupling determined using the exceptional kinematic

for the three 323 masses available. The data is taken from a cylinder cut of large width
3π

Lsm
, so that we can average over more equivalent p2 modes. To this end we also average

over neighbouring momenta using the criteria |(ap)2 − (ap′)2| < 0.05, for clarity. We

use a subset of the configurations listed in 4.3. We use 165 of the am = 0.004, 558 of

the am = 0.006 and 170 of the am = 0.008 configurations.
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Figure 4.8 The strong coupling for three different masses for the 323 ensemble.

Fig.4.8 shows the mass dependence of the strong coupling in the M̃OMgg scheme. We

observe no mass dependence beyond the statistical resolution of the measure. The

observation that the coupling for different masses is oscillating around a central value

and the coupling for different masses swaps over in magnitude is indicative of the

statistical noise in the measurement being much larger than any chiral behaviour. We

therefore must assume the approach to the chiral limit is flat, which allows us to
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average the contributions from the masses. The exact same behaviour is seen for the

243 ensembles, where no chiral limit can be resolved above statistical noise. This

then allows us to compute the coupling in what we infer is the chiral limit with 2929

configurations for the β = 2.13 ensemble and 1715 configurations for the β = 2.25

ensemble. This will give us the statistical resolution to determine the strong coupling

with great accuracy.
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Figure 4.9 The QCD strong coupling for the 243, β = 2.13 ensemble using the
exceptional kinematic. Using an average over the three available
masses and a fuzzy momentum average of 0.05(a−2).
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Figure 4.10 The QCD strong coupling for the 243, β = 2.13 ensemble using the
exceptional kinematic. Using an average over the three available
masses and a fuzzy momentum average of 0.05(a−2).
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From the two figures 4.10 and 4.9 we see that this is a viable way to calculate the

QCD strong coupling, and the fit over the whole perturbative range is possible. One

interesting point is the turnover at momenta less than ≈ 1.5GeV , this is an IR effect

that could be due to instantons [34] and is not the subject of this study. It is only

the UV range of the simulation we are interested in as that is where the perturbative

comparison can occur.

1 2 3 4 5
Matching Scale µ [ GeV ]

0

0.5
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α s(
µ2 )

αMOMgg (µ2), β=2.25
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2
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αMS
 (µ2

), 3 Loops Matching

Figure 4.11 Continuum extrapolations of the fits to the β = 2.13 and β = 2.25

ensembles in the M̃OMgg scheme and its subsequent matching to
MS.

Fig.4.11 shows the continuum extrapolations of the two fits in Figs.4.10 and 4.9, where

the fit parameters have been used to extrapolate the fit down to 0.5 GeV and up to

5 GeV. We see significant scaling violation (i.e. large a2 defects) between the β =

2.13 and β = 2.25 ensembles. Particularly at high momentum, where both ensembles

are suspected to be outside of their Rome-Southampton window. From this plot we

deduce that around 3 GeV the scaling violations are manageable and we have small

perturbative errors.

Fig.4.12 shows M̃OMgg evaluated and matched perturbative nf=5 MS QCD coupling

at the Z-boson mass Mz, for different loop orders of matching and running. We run

the coupling at the order we match between the schemes, and at a plateau we perform

a constant fit to obtain our final result.

We see large corrections between successive loop orders even at Mz, illustrative of the

poor convergence of the scheme at the matching scale available. We also note that at

higher orders of perturbation theory the coupling in MS at Mz is flatter for a larger

range of the matching scale µ. It is tempting to infer from this data that we are slowly
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Figure 4.12 The QCD strong coupling in MS at Mz for varied loop order of
matching and running for renormalisation matching scale µ, after

a2 → 0 extrapolation. For the M̃OMgg scheme determination.

converging from above to the coupling at Mz as we increase the order of the matching

and running, but we have no idea what the fourth order term in the series in Eq.4.50

will do to the conversion to MS. Going from two loop order to three loops in the

matching and running at 3 GeV gave a 2.4% correction. A conservative estimate on

the perturbative error could be to use this as an estimate for the contribution of all of

the remaining orders.

a2(GeV −2) χ2/dof [ Fit Range (GeV) ] αM̃OMgg
nf=3 (3 GeV ) αMS

nf=3(3 GeV ) αMS
nf=5(Mz)

0.334(4) 2.17 [ 2 → 4 ] 0.3493(31) 0.2293(13) 0.11433(32)
0.192(2) 1.13 [ 2 → 5 ] 0.3898(48) 0.2458(19) 0.11815(42)

0 - 0.445(13) 0.2663(48) 0.1224(83)

Table 4.4 The statistical results from the M̃OMgg scheme computation at fixed
matching scale 3 GeV at each stage of the analysis.

The results in Tab.4.4 show that a statistically precise determination of the strong

coupling can be made using this technique, with both coupling evaluations in the

M̃OMgg scheme having O(1%) statistical error for reasonable fits. The extrapolations

to the continuum have been performed incorporating the error in the lattice spacings.

As discussed in Sec.4.3.5, the zero momentum gluon’s normalisation as seen from the

difference in polarisations has not been taken into account. It is our understanding that

amputation with such a propagator is an incorrect procedure because it introduces
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out of control finite volume systematics to the measurement. To estimate the error,

we consider Fig.4.3 and the difference between the temporally-polarised and spatially

polarised gluon. The worst difference from their average comes from the 243 ensemble

and is a factor of 0.82 and 1.53 for the spatial and temporal respectively. Using the

temporal polarisation for the norm induces a multiplicative factor of 1.5 and the spatial

a factor of 0.5 on the value of the M̃OMgg α. After running to Mz these translate to

couplings 0.128 and 0.087, symmetrising the difference from the average these yield gives

us an estimate on our finite volume systematic of 0.02. Our final result for αs(Mz) in

MS is,

αs(Mz) = 0.1224(8)stat(29)pert(200)finite volume. (4.60)

4.7.2 The non exceptional scheme

The non-exceptional scheme uses a kinematic that is theoretically sound, and use of

this scheme is well motivated by its absence of a zero-momentum gluon propagator

amputation.

Its difficulty lies in locating sufficient triplets of external momenta, statistics is one of

the largest hurdles to overcome in this measure. As stated at the introduction to the

scheme in Sec.4.4.2 we cannot use the 243 × 64 data as in the previous exceptional

kinematic study. Also, this scheme defines the momentum conservation using the

Fourier mode definition for the momentum (pµ =
2πnµ

Lµ
), although we have argued

that the sin definition of momentum pµ = 2 sin (πpµ) is the correct one to use, if we

do use the sin definition of momentum then the triplets we have selected no longer

necessarily conserve momenta.

It is much more difficult to incorporate triplets that conserve momenta using the sin

definition, and for this study we only use the Fourier mode definition. And use it

consistently both in the projectors and for the scale. Of course the choice of momentum

is just a choice and after taking the continuum limit (a2 → 0) the two should give the

same results up to higher order corrections.

Fig.4.13 shows the lattice-units, unrenormalised, gluon propagator and the MOMggg

scheme three point function, for the β = 2.25 ensemble. An average over the three

masses has been made and no momentum binning (fuzzy averaging) has been performed.

This plot is meant to illustrate that there are fewer momenta available for this kinematic

and that the three point function is statistically noisy, with large fluctuations on p2-

modes that do not have many momenta available to average over. Again, much as

in the case of the M̃OMgg scheme, no discernible chiral limit was available and so an

average over the measurement at all available masses was made. This was also the case
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Figure 4.13 The unrenormalised gluon propagator and non-exceptional kine-
matic three point function for the β = 2.25, 323 × 64 ensemble,
where an average over the three available masses has been made.

for the two 163 × 32 ensembles investigated in this section.

The three plots in Fig.4.14 show our measurement of the QCD strong coupling using

the MOMggg scheme. The β = 2.25, 323 ensemble has had a cut whereby the points

that have a greater than 10% error on their value are discarded. This can be performed

because the 323 configuration has enough data points that the outliers are irrelevant.

Within statistical error this cut makes no difference on the result of the fit and is mostly

for clarity. We note that this measure is statistically noisy and that the coupling takes

a higher value in the IR compared to the exceptional scheme, similar behaviour was

seen in [36], although we do disagree with the projector they used to determine the

coupling. As in the previous evaluation using the exceptional scheme, we use the fit to

our data to continuum extrapolate.

From Fig.4.15, we see that the scaling violations in this measure are still severe as was

seen for the exceptional kinematic, we had to omit the β = 2.23 ensemble as it was

spoiling the continuum extrapolation due to its lattice spacing being too close to the

323 data’s, this was seen from very high χ2/dof (> 10) for the a2 → 0 extrapolations.

In Fig.4.15 large scaling violations in the determination of the coupling from the triple

gluon vertex exist even using the more theoretically sound non-exceptional kinematic,

we attribute this violation to large (ap)2 corrections and only obtain flat logarithmic

running of the continuum after a2 → 0 extrapolation. We proceed to run our coupling to

the Mz, as we only have matching coefficients at the two loop level threshold matching
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(a) 163 × 32, β = 2.13 ensemble.
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(b) 163 × 32, β = 2.23 ensemble.
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(c) 323 × 64, β = 2.25 ensemble.

Figure 4.14 The strong coupling evaluation for the MOMggg coupling. The
β = 2.25 measurement has had a cut applied where only the lowest
error points contribute.
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Figure 4.15 Continuum extrapolations of the fits to the β = 2.13 and β = 2.25
ensembles in the MOMggg scheme and its subsequent matching at
two loop order in continuum perturbation theory to MS .
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does not play a rôle.
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Figure 4.16 The QCD strong coupling in MS at Mz for varied loop order of
matching and running for renormalisation matching scale µ, after
a2 → 0 extrapolation. For the MOMggg scheme determination.

a2(GeV −2) χ2/dof [ Fit Range (GeV) ] αMOMgg
nf=3 (3 GeV ) αMS

nf=3(3 GeV ) αMS
nf=5(Mz)

0.334(4) 0.57 [ 1.92→ 4.61 ] 0.5012(57) 0.3050(22) 0.12994(40)
0.192(2) 1.17 [ 1.90→ 4.78 ] 0.4893(66) 0.3002(26) 0.12910(48)

0 - 0.476(16) 0.2947(66) 0.1275(12)

Table 4.5 The statistical results from the MOMggg scheme computation at fixed
matching scale 3 GeV at each stage of the analysis.

Our final result for this scheme is based on the graph Fig.4.16 and the table Tab.4.5,

where we again see a large correction from the one-loop matching to the two-loop

matching in MS at Mz as in the exceptional scheme of about 8.7% on the central value.

Very conservatively we use this as an estimate for all other higher order corrections for

this scheme. Our final result for the non-perturbatively renormalised coupling in the

MOMggg scheme at 3 GeV and its matched and run, nf=5 αs(µ) in MS at Mz is,

αMOMggg
nf=3 (3 GeV ) = 0.476(16)stat , αMS

nf=5(Mz) = 0.1273(9)stat(110)pert. (4.61)

This is the first measurement of the QCD strong coupling using the non-exceptional

matching and projectors of [90], and the first evaluation of the QCD strong coupling

using the nf=2+1 DWF configurations generated by UKQCD and RBC [12]. The

accuracy of the measurement is good, and this translates to a statistical accuracy at
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Mz in MS of under 1%, unfortunately at matching scales computationally available

and with current perturbative calculations available in the literature we are almost

completely dominated by perturbative truncation errors. Circumventing this issue will

require much smaller lattice spacings, and more likely higher orders of perturbative

corrections, both of which are daunting tasks. Although a step-scaling scheme to take

us to higher scales could be used [14], this would require a dedicated configuration

generation programme which is beyond the scope of this work. Also, considering the

plots in Fig.4.7 we do not see spectacular convergence at 10 GeV or higher, even at

this scale we still might be dominated by perturbative error.

We now turn our attention to theories where a non-perturbative coupling measurement

in any scheme is of interest.

4.8 SU(2) with nf=2 Fermions in the Adjoint

representation

I now introduce a different non-abelian gauge theory, that has been implemented on

the lattice. That of SU(2) gauge theory with nf=2 dynamical Fermions in the Adjoint

representation. It is tantamount to the versatility of our procedure that very little in

terms of analysis is required to change, in order to perform this measurement. This

lattice theory has been of interest as a possible Beyond the Standard Model (BSM)

theory for dynamical Electroweak Symmetry Breaking (dEWSB). This theory is part

of the family of Technicolor models (strong dynamics at the Tera electron-Volt TeV

scale), where the lightest hadronic states are the Standard Model Higgs boson.

Many versions of Technicolor are ruled out by the s-parameter [60, 123], apart from

exotic higher representations of fermions or perhaps theories with a large number of

fermions [60]1. Many of these new models display the behaviour of so-called walking,

where there is a cancellation at some value of the coupling between the leading order

and next leading order of the perturbative β-function, making the coupling run slowly,

this can be created using higher representations of fermions, different gauge groups and

large number of fermion flavours. We can investigate what walking behaviour of the

coupling beyond perturbation theory exists using techniques of the lattice.

Our evaluation is the first measurement of the non-perturbatively renormalised coupling

of this theory using the triple gluon vertex. By virtue of using vertex functions one can

fit continuous (ap)2, allowing for a continuous β-function calculation, for comparing to

the walking ansatz.

1Although the perturbative evaluation of the S-parameter grows with nf.
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We have two ensembles for this theory, both simulated using the Wilson action

for fermions and the Wilson gauge action using the HiRep code [57], both with

β = 2.25, aml = −1.15.

323 × 64 483 × 80

aml -1.15 -1.15
Configurations 750 500

β 2.25 2.25

Table 4.6 The SU(2) ensembles, with nf=2 Adjoint Fermions. Used for this
analysis.

4.8.1 Gluon field renormalisation

Our first computation is of the gluon field renormalisation ZAµ

(
p2
)
, defined by Eq.4.21.

By plotting this function we can attempt to infer where the perturbative behaviour of

our theory is by seeing where this function flattens out. This is then a clear indication

that the gluon propagator is behaving in its free field 1
p2 form.
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Figure 4.17 The gluon field renormalisation factor ZAµ((ap)2), for both the 323

and 483 ensembles.

From Fig.4.17, we can see that the expected 1
p2 behaviour sets in early for these

configurations. This is indicative of perturbative behaviour. It is very surprising just

how large the field renormalisation needs to be in the IR and how quick the onset

of perturbative behaviour occurs. This is very different behaviour to QCD (Fig.4.1),
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where the transition from non-perturbative physics to perturbative is slow. It appears

that in the deep IR of this theory at this bare coupling (β = 2.25) lies the strong

dynamics.

4.8.2 Matching coefficients

The matching coefficients for our MOM-couplings for SU(2), nf=2 gauge theory with

two Fermions in the Adjoint representation to MS are, for the exceptional kinematic,

hM̃OMgg = h (1.0 + h(−4.0 + h(−167.6074922 − 1181.415908h)) . (4.62)

And for the non-exceptional,

hMOMggg = h (1.0 + h(−9.672792226 − 204.5564887h) . (4.63)

This is already a noticeably different result to QCD, where the MOM-scheme couplings

were larger than the MS . In this case the sign of the corrections is negative, meaning

the perturbative coupling in the MOM schemes will almost always lie lower than the

MS . Solving the matching to MS for the coupling using a Newton Raphson method

became unstable at low momentum indicating a very sharp rise in the MOM-scheme

couplings, we choose instead to use the inverse series for the MS couplings.

h =hM̃OMgg

(
1.0 + hM̃OMgg

(
4.0

+ hM̃OMgg(199.6074922 + 4853.565753h
˜MOMgg)

))
. (4.64)

h = hMOMggg
(
1.0 + hMOMggg(9.672792226 + 391.6823076hMOMggg )

)
. (4.65)

The scheme-independent parts of the β functions read,

β = −h2(2.0) − h3(−40.0). (4.66)

And the scheme-dependent parts for the exceptional kinematic are,

βM̃OMgg = β − h4(−931.2149844) − h5(−13974.69900). (4.67)

And for the non-exceptional,

βMOMggg = β − h4(+1387.150485). (4.68)
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The two schemes are quite different from one another, in terms of their higher order

corrections.

4.8.3 The strong coupling

We perform the same analysis as previously, comparing both schemes’ evaluations of

the coupling and their evaluation in MS . We can only use the smaller ensemble (the

323 × 64) for the evaluation of the MOMggg coupling because, as was the case with

the 243× 64 SU(3) ensemble the aspect ratio makes it very difficult to locate momenta

that satisfy the kinematic.
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Figure 4.18 The strong coupling αs

(
(ap)2

)
from the exceptional kinematic and

its subsequent matching to MS at 3 loop order for the 323 × 64
and 483 × 80 ensembles. Large cylinder radii of 3 and four lattice
spacings were used for this computation and a fuzzy momentum
average of 0.075 was also used.

The evaluation of αs(µ) for this theory differs dramatically from our previous QCD

evaluations of the coupling. As seen in Fig.4.18 there is no visible turnover at

low momentum for these ensembles, and the coupling is running very slowly with

lattice momentum. The evaluations from the two lattice sizes are in good agreement,

suggestive of having finite volume lattice artifacts under control. We plot the data close

to what we would expect to be the upper edge of our Rome-Southampton Window

((ap)2 << π2) to try and illustrate the evolution of the coupling over as large a range

as possible. We see a very sharp non-perturbative peak with slow running afterwards,

suggestive of being in the theory’s confining region.
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The non-exceptional coupling is shown in Fig.4.19. As in the QCD case, this measure

is statistically noisier, both schemes, however show a very sharp peak and very slow

running as a function of (ap)2. We do not see a complete flattening of the coupling,

which would be expected for a zero of the non-perturbative β-function, instead we see

slow but probably logarithmic running of the coupling, this could well be due to large

O
(
(ap)2

)
terms, as we saw from calculation of the QCD running coupling in Figs.4.11

and 4.15.
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Figure 4.19 The strong coupling αs

(
(ap)2

)
from the non exceptional kinematic

and its subsequent matching to MS at 1 and 2 loop order for the
323 × 64 ensembles.

4.8.4 Renormalised β function

From our results it is straightforward to compute the renormalised β-function for our

two MOM schemes and in MS . We do this by differentiating our fit ansatz with respect

to log(µ2), yielding,

β(µ2) = b + 2c log

(
µ2

µ2
0

)
,

β(µ2) = ±
√

b2 + 4c(α(µ2)− a). (4.69)

Where the second coupling is found by solving for log
(

µ2

µ2
0

)
. For the MS β-function,

we numerically differentiate the matched, fitted coupling using the Euler version of the

finite difference. We can only use the fitted, exceptional scheme’s data due to the noise

in the statistical fluctuations of the data not providing a smooth enough function to
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resolve the numerical derivative. The non-perturbative M̃OMgg and the matched to

three loop perturbative order MS β functions are shown in Fig.4.20.
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Figure 4.20 The SU(2) nf=2 Adjoint representation β functions for the
exceptional scheme and its 3 loop matched MS evaluation for our
323 dataset.

From Fig.4.20, it is interesting to note that our M̃OMgg evaluation of the coupling

yields a small, but still negative β function. Caution must be taken in stating whether

this theory is apparently walking in this regime or not, because we only have results

from one lattice spacing and do not have (ap)2 errors under control, although there is

evidence from the non-exceptional scheme (Fig.4.19) that may suggest a very slow if

not stopped running and greater statistics could be beneficial in determining whether

this is the case.

As an investigative tool, evaluations of the strong coupling of various non-abelian field

theories via vertex functions can give lots of fine detail on the low energy fundamental

behaviour of a particular theory. As a method for determining the running coupling of

QCD αs(µ), the triple gluon vertex evaluation on the lattice can produce statistical

errors of the order of 1%. Unfortunately, if one wishes to match this evaluation

to continuum perturbation theory large systematics due to the truncation of the

perturbative series spoils the measurement.

We have cast doubt on the theoretical validity of the previously used exceptional scheme,

noting that amputation by a maximally infrared object suffers from large unknown

systematic errors due to the finite volume. We are the first to compute the coupling

using the MOMggg scheme of [90], which we believe provides the correct projection of

the triple gluon vertex in the non-exceptional kinematic (compared to the one used in
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[35, 36]), and is theoretically sound due to its lack of amputation by a finite-volume

sensitive object. Although we do find the non-exceptional scheme evaluation to be

technically challenging.

As a probe for new models of strong dynamics, the triple gluon vertex is a useful tool as

it can be measured on existing configurations and is computationally cheap to perform

the analysis if a fast enough Landau gauge fixing method is available, and there are

enough configurations available. We have seen that Gribov copies do not appear to

play a strong rôle in the dynamics of the gluon propagator, especially in the regime

where continuum perturbative matching is considered possible.
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Chapter 5

Link smearing and the Wilson flow

In this Chapter I will discuss several smearing methods and techniques used by the

community. Smearing is the method of smoothing out gauge fields by successive

averages over the original field, which can reduce UV fluctuations in the gauge field.

It is often used to reduce chiral symmetry breaking [65], and “taste” [72] (when using

staggered fermions) breaking when incorporating fermions in the simulation.

The Wilson flow is a new method in the arsenal of lattice gauge theorists to compute

several important quantities, such as the lattice spacing. It is very closely related to

the technique of smearing.

For instructional purposes, I provide some diagrams to indicate the procedures being

discussed. The conventions I use are that links are “right-handed” and emanate out of

the site x in the positive direction. Daggered links flow into the site and joined links

imply a matrix multiply at the join.

5.1 Smearing types

The basic smearing recipe is the replacement of a gauge link by the (weighted by

some tuning parameter) average of its surrounding staples, and is meant to suppress

high energy fluctuations. The method is a steepest descent method of moving the

configuration to the nearest local solution of the classical equations of motion, this is

essentially the same as performing a forward Euler integration of the Wilson flow. We
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Figure 5.1 Pictorial representation of link matrices from a point “x” to a point
x + aµ̂, x + aν̂, x + aρ̂ on our lattice for orthogonal directions µ, ν
and ρ.

first define,

Pµν(x) =
(
Uν(x + aν̂/2)Uµ(x + aν̂ + aµ̂/2)Uν(x + aµ̂ + aν̂/2)†Uµ(x + aµ̂/2)†

)
,

Oµν(x) =
(
Uν(x− aν̂/2)†Uµ(x− aν̂ + aµ̂/2)Uν(x + aµ̂− aν̂/2)Uµ(x + aµ̂/2)†

)
,

Qµν(x) = log(Oµν(x)) + log(Pµν(x)). (5.1)

Which are then used to define the replacement,

Uµ

(
x + a µ̂

2

)
= exp


 α

2(Nd − 1)

∑

ν 6=µ

Qµν(x)


Uµ

(
x + a µ̂

2

)
. (5.2)

It is clear that the recipe in 5.2 is gauge covariant, as the argument of the logarithms

form a closed loop, which is manifestly a gauge covariant quantity. The parameter α

is a tuning parameter dictating how aggressively we smooth our link, if it is too large

the smearing roughens the configurations introducing noise into the smearing.

Recalling from Eq.1.19, the link between the plaquette and the field strength tensor,

Pµν(x)† = eiFµν(x+a µ̂
2
+a ν̂

2 ) and the fact that the term that contributes below the link is

Oµν(x) = eiFµν(x+a µ̂
2
−a ν̂

2 ), we see that for Hermitian F,

Qµν(x) = −iFµν

(
x + a

µ

2
+ a

ν

2

)
+ iFµν

(
x + a

µ̂

2
− a

ν̂

2

)
= −ia∆νFµν

(
x + a

µ̂

2

)
.

(5.3)

Which is the lattice variant of the classical equation of motion for the field ∂S
∂U .

Performing a small expansion in α, we have the update,

Uµ

(
x + a µ̂

2

)
= Uµ

(
x + a µ̂

2

)
− iαa∆νFµν

(
x + a

µ̂

2

)
Uµ

(
x + a µ̂

2

)
. (5.4)
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This is a steepest descent step along the gradient of the gauge action. If we consider

the update in Eq.5.4 as a step in some fictitious time t = α, then we immediately see

that it is the Euler solution to the gradient equation (the dot denotes differentiation in

fictitious time),

U̇µ

(
x + a

µ̂

2

)
= −ia∆νFµν

(
x + a

µ̂

2

)
Uµ

(
x + a µ̂

2

)
. (5.5)

Integration of this is called the gradient flow. In this description, the Wilson plaquette

action has been used to define the field strength tensor and hence Q, its gradient flow is

called the Wilson flow. If a different gauge action is used to alter or refine the definition

of the field strength tensor, then the gradient flow changes as the local minima of the

classical equations of motion are different.

I now consider three different types of smearing, the first two (APE and STOUT) are

approximations to Eq.5.2 and the final (LOG) is the exact reproduction of Eq.5.2.

5.1.1 APE

APE smearing is the oldest smearing technique, it was used to smooth configurations

for the measurement of glueball spectra (color bound states) [1, 71]. Again, we define

the combination,

Lµν(x) =
(
Uν(x + aν̂/2)Uµ(x + aν̂ + aµ̂/2)Uν(x + aµ̂ + aν̂/2)†

)
,

Mµν(x) =
(
Uν(x− aν̂/2)†Uµ(x− aν̂ + aµ̂/2)Uν(x + aµ̂− aν̂/2)

)
,

Nµν(x) = Lµν(x) + Mµν(x). (5.6)

The update step proposed was,

Uµ

(
x + a µ̂

2

)′
= PSU(N)


(1− α)Uµ

(
x + a µ̂

2

)
+

α

2(Nd − 1)

∑

ν 6=µ

Nµν(x)


 (5.7)

Where PSU(N) is a projection back into SU(N) which is often performed by trace

maximisation (2.2.1) such as in our implementation, but can also be performed by

using a rational approximation [107]. In Eq.5.7 Nµν(x) are the so-called staples and

is represented pictorially in Fig.5.2. These are the link contributions to the plaquette

action under the alteration of the link Uµ

(
x + a µ̂

2

)
.
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Lµν(x) =

Figure 5.2 Pictorial representation of the positive-ν staple Lµν(x) from point
“x” to a point x + aµ̂ in the µ− ν plane.

The relation between Eq.5.2 and Eq.5.7, is as follows; Eq.5.7 can be rewritten as,

PSU(N)


(1− α) +

α

2(Nd − 1)

∑

ν 6=µ

Nµν(x)Uµ

(
x + a µ̂

2

)†

Uµ

(
x + a µ̂

2

)
. (5.8)

This operation is legal because the projection PSU(N)(XU) = PSU(N)(X)U for any

arbitrary matrix X and any SU(Nc) matrix U, this also means that the projection is

gauge invariant. We now expand Eq.5.2 in the weak field approximation to O((ag0)
2)

in the logarithm and the exponential.

log(Pµν(x)) = log

(
1− iFµν

(
x + a

µ̂

2
+ a

ν̂

2

))
, log(Pµν(x)) = −iFµν

(
x + a

µ̂

2
+ a

ν̂

2

)
,

log(Oµν(x)) = log

(
1 + iFµν

(
x + a

µ̂

2
− a

ν̂

2

))
, log(Oµν(x)) = +iFµν

(
x + a

µ̂

2
− a

ν̂

2

)
,

−ia∆νFµν

(
x + a

µ̂

2

)
= −iFµν

(
x + a

µ̂

2
+ a

ν̂

2

)
+ iFµν

(
x + a

µ̂

2
− a

ν̂

2

)
. (5.9)

Expanding the exponential, we get the result,

Uµ

(
x + a µ̂

2

)′
=


1 +

α

2(Nd − 1)

∑

ν 6=µ

−ia∆νFµν

(
x + a

µ̂

2

)
Uµ

(
x + a µ̂

2

)
. (5.10)

Expanding Eq.5.8 to the same order, we get,

Nµν(x)Uµ

(
x + a µ̂

2

)†
= 1− iFµν

(
x + a

µ̂

2
+ a

ν̂

2

)
+ iFµν

(
x + a

µ̂

2
− a

ν̂

2

)

Uµ

(
x + a µ̂

2

)′
=


1 +

α

2(Nd − 1)

∑

±ν 6=µ

−ia∆νFµν

(
x + a

µ̂

2

)
Uµ

(
x + a µ̂

2

)
. (5.11)

The term “1 − α” exists in the projection to explicitly cancel the
(

α
2(Nd−1)

∑
±ν 6=µ 1

)

term in the weak field expansion of the exponential of the plaquette.

If we consider the weak field expansion of the APE smearing procedure again, ignoring
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the projection step for simplicity, and this time expanding the previous link on the

right hand side of Eq.5.1.1 we obtain,

Uµ

(
x + a µ̂

2

)′
=

(
1 + iAµ

(
x + a µ̂

2

)
+

iα

2(Nd − 1)

∑

ν

+ Aν(x + aν̂/2) + Aµ(x + aν̂ + aµ̂/2) −Aν(x + aµ̂ + aν̂/2)−Aµ(x + aµ̂/2)

−Aν(x− aν̂/2) + Aµ(x− aν̂ + aµ̂/2) + Aν(x + aµ̂− aν̂/2)−Aµ(x + aµ̂/2)

)
.

(5.12)

The sum has changed to be over all positive ν, because at µ = ν all of the terms in the

sum at this order cancel. We can then pick out the finite differences,

a∆νAν(x) = Aν(x + aν̂/2) −Aν(x− aν̂/2),

a2∆ν∆νAµ(x + aµ̂/2) = Aµ(x + aν̂ + aµ̂/2) + Aµ(x− aν̂ + aµ̂/2) − 2Aµ(x + aµ̂/2).

(5.13)

We obtain upon shifting x→ x− aµ̂/2,

Uµ(x) =

(
1 + iAµ(x) +

ia2α

2(Nd − 1)

∑

ν

∆ν∆νAµ(x)−∆µ∆νAν(x)

)
. (5.14)

In terms of the updated (primed) gluon field, we have the expression,

Aµ(x)′ =

(
1 +

a2α

2(Nd − 1)
∆ν∆ν

)
δµνAν(x)− a2α

2(Nd − 1)
∆µ∆νAν(x). (5.15)

Under Fourier transform and noting that every derivative yields a factor a∆νAµ(x) =

iaqνAµ(q), we obtain for one smearing iteration the update to the gluon field in

momentum space,

Aµ(q) =

((
1− a2α

2(Nd − 1)
q2

)
+

qµqν

q2

)
Aν(q). (5.16)

For iterated smearing (n-smearing iterations), the form

A(n)
µ (q) =

{(
1− a2α

2(Nd − 1)
q2

)n (
δµν −

qµqν

q2

)
+

qµqν

q2

}
A(0)

ν (q). (5.17)

Can be used [23, 44], where the index 0 means the completely unsmeared (original)

gauge field and the q’s are the usual sine-definition of momentum (Sec.3.2.1).

Eq.5.17 defines the smearing transformation in momentum space for fields in the weak

field approximation. Due to the link between our standard recipe (Eq.5.2) and APE

smearing at the linear order in this approximation, the expression for the momentum-
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space transformation holds for the following two smearing prescriptions STOUT and

LOG.

5.1.2 STOUT

The STOUT smearing procedure was first introduced in [117] as a method to include

smeared links in the HMC update, because it is an analytic and differentiable projection.

It is based on Eq.5.2, and uses the Hermitian projection (Log-A of Sec.2.1.1) of the

logarithm in the exponential and an exact exponential based upon Cayley-Hamilton

theorem (Sec.2.2.3).

The relation to Eq.5.2 is,

Uµ

(
x + a µ̂

2

)
= exp


 α

2(Nd − 1)

∑

ν 6=µ

Qµν(x)


Uµ

(
x + a µ̂

2

)
,

Uµ

(
x + a µ̂

2

)
= exp


 α

2(Nd − 1)
Pr




∑

ν 6=µ

Pµν(x) + Oµν(x)






Uµ

(
x + a µ̂

2

)
,

Uµ

(
x + a µ̂

2

)
= exp


 α

2(Nd − 1)
Pr






∑

ν 6=µ

Nµν(x)


Uµ

(
x + a µ̂

2

)†





Uµ

(
x + a µ̂

2

)
.

(5.18)

where I have denoted Pr {} as the Log-A projection, and used its distributivity (Eq.2.2)

to pull the projection outside of the sum, and to pull the multiplication by Uµ

(
x + a µ̂

2

)†

outside of the sum and to the right of the expression, hence eliminating 2(Nd−1) matrix

multiplications for smearing in all Nd dimensions. As mentioned before, the logarithm

is a gauge invariant quantity and is traceless and Hermitian by definition. If we can

guarantee that the exponential can be performed directly to SU(Nc) we have no need

for cumbersome projections back into the group, that are only correct up to a particular

accuracy and are comparatively slow.

5.1.3 LOG

Logarithmic link smearing and direct computation of of the quantity Eq.5.2 is probably

the most obvious smearing method and the least complicated conceptually, so it is no

surprise that the method was implemented last out of all the procedures [67]. The

computation of the logarithm in Eq.5.2 must be performed for every staple because the

exact log (Log-B,C or D) does not adhere to distributivity in its arguments as Log-A
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does, this means there are 2(Nd − 1) extra matrix multiplies and 2(Nd − 1) logarithms

that must be taken for every update of a single link.

The exact logarithm method (Log-B,C or D) has been outlined already in Sec.2.1.3 for

SU(3) and SU(2). For generic Nc out of the two methods we have available Log-D is

clearly the only viable option, this requires computation of the eigenvalues of the link

matrix Uµ

(
x + a µ̂

2

)
, possibly by some library. Otherwise rational approximation [78]

or brute-force Taylor expansions [67] could be used, but are computationally expensive

to perform and their accuracy needs to be controlled carefully.

For our Log-smearing, for SU(2) and SU(3) we use the Log-C method for determining

the Qµν(x) because it was seen to be the fastest of the stable varieties. We then use

the exact exponential technique from STOUT smearing to ensure we are projecting

back to the group correctly (Tab.2.1). It is clear that because of the extra work

we are doing and the cost of taking the logarithm, this method will be the most

expensive computationally out of all the smearing procedures. A cost-comparison of

our implementation of the three techniques for SU(2), SU(3), SU(5) and SU(8) is below

in Tab.5.1, where Log-smearing was only implemented for SU(2) and SU(3).

The data in Tab.5.1 shows the ratio of the time taken for that method of smearing

divided by the STOUT method which is expected to be the fastest. For SU(2) however,

APE is cheaper than STOUT because it only ever requires one rotation in the trace

maximisation and requires one fewer matrix multiply per link update than STOUT. For

SU(3), STOUT is the cheapest to perform due to the fixed cost per iteration compared

to the variable cost per APE update. It is also over twice as fast as LOG smearing

because one extra matrix multiply and logarithm must be made for each (positive and

negative) staple per link update.

For large Nc I offer two solutions for the exponentiation of the STOUT projection. The

first being a brute force Taylor expansion of the exponential based on the one detailed

in the appendices of [67]. The second using the eigenvalues of the Log-A projected

logarithm computed using the GSL library, and using these as input for the solution

of the generic Vandermonde system for the f’s and the exponential using Eq.2.5. The

ratio for the APE smearing time for different SU(Nc) links is shown in 5.1, where the

value on the left of the comma is the Taylor expansion and on the right the time taken

for the Vandermonde solution.

We see that as Nc increases, the Taylor expansion method becomes incredibly costly

to perform due to its reliance on many matrix multiplications and error checking for

the converged solution. The Vandermonde solution is the fastest as Nc increases, but

only by a small amount compared to APE because we have sped up the APE smearing

dramatically with the two cheaper matrix multiplication routines discussed in Sec.2.2.1.
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Smearing SU(2) SU(3) SU(5) SU(8)
APE 0.95 1.73 0.28,1.11 0.003,1.17
LOG 1.80 2.54 - -

Table 5.1 The time taken per iteration of our implementation of the two
smearing types APE and LOG normalised by the time taken per
iteration of the STOUT procedure. For SU(2), SU(3),SU(5) and
SU(8) gauge group. For SU(5) and SU(8) the first measure is from
the brute force Taylor expansion for the exponential and the other is
from using the generic Vandermonde solver for the f-constants in the
exponential.

5.2 Hypercubic Blocking

A hypercubic blocking or nesting, requires each link in the staple to be smeared with

staples orthogonal to that link’s polarisation and the polarisation of the link we are

attempting to hypercubically-block and smear. The procedure recurses down the list of

free polarisations to construct orthogonal staples with. It was introduced as an attempt

to reduce the smearing radius whilst providing maximal smoothing of the gauge field

per iteration [95]. For 4D hypercubically blocked smearing we have the 3 updating

steps per iteration,

Vµ,νρ(x) = exp





α3

2(Nd − 3)

∑

σ 6=µνρ

Qµσ(U(x))



Uµ

(
x + a µ̂

2

)
,

Wµ,ν(x) = exp





α2

2(Nd − 2)

∑

ρ6=µν

Qµρ(V (x))



Uµ

(
x + a µ̂

2

)
,

Uµ(x)′ = exp





α1

2(Nd − 1)

∑

ν 6=µ

Qµν(W (x))



Uµ

(
x + a µ̂

2

)
. (5.19)

Originally only considered for the APE projection, the technique was called HYP [95].

As we have seen in the previous sections, extension to STOUT (HEX) [65] and LOG

(HYL) [67] only require the change in projection. The different α’s can be tuned

for the greatest reduction of noise per iteration. Originally, the parameters for SU(3)

(α1, α2, α3) α = (0.75, 0.6, 0.3) were found to be optimal and are sometimes called

HYP-1.

Upon successive smearing iterations, the Hypercubic-blocking transformation in the

weak field approximation is supposed to behave in momentum space for n-smearing
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iterations to lowest order in q2 as [44],

A(n)
µ (q) =

{(
1− α1(1 + α2(1 + α3))

2(Nd − 1)
(aq)2

)n(
δµν −

qµqν

q2

)
+

qµqν

q2

}
A(0)

ν (q). (5.20)

It is clear that the parameters (α, 0, 0) would describe the original, non-hypercubically

nested smearing. Again, at this order of approximation there is no difference in the

three projections.

5.3 Smearing radii

Considering the two weak field approximations for the behaviour of our fields under

the smearing transformations described above (Eqs.5.17 and 5.20) we can test to what

extent this approximation holds in the strong coupling regime that our simulations

reside in.

We relabel the previous equations (5.17 and 5.20) to include the smearing form factor

f(q2),

A(n)
µ (q) =

{
f (n)(q2)

(
δµν −

qµqν

q2

)
+

qµqν

q2

}
A(0)

ν (q). (5.21)

For large number of smearing iterations, and small smearing parameter α, we can

rewrite the smearing form factor as,

f (n)(q2) = exp

(
−nα1(1 + α2(1 + α3))

2(Nd − 1)
(aq)2

)
. (5.22)

Upon Fourier Transformation and defining the width to be f(r) = e−1/2f(x), we obtain

the effective smearing radius,

r2 = n
α1(1 + α2(1 + α3))

Nd − 1
. (5.23)

In our attempt to measure various smearing radii, we consider the smearing transfor-

mation equation acting upon a Landau gauge-fixed gluon field,

A(n)
µ (q) = f (n)(q2) (δµν) A(0)

ν (q). (5.24)

We then consider the gluon correlator in Landau gauge (Sec.4.3),

A(n)
µ (q)A(n)

µ (−q) = f (2n)(q2)A(0)
µ (q)A(0)

µ (−q). (5.25)

Upon taking the trace, we have a measure for the smearing form factor that we can
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calculate non-perturbatively,

f (n)(q2) =




Tr
[
A

(n)
µ (q)A

(n)
µ (−q)

]

Tr
[
A

(0)
µ (q)A

(0)
µ (−q)

]




1/2

. (5.26)

To compute the effective smearing radius we used 20 configurations at several masses

with two β’s. We use the 243 × 64, β = 2.13 nf=2+1 DWF configurations with light

quark masses am = 0.005, 0.01, 0.02 and 0.03 which we call the coarse ensemble, and

the 323, β = 2.25 with light quark masses am = 0.004, 0.006, 0.008 which we call the

fine ensemble. We compute the gluon correlators of Landau gauge fixed, smeared and

unsmeared configurations, using a cylinder cut in momentum with radius 2π/Lsm to

reduce O(4) breaking induced by the lattice, as was performed in Chapter.4.

As a check for our procedure we also produced artificially weak configurations by taking

the Logarithm of the fixed link in configuration space, multiplying the lie elements by

a small value (10−3) and then exact exponentiating the Lie matrices back to their links

before smearing. The gluon field definition used in the gauge fixing functional was that

of the Hermitian projection (Log-A) definition, and so to produce the weak fields we

must take the Log-A logarithm, we note that by doing this there was a slight decrease

in the accuracy of our gauge fixing in momentum-space, equivalent to a drop from

Θ = 10−25 to Θ = 10−14.

We consider three Nd-dimensional smearing recipes, one and two iterations of HYP-1

smearing (0.75,0.6,0.3), two iterations of HEX smearing (0.95,0.76,0.38) [65] and three

iterations of STOUT smearing (0.6,0.0,0.0). We compare both the artificial weak field

results and our configurations’ determinations of the smearing form factor f(q). We

see that on our strongly coupled configurations the zero momentum gluon propagator

for our smeared configurations does not equal the unsmeared gluon propagator at zero

momentum. Treating this as a multiplicative field renormalisation factor induced by

the smearing, we divide our computed f(q2) by f(0), to ensure that f(0)=1 allowing

direct comparison to the perturbative result.

From Fig.5.3 and Fig.5.4 we can clearly see that this technique does in fact yield the

smearing form factor as predicted by the weak field approximation on toy weak fields.

As seen from the graphs in the left column, especially that of STOUT smearing where

the overlap between prediction and our test is miniscule. For the hypercubically-nested

smearing techniques our artificial weak field measurement agrees with theory only at

low momentum. This is because we plot,

f (n)(q2)tree =

(
1− α1(1 + α2(1 + α3)

2(Nd − 1)
(aq)2

)n

. (5.27)
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Figure 5.3 Comparison plots between the artificial weak field and our
configurations for the quantity f(q)/f(0) in the chiral limit, and
their comparison to the tree level perturbative form.

We are neglecting terms of order q4 at this order in the expansion of small ag0.

For the physical, strong coupling results we see large deviation from the weak coupling

prediction. The non-perturbative smearing form factor we compute is larger than

expected, and deviates less with momenta corresponding to a lower than predicted

smearing radius. From our data, 1 iteration of HYP-1 and 3 iterations of STOUT

smearing represent comparable degrees of smearing.

We choose to evaluate our effective smearing radius using two different measurements;

a fit to our data and an approach assuming gaussianity. Our fit is based on the leading

order expansion of f (n)(q2), namely

f (n)(q2) = 1− r2

2
q2 + O(q4). (5.28)

We chose to fit our data to the quadratic form, f (n)(q2) = a + bq2 + cq4. The fit is

shown in the graphs on the right column of Fig.5.20, and we equate our fit parameter

b to be r2

2 . As we are trying to resolve the behaviour that is roughly linear in q2 we do

not fit from q2 = 0 as this constrained the fit too much. We call this “r-fit”
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Figure 5.4 Same as Fig.5.3 but for the HEX and STOUT smearings.

The second technique for evaluating our effective smearing radius comes from the

definition of the radius. If we consider our data to be Gaussian we have,

f (n)(q2) = e−
r2

2
q2

. (5.29)

If we find the point where 1,
f (n)(q2)

f(0)
= e−

1
2 . (5.30)

Then we can compute the smearing radius with,

r2 =
1

q2
|f(n)(q2)=f(0)e−1/2 . (5.31)

This measure will be called “r-exp”.

A table of the two measures for the effective smearing radii is shown in Tab.5.2 with

their comparison to the perturbative prediction “r-pert”. We see some tension between

the exponential measure of the radius and the measure from the fit. This is because

the data is not well described by a Gaussian.

1We are bound by Fourier modes for our momenta so a linear interpolation is used to match
exactly.
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Smearing r-fit (coarse) χ2/dof r-exp r-fit (fine) χ2/dof r-exp r-pert

1 HYP 0.514(2) 1.3 0.5418(3) 0.539(1) 1.9 0.5663(1) 0.775
2 HYP 0.706(1) 1.3 0.6847(5) 0.747(1) 1.4 0.7271(2) 0.943
2 HEX 0.746(2) 1.2 0.7165(4) 0.802(1) 1.3 0.7730(3) 1.139

3 STOUT 0.509(2) 1.1 0.5307(4) 0.543(1) 1.3 0.5625(2) 0.667

Table 5.2 Smearing radius of our ensembles measured using the exponential
method or by a quadratic fit in q2, and a comparison with the tree-level
perturbative prediction.

Our data shows that on strongly coupled non-perturbative configurations the effective

smearing radius is lower than the perturbative prediction, indicating that link smearing

is more local than expected on typical configurations. This is quite surprising and could

be used to argue that link smearing for the fermionic determinant in the HMC can be

used more aggressively than first thought. This is not wise though, as we found that for

amputated fermionic vertex functions computed on a smeared background, continuum

scaling behaviour was seen to break at scales quite low in the Rome-Southampton

Window. For more aggressive smearing methods such as the parameters used for HEX

the breaking scale was very low [16].

5.4 Field strength tensor and näıve Topological

Charge

As indicated in Eq.5.1.1, to leading order in a, the gauge field strength tensor at site x

(Fµν

(
x + a µ̂

2 + a ν̂
2

)
) is the logarithm of the oriented plaquette in the µ−ν plane, Pµν(x).

It is common to use the symmetric “clover” term for Fµν(x). Which, pictorially is shown

in Fig.5.5, where an average over the four oriented 1x1 Wilson loops (plaquettes) is made

after they have had their logarithm taken, although if using the Hermitian projection

(Log-A), because of its distributivity the logarithm can be taken after the matrix sum

of the Wilson loops.

A much higher-order approximation 2 to the continuum field strength tensor using

lattice links is available [26, 73] and uses combinations of 1×1(k1), 1×2(k3), 1×3(k4), 2×
2(k2) and 3 × 3(k5) Wilson loops. For the 1 × 2 and 1 × 3 rectangles an average over

the vertical and horizontal contributions is made as they should be equivalent for an

isotropic gauge field.

2Classically correct to O(a4), although this could depend on the order of the logarithm of
the Wilson loops
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Figure 5.5 The clover definition of the lattice field strength tensor in the µ− ν
plane, Fµν(x). Where the individual Wilson loops are averaged and

the dashed line is the link Uµ

(
x + a µ̂

2

)
.

The various contributions to the field strength tensor for the top right corner of the

clover is pictorially represented in Fig.5.6.

k1 +k3 +k4 +k2 +k5

Figure 5.6 Highly improved gauge field strength measure in the µ− ν plane for
the top right hand contribution to the symmetric field strength tensor.

The dashed line is the link Uµ

(
x + a µ̂

2

)
.

The multiplicative factors for each Wilson loop are,

k1 =

(
19

9
− 55k5

)
k2 =

(
1

36
− 16k5

)
,

k3 =

(
64k5 −

32

45

)
k4 =

(
1

15
− 6k5

)
. (5.32)

The parameter k5 is free and we set it to 0, eliminating the most expensive Wilson

loop computation. By smearing our gauge field (and with a good choice of smearing

parameter α) we can approach the classical limit where UV fluctuations in our gauge

field play no rôle and the lattice field strength tensor is, to a very good approximation

the classical one.
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The continuum topological charge in four dimensions is defined as,

QCont
top =

1

64π2

∫
d4x ǫµνρσF a

µν(x)F a
ρσ(x). (5.33)

With direct lattice analog,

QLatt
top =

1

32π2

∑

x

ǫµνρσTr
[
FLatt

µν (x)FLatt
ρσ (x)

]
. (5.34)

Where we have used the trace identity from Eq.4.16 to absorb the factor of 1/2 between

the two definitions. In practice the field strength tensors Ftx, Fty , Ftz , Fxy, Fxz and Fyz

are the only ones needed.

Lattice measurements of the topological charge QLatt
top from the gauge field strength

tensor (due to the discrete approximation of the integral) in general will not provide an

integer value of the topological charge. As is expected from the continuum theory and

the index theorem, although under well chosen smearing parameters the background can

be smoothed in such a way that the lattice topological charge measurement approaches

an integer, it was noted in [109] at small effective coupling, near the edge of the classical

limit the lattice topological charge is best measured. A non-zero integer value of the

topological charge is identified with an instanton which is a field configuration that

satisfies the classical equations of motion [98].

The topological charge is of great interest to the lattice community, topological

tunnelling is an indicator of ergodicity in our Monte Carlo update and of the

autocorrelations in our procedure.

5.4.1 Topological Charge under Hypercubic blocking

We investigated the gauge field definition of the topological charge under the three

different smearing methods with hypercubic blocking. We use the classically highly

improved field strength tensor with k5 = 0.0 on a single 163 × 32, SU(3) configuration

simulated with Iwasaki gauge action β = 2.13 and with known topological charge 1

[13].

The topological charge for this configuration has been determined from the exact

zero eigenvalues of the chirally symmetric Dirac operator, via the Atiyah-Singer index

theorem [18]. We perform 1000 iterations of HEX, HYL and HYP measuring the näıve

gauge definition of the topological charge. I choose the parameters (0.74, 0.49, 0.24)

for all of the smearings as this translates to the maximally convergent α for all of the

methods for the unimproved smearing (Tab.5.5) for each stage of the blocking.
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Figure 5.7 The näıve, highly improved topological charge from hypercubically
blocked smearing routines HYP, HEX and HYL for a large number
of smearing iterations with α = (0.74, 0.49, 0.24). For iterations less
than 360, the HYL evaluation is Qtop = 0.

From Fig.5.7 we see that the HYL smearing only reaches the index theorem’s

evaluation of the topological charge at very large number of smearing iterations for

this configuration O(360), and it takes up to O(500) for the three methods to agree at

the per-thousand level. Considering there is a bump for the HYP and HEX smearing

it seems likely there is some defect being smoothed out and universal behaviour

between the smearings is only achieved at very large number of smearing iterations.

This behaviour is unexpected and we believe warrants investigation using a different

procedure.

Comparing the computational cost for our implementations of the hypercubically

blocked routines for SU(3) HEX smearing is the cheapest, HYP took approximately

2.3 times as long to run and HYL 2.5 times.

We see that under hypercubic blocking, the gauge definition of the topological charge

depends on the number of smearing iterations. We also note that computationally this

measurement is quite costly, requiring computation and storage of the “dressed links”

[95] (V and W in Eq.5.2). We investigate another procedure which should be cheaper

to implement and is argued able to provide stable classical instanton solutions.
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5.5 (Over)improved smearing

Smearing procedures have been proposed that follow a similar recipe to improving the

gauge action [31]. Adding rectangle terms with varied coefficients to the smearing

iteration. i.e. altering the description of the gauge action we use to move toward the

classical solution of. The general smearing recipe changes to,

Uµ

(
x + a µ̂

2

)′
= exp





α

2(Nd − 1)

∑

ν 6=µ

(
c0Qµν(x) + c1

6∑

i=1

R(i)
µν

)
Uµ

(
x + a µ̂

2

)
. (5.35)

Where the c’s are values that describe different improved actions. We investigate

the Symanzik tree level improved [53], the Iwasaki [120] and the DBW2 [136] whose

parameters are shown in Tab.5.3.

Improved smearing c0 c1

Symanzik 5
3

- 1
12

Iwasaki 1− 8c1 -0.331
DBW2 1− 8c1 -1.4069

Table 5.3 Table of the parameters c0 and c1 used for different improved smearing
techniques.

There are six 2× 1 rectangular terms R(i) that contribute to the smearing, 3 different

rectangles and contributions from ±ν I have written the positive ν terms below and

the full smearing update can be deduced from Fig.5.8,
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µν = log
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)
Uν

(
x + a

3ν̂

2

)
Uµ

(
x + 2aν̂ + a

µ̂

2

)
Uν

(
x + aµ̂ + a

3̂ν

2

)†

Uν

(
x + aµ̂ + a

ν̂

2

)†
Uµ

(
x + a

µ̂

2

)†)
.

R(2)
µν = log

(
Uµ

(
x− a

µ̂

2

)†
Uν

(
x− aµ̂ + a

ν̂

2

)
Uµ

(
x + aν̂ − a

µ̂

2

)
Uµ

(
x + aν̂ + a

µ̂

2

)

Uν

(
x + aµ̂ + a

ν̂

2

)†
Uµ

(
x + a

µ̂

2

)†)
.

R(3) = log

(
Uν

(
x + a

ν̂

2

)
Uµ

(
x + aν̂ + a

µ̂

2

)
Uµ

(
x + aν̂ + a

3ν̂

2

)
Uν

(
x + 2aµ̂ + a

ν̂

2

)†

Uµ

(
x + a

3µ̂

2

)†
Uµ

(
x + a

ν̂

2

)†)
. (5.36)

Pictorially, the contributions in the µ − ν plane are shown in Fig.5.8, the rectangle
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terms are to be read from left to right as R(1), R(2), R(3), the negative ν contributions

R(4), R(5), R(6) have also been shown.

c1c0

Figure 5.8 A pictorial representation of the staples contributing to improved
link smearing in the µ − ν plane. The dashed line is the link

Uµ

(
x + a µ̂

2

)†
, and the terms above and below it are assumed to have

their projection specific Logarithm taken and added.

We can clearly use any of the projections APE, STOUT or LOG with this method as

they are just different levels of the approximation of the logarithm and exponential in

the smearing recipe.

The authors of [116], based on the previous work of [81], suggest an empirical “over-

improved” algorithm with a free parameter ǫ that can be tuned so that classical

instantons are stable (i.e. Qtop is constant) under a large range of successive smearing

(cooling in the earlier work) steps when measuring the näıve gauge definition of the

topological charge.

We shall see that not all smearing methods stabilise instanton solutions. The idea of

the free parameter ǫ is to tune the smearing parameters to lie somewhere in the space

where a value of 0 would include the staple and the rectangle term (values in the table

5.3) and a value of 1 would return the standard staple term. A table of the parameters

used in this study is shown in Tab.5.4.

Improved smearing c0 c1

Symanzik 5−2ǫ
3

- 1
12

(1− ǫ)
Iwasaki 1 + 2.648(1− ǫ) −0.331(1− ǫ)
DBW2 1 + 11.2536(1− ǫ) −1.4069(1− ǫ)

Table 5.4 Table of the over improved smearing parameters used in this study.
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5.5.1 The α− ǫ plane

The authors in [116] identify the value of ǫ = −0.25 and smearing parameter α = 0.36

as their best parameters for Symanzik “over-improvement”, we choose to investigate

the plane in α− ǫ where this technique can be applied.

Stability of classical instantons under smearing is a necessary condition for smeared

topological charge measurements to genuinely be determining physical quantities.

Furthermore, the gauge field strength measure should agree with the index of a chiral

Dirac operator, if we are successfully describing the physics of the vacuum. We propose

to use these criteria to determine the range of α and ǫ which can be used for gauge

field determinations of topological charge.

Link smearing provides a method to reduce the UV components of the field strength

Fµν(x) and approach the closest classical solution of the equations of motion of the

field, as we remove the pure UV quantum lattice portion of the gauge field.
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(a) Symanzik
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Figure 5.9 The line of αMax for each ǫ for three different improvement programs,
the Symanzik, Iwasaki and DBW2. Error bars are a constant
±0.005, the resolution of our search.

For any ǫ there appears to be an α above which the plaquette does not converge to

a stable value. We call this αMax(ǫ). Non-convergence of the plaquette is certainly a
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clear sign that we are not obtaining physical results and is indicative of ill convergence

in the smearing procedure.

As ǫ is reduced from 1, the contribution from the rectangle term increases and so smaller

α would be required. Any α below αMax and above zero will converge to the closest

classical solution of the field equations albeit in a slower fashion, and will therefore

converge on the same instanton solution as that of αMax.

For smearing parameter α < αMax(ǫ) we may have physical predictions, we test this by

comparing to the index of a chiral Dirac operator and the stability of the näıve gauge

topological charge as a function of the number of smearing iterations. When the gauge

field definition of the topological charge is stable and agrees with the Dirac operator

index definition on a test configuration we deem these parameters of α and ǫ acceptable

for extracting genuine topological charge measurements.

ǫ Symanzik Iwaski DBW2
APE STOUT APE STOUT APE STOUT

-1.0 0.43 0.32 0.19 0.11 0.05 0.03
-0.75 0.46 0.34 0.21 0.13 0.06 0.03
-0.5 0.48 0.37 0.24 0.15 0.07 0.04
-0.25 0.51 0.40 0.27 0.17 0.08 0.04
0.0 0.55 0.44 0.31 0.20 0.10 0.06
0.25 0.59 0.49 0.36 0.25 0.13 0.07
0.5 0.63 0.56 0.44 0.32 0.18 0.11
0.75 0.68 0.64 0.55 0.46 0.30 0.19
1.0 0.74 0.74 0.74 0.74 0.74 0.74

Table 5.5 The maximal smearing parameter α that gives convergence to unity
for the plaquette, for different improvement factors c0 and c1 and
for different smearing methods APE and STOUT. LOG smearing
evaluations are not shown because its αMax is the same as STOUT.

5.5.2 Evaluation of the ideal ǫ

We investigate the topological charge history under 1000 STOUT, LOG and APE

smearing iterations at ǫ = −1.0,−0.75,−0.5,−0.25, 0.0, 0.25, 0.5, 0.75 and 1.0 for the

Symanzik, Iwasaki and DBW2 over-improvement measures on the same configuration

which has chiral Dirac operator index 1 as used in 5.4.1. A factor of ǫ = 1.0 is the usual

un-improved smearing procedure, and a factor of ǫ = 0.0 is the choice of parameters

that gives the standard improvement terms.

We see many interesting results from the two figures 5.10, and 5.11. First is that
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the topological charge measurement does not reproduce the index measure of the

topological charge under any version of unimproved smearing at large number of

smearing iterations. ǫ = 1 consistently provides an inaccurate measure of the

topological charge, and use of many unimproved smearing iterations to perform a

topological charge measurement [12] should be avoided.

For greater than O(120) iterations the topological charge measurement yields a value

different from the chiral Dirac index, illustrating the smearing procedure is altering the

size of the instanton background. We see that although they have the same αMAX(ǫ)

probably due to the common exponentiation, the STOUT and LOG smearing methods

are very different in practice, with the LOG smearing being effective over a great range

of ǫ’s for the different rectangle coefficient strategies.
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Figure 5.10 The topological charge evolution for 1000 smearing iterations for
varied ǫ using Symanzik over improvement with STOUT link
smearing.

We see that although ǫ = −0.25 Symanzik over-improvement with STOUT links does

appear to converge to the Dirac operator’s topological index, the convergence is poor

for this configuration. We note that the LOG DBW2 method fairs much better with a

greater range of ǫ seemingly yielding the same physical prediction.

From Tab.5.6 we see that the smearing methods behave very differently, and the LOG

seems to stabilise the topological charge over the largest range of over improving ǫ.

As was seen previously in [116] an ǫ of -0.25 and STOUT smearing does stabilise

the instanton, as it does for both APE and LOG. We also note that many smearing

iterations O(> 80) or so are required for the procedure to stabilise to approximately

its topological charge as described by the index.
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Figure 5.11 The topological charge evolution for 1000 smearing iterations for
varied ǫ using DBW2 over improvement with LOG link smearing.

Improvement STOUT LOG APE
Symanzik -1.0,-0.75,-0.5,-0.25 -0.25,0.0,0.25,0.5 -1.0,-0.75,-0.5,-0.25
Iwasaki 0.5,0.75 -0.75,-0.5,-0.25,0.0 0.25,0.5
DBW2 0.0 -1.0,-0.5,-0.25,0.0,0.25,0.75 0.0

Table 5.6 The values for ǫ which gave the expected topological charge, for varied
smearing methods and improvement factors.

5.6 Wilson flow

The Wilson flow was first introduced in [111] as a technique for improving the

convergence and speed of the HMC by mapping the gauge fields to a smoother region

to do the integration and then mapping back, requiring the mapping to be invertible.

This is performed by integrating the flow equation, for generic fields U at fictitious flow

time t,

U̇t = Z(Ut)Ut. (5.37)

Considering an Euler integration of Eq.5.37, we have,

Ut+ǫ = Ut + ǫ
d

dt
Ut. (5.38)

And upon plugging Eq.5.37 in and approximating an exponential for small integration

step ǫ we have,

Ut+ǫ(x) = exp {ǫZ(Ut(x))}Ut(x). (5.39)

This is exactly the same as the smearing recipe in Eq.5.2. Standard link smearing is

a steepest descent method, which is the same as an Euler integration of the gradient
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flow, when the choice of the generator of the flow Z is the same as that of the smearing

procedure (Eq.5.2).

We will only consider smearing recipes which are differentiable and invertible i.e.

STOUT and LOG. For the standard smearing recipe the integration of the flow equation

is called the Wilson flow, for the improved smearing methods we have the Symanzik,

Iwasaki and DBW2 flow.

Accurate, reversible Euler integration (Eq.5.38) of the flow is costly, with a large number

of very small smearing steps required for consistent accuracy. One would wonder

if higher order integration schemes are applicable, and in fact they are. The RK4

integration scheme is defined by the steps [110],

W0 = Ut,

W1 = exp
{ ǫ

4
Z(W0)

}
W0,

W2 = exp

{
ǫ

(
8

9
Z(W1)−

17

36
Z(W0)

)}
W1,

Ut+ǫ = exp

{
ǫ

(
3

4
Z(W2)−

8

9
Z(W1) +

17

36
Z(W0)

)}
W2. (5.40)

It is important to note that the update in this procedure is happening over all of the

lattice fields for each step in the integration. The temporary field, Z, is lattice-wide

and so for each step the memory should be rewritten following the prescription,

Step 1 : Z = −17

36
Z(W0), W1 = exp

{
−ǫ

9

17
Z

}
W0,

Step 2 : Z =
8

9
Z(W1) + Z, W2 = exp {ǫZ}W1,

Step 3 : Z = −3

4
Z(W2) + Z, Ut+ǫ = exp {−ǫZ}W2. (5.41)

We know that Z ∈ su(Nc), and so we only need store the upper or lower triangular

(Nc(Nc + 1)/2 − 1 elements as was discussed in Sec.3.7.1. Taking the same idea from

Sec.3.7.1, for SU(3) we store the fields Z as a complex type, but we know that its

diagonal elements are purely real, so we put the real part of Z[4] in the imaginary part

of Z[0], saving on storing another complex element.

One may think that the temporaries Wi also need to be stored lattice-wide. This

is not the case. As the smearing procedure in all directions has its most non-local

contributions coming from the staples for which ν = ±t, only knowledge of the links

one time-slice above and below the time-slice we are operating on (and two for the

improved smearing methods to incorporate the 2×1 vertical rectangle) are ever needed.

One may think, therefore, that only two temporaries (above and below the time slice
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being smeared) spanning the Nd − 1-dimensional lattice hypercube are necessary but

this is not the case, in fact we require three time-slice-wide temporaries.

The memory saving smearing method we use is outlined in Alg.5. We need an extra

temporary for the last iteration of the procedure, because we have already over-written

the fields that contribute to the smearing in the t=0 time-slice and so the Lt − 1 time-

slice smeared fields need to be stored. It should be understood that index [t] means

all of the matrices on the time-slice t being copied over and smear is one of the link

smearing recipes with replacement of the links they are acting upon.

Inclusion of this memory saving technique means we only need to store 3 time slice-wide

temporaries (for unimproved and 5 for improved) compared to storing 1 lattice wide

temporary. We use this technique for all Nd-wide smearing procedures including the

final level of the hypercubically-blocked smearing method. For the Wilson flow, and

for our largest available lattice (643 × 128) the difference between näıvely performing

the flow and including the memory saving methods outlined in this section is just

over a saving of half the computer memory required. Including the storage of the full

lattice-wide gauge fields in both cases.

Algorithm 5 Memory saving smearing iterations.

lat4← Smear(lat[Lt − 1])
for t = 0→ Lt − 2 do

lat2← Smear(lat[t])
if t 6= 0 then

lat[t− 1]← lat3
end if

lat3← lat2
end for

lat[Lt − 2]← lat3
lat[Lt − 1]← lat4

5.6.1 Invariants and scale setting

It was first suggested in [110] that by picking some reference scale for the dimensionless

quantity,

G(t) = t2〈F̄µν F̄µν〉|t=t20
= 0.3, (5.42)

where the F’s are the lattice gauge field strength tensors (Sec.5.4) and the average over

the lattice volume has been performed (denoted by the bar). One can very accurately

measure the lattice spacing once the continuum value t0 in physical units is calibrated

using some other, more physical input. As t0 has units of the lattice spacing we can

measure a =
tcont
0
t0

from our measured t0. Where tcont
0 is the continuum evaluated value,
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and is evaluated by some other physical measure to set the scale.

In principle, any measure with lattice units can be used to determine the scale, such as

the Pion, Kaon or Omega masses or the Sommer scales [131] r0 or r1 [68]. One of the

benefits of using the Wilson flow is that it is cheap to perform, requiring no fermion

propagator calculations and is insensitive to the lattice volume. Unlike the Sommer

scale, it does not require fitting to a potential, and has been argued to be even more

statistically precise [32].

It has been seen in [32], that the related dimensionless parameter,

W (t) = t
d

dt
t2〈F̄µν F̄µν〉|t=W 2

0
= 0.3. (5.43)

Was better for the determination of the coupling, as it was argued to be less sensitive

to discretisation effects, as was seen in [58]. The value W0 becomes our reference

scale in exactly the same way as t0 did, and the derivative of the field strength is

performed using a finite difference method. We explicitly compute both G(t) and W(t)

in our implementation, using a leapfrog determination of the derivative in Eq.5.43 as

a guide for when to stop. To a very good approximation, we have found G(t) behaves

approximately linearly with t for small steps of t around W 2
0 . We perform at least 8

fine (ǫ ≈ 0.01) measures of G(t) around W 2
0 and fit linearly. Determining W0 from the

fit parameters,

W 2
0 =

0.3
dG(t)

dt

. (5.44)

We could equivalently fit the leapfrog values of W (t) linearly to interpolate to t = W 2
0 ,

and saw no difference between these two evaluations.

5.6.2 Improvement for Wilson flow measures

Apart from the memory-wise improvements mentioned in the previous section (Alg.5),

we can imagine other technical improvements to the Wilson flow integration. The

integration scheme in Eq.5.41 is considered to have error of O(ǫ4) for the Wilson flow.

And was seen to behave similarly for the Symanzik flow [32], assuming scaling behaviour

of O(ǫ3) [110] one would expect the error of the integration procedure with step size

0.01 to be of the order 10−6.

As an improvement method, we have implemented a two-step adaptive RK4 method,

based on the update in Eq.5.41. This was to test the error of our fixed ǫ implementation

for different flow regimes and to provide a fixed-error computation. The two step

adaptive integration scheme is one of the simplest adaptive algorithms, it requires the

calculation of one step with some size ǫ and the same integration with two half steps
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and compares the error between the two evaluations and adjusts the integration step

accordingly3.

Our error term is the difference between the lattice average plaquette traces (Ūp) of the

single and two half-step evaluations (effectively measuring the error in the most näıve

evaluation of G(t)). If they are equivalent to within some tolerable accuracy we increase

the integration step-size ǫ, otherwise we decrease it. The parameters for increasing and

decreasing the step size are a dark art and we found it acceptable to use [125],

ǫ =





ǫ S
(

δ(Ūp)
Tol

)1/5
Ūp > Tol

ǫ S
(

δ(Ūp)
Tol

)1/4
Ūp < Tol.

To check the validity of our adaptive routine, we compute the Wilson flow on a single

configuration with the adaptive integration (with tolerance 10−7) and the fixed step-

size routine (with ǫ = 0.01). For this choice of parameters the error in the integration

is considered to be roughly equivalent for both of these procedures. We measure the

quantity G(t) for a single 163 × 32, β = 2.13 configuration up to t ≈W 2
0 . The graph of

the results is Fig.5.12, we see fantastic agreement between the two methods. We also

note that it is only at very early flow times that a small integration step is required,

and at large flow times, linear behaviour is seen in G(t) with the fictitious flow time t.
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Figure 5.12 A test of the adaptive integration procedure for the Wilson flow
with the comparable fixed-ǫ integration procedure for an example
163 × 32 configuration.

The authors in [32] investigated two STOUT smeared flows, the Wilson and the

Symanzik. With fixed step size ǫ = 0.01 → 0.02. We investigate the Symanzik,

3We overwrite our temporary lattice with the two half-step evaluation to save space.
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Iwasaki, DBW2 and Wilson flows with STOUT and LOG smearing on an example

163 × 32, β = 2.13, nf=2+1, Iwasaki gauge configuration using the two-step adaptive

procedure with tolerance 10−7 (except for the LOG-Iwasaki and LOG-DBW2 which

have tolerance 10−5) the parameters G(t) and W (t) are shown in Fig.5.13. This

investigation was intended to understand the the best fixed ǫ’s for each method.
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(b) W(t) for STOUT smearing
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(c) G(t) for LOG smearing
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Figure 5.13 The measures G(t) (Eq.5.42) and W(t) (Eq.5.42) for STOUT and
LOG smearing for the Wilson, Symanzik, Iwasaki and DBW2 flows
for an example 163 × 32 configuration. We used the adaptive
algorithm with Tolerance 10−7 for all but the LOG-Iwasaki and
LOG-DBW2 where a Tolerance of 10−5 was used. We used the
O(a2) symmetric clover term for the field strength tensor.

We note that to ensure an accuracy of 10−7 is attained, for the Symanzik, Iwasaki

and DBW2 at low flow times require an integration step much less than 0.01. A table

of the minimum step size required for the different smearing procedures is shown in

Tab.5.7 for this tolerance. We see that the step-size has to be altered to accommodate

for the various c0’s, upon adjusting for these large values (i.e. multiplying by c0) we

have roughly the same magnitude step-size for each recipe which ensure fixed accuracy.

We also note that due to the aggressive manner that LOG smearing smooths out

configurations, a much smaller integration step size in general is required. This can be

best seen in Fig.5.13 where the LOG smeared Wilson flow G(t) is much closer to the

Symanzik flow’s. For LOG smearing all of the improved flows lie closer together for

both the parameters G(t) and W (t).
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Flow STOUT LOG
Wilson 0.00929 0.00346

Symanzik 0.00571 0.00147
Iwasaki 0.00263 0.00031
DBW2 0.00080 -

Table 5.7 The minimum step-size from the adaptive integration of the flow
equation 5.37 for several flow types with STOUT and LOG smearing
to achieve an error in the average plaquette of less than 10−7 from an
example 163×32 configuration. The step-size for the Log-DBW2 flow
was seen to not be converging in a reasonable time, different tuning
of the adaptation parameters is needed for this flow.

5.6.3 Large time evaluations

We have seen that the adaptive integration procedure for the flow equation increases

the integration step at larger positive flow times. This makes heuristic sense as the

flow smooths the gauge field the difference between small time steps in the plaquette

will be smaller as the average plaquette trace converges to the identity. This allows for

larger steps in the integration scheme.

We have chosen to test the effectiveness of the adaptive algorithm for large flow

time evaluations (which are sometimes used to measure the topological charge)4 by

measuring the computation time taken for the fixed ǫ integration to reach a certain

flow time, divided by the computation time for the adaptive algorithm to reach the

same flow time (including a correction step to the exact time).

We choose to investigate the Wilson flow with ǫ = 0.01 and adaptive tolerance 10−7

for flow times at = 1, 2, 4, 6, 8 and 10 for an example 163 × 32 configuration. We found

that after t ≈ 10 the adaptive algorithm suffered from numerical instabilities and would

require a lower tolerance for flow times above 10.

From Fig.5.14 we see up to 3.3× speed up using the adaptive algorithm for large time

separations. The break-even point for the adaptive algorithm is at roughly t
a = 2, any

flow time higher than this we would be better off using the adaptive algorithm. As the

adaptive procedure is fixed-error instead of fixed step size and is a cheaper method at

large flow times, it is the recommended method. Also, if one were to use an improved

action such as Symanzik or one of the others and assumed their fixed step-size error

was the same as the Wilson flow’s then significant errors could accumulate (particularly

4We found that only the Wilson and Symanzik provided the chiral Dirac index definition
topological charge on our test configuration for STOUT smearing, and only the Wilson flow
did for LOG smearing.
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Figure 5.14 The large flow time speed up with the adaptive routine. Evaluated
from the computation time taken to flow to a specific time using the
fixed ǫ integration divided by the computation time for the two step
adaptive routine. The errors are from a Jackknife analysis over 5
runs.

for the DBW2 or Iwasaki and especially for the LOG smearing method).

When measuring the parameter W0 using the adaptive procedure, once W (t) is

within 10% of the reference value (0.3 in our case), we switch to fixed-ǫ=0.01, fine

measurements for accurate determination of t = W 2
0 . We stop our integration once we

have moved past the reference value and at least 8 fine measurements have been made.

The derivative in the definition of W (t) using the adaptive procedure has to be the

Euler, because the step-size is not fixed for successive steps. For our determination

of W0 using the adaptive algorithm we prefer to fit the 8 fine measurements of G(t)

linearly and use Eq.5.44.

5.6.4 Continuum W0 scale evaluations

We chose to determine the physical continuum W0 by using our coarse 243 × 64 and

fine 323×64 nf=2+1 DWF ensembles, with inverse lattice spacings a−1 = 1.73(3) GeV

and a−1 = 2.28(3) GeV respectively. The lattice spacings have been determined by a

global fit to the Pion, Kaon Mesons and the Omega Baryon in [12].

We use the same approach as [32] for determining the parameter W0, i.e. using the

Wilson flow integration and STOUT smearing (Eq.5.41) with fixed step-size ǫ = 0.01

and integrating until W (t) > 0.3. The rationalé for using the fixed step-size approach
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was based on the estimate of our β = 2.13 ensemble having W 2
0 ≈ 2, i.e. the break even

point of the adaptive algorithm. Using the fixed step-size evaluation allows for a direct

comparison to the result in [32]. We use a linear interpolation to obtain W (W 2
0 ) = 0.3

from the final 8 integration steps of W(t).

5.6.5 Autocorrelations

It was seen in [32] that the Wilson flow suffers from fairly large autocorrelations of

the order 50 or so HMC trajectories. We have investigated the autocorrelations of our

data using the windowing method for determining the integrated autocorrelation time

τint(t). Where the time where the first plateau starts indicates τint(t).

Coarse Fine
mass τint mass τint

0.005 80 0.004 80
0.010 100 0.006 40
0.020 60 0.008 60
0.030 50 - -

Table 5.8 The estimates for the Integrated Autocorrelation Times for the
parameter W0 for our coarse and fine lattices.

5.6.6 Chiral and Continuum limits

In Fig.5.15, we have the chiral extrapolation of W0 for the coarse data. Extrapolated

in the simulated light quark mass to the physical degenerate light quark mass, as our

chiral limit. And in Fig.5.16 we have the chiral extrapolation for the fine ensemble.

For the coarse ensemble we use the degenerate simulated light quark masses aml =

0.005, 0.01, 0.02 and 0.03, with strange quark mass ams = 0.04. For the fine (β = 2.25),

we have aml = 0.004, 0.006, 0.008 with strange quark mass ams = 0.03. We have

binned our evaluations up to the estimate of the integrated autocorrelation time in

our Monte-Carlo times to obtain our final results to account for any autocorrelation.

For both extrapolations we have performed an uncorrelated linear fit and obtained

χ2/dof = 4.15, 0.83 for the coarse and fine extrapolations respectively.

The a2 → 0 data for our evaluation of the parameter W0 (Fig.5.17) shows some scaling

with the lattice spacing, with the difference from our coarse ensemble’s chiral W0 to

the continuum extrapolation being a correction of around 4%. Our continuum limit

evaluation of the W0 parameter in fm is (with the term on the right being the result of
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Figure 5.15 Chiral extrapolation of aW0 for the coarse data to the physical
degenerate light quark mass.

0 0.002 0.004 0.006 0.008
am

l

1.98

2

2.02

2.04

2.06

aW
0

Fine data
Chiral Extrapolation

Figure 5.16 Chiral extrapolation of aW0 for the fine data to the physical
degenerate light quark mass.

the fit),

W0 = 0.1806(14)(fm), W0(a) = 0.1806(14) − 0.0209(44)a2 . (5.45)

There is some tension between our value and that of [32], which was 0.1755(18)(04).

And slightly less between ours and the preliminary result of [58]’s value of 0.1782 fm

where no error was quoted, but the same gauge action in the generation of configurations

as our study was used. The discrepancy could be due to the a2 → 0 extrapolation not
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Figure 5.17 The a2 → 0 extrapolation of our chiral limit data, for W0 in fm.

being fully under control and a third lattice spacing would be very useful for further

studies, it is intriguing to note that if the a2 extrapolation were flat we would recover

[32]’s result within error.

We have a value for the physical W0, which we can then use to predict lattice spacings,

if the continuum extrapolation were flat we would use,

a−1(GeV ) = 0.1975269

(
aW0

0.1806(14)

)
. (5.46)

It is not, instead we have to solve,

a−1(GeV ) = 0.1975269

(
aW0

0.1806(14) − 0.0209(44)a2

)
. (5.47)

Which has positive solution (in terms of the lattice-measured parameter aW0),

a−1(GeV ) =
aW0 +

√
(aW0)

2 + 0.387(20)

1.830(14)
. (5.48)

And should define the value we would obtain if we measured our lattice spacing using

the physical Pion, Kaon and Omega which we usually use to set the lattice scale for

our scaling trajectory.

We have an nf=2+1 163×32, β = 2.23 ensemble with two degenerate light quark masses

aml = 0.01, 0.02, with undetermined lattice spacing. We estimate the residual mass

for this configuration to lie between that of the coarse and fine ensembles’ (1.6× 10−3),

and we linearly fit the evaluations of aW0 to −mres to obtain the chiral limit value of
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1.957(59). This gives inverse lattice spacing a−1(β = 2.23) = 2.192(63)GeV using our

evaluation from Eq.5.48, or a−1(β = 2.23) = 2.203(69)GeV using [32] and assuming a

flat continuum extrapolation. With both evaluations errors are added in quadrature.

We found that we needed to bin 60 and 40 configurations for the am = 0.01 and am =

0.02 ensembles respectively to cope with the autocorrelation errors. The statistical

error evaluation is quite large, because we don’t get much of an error reduction from

the self-average over the volume and the configurations not being adequately separated

in Monte Carlo time.

As we found non-flat behaviour in the extrapolation to the continuum limit, we

include the fit parameters and their errors into the computation of the lattice spacing,

but evaluations of the lattice spacing with this method should allow for O(1%)

errors. The Wilson flow also allows for very fast searches of parameter space as it

is computationally cheap to perform and for large volumes provides very accurate

lattice spacing determinations. As a by-product topological charge measurements are

almost free to perform as the flow increases, which can then be used to investigate the

topological tunnelling of the simulation. This is to what we now turn.

5.6.7 Exploration using the Wilson flow

As an exploration into changing our simulation program’s gauge action to the tree level

Symanzik rather than Iwasaki in the attempt to retain ergodicity whilst also being able

to decrease the physical lattice spacing, we investigated a short run of 323 × 64, nf =

2 + 1, SU(3) DWF ensembles with β = 4.17, 4.22, 4.25 and aml = 0.01, ams = 0.03

using the adaptive Wilson flow procedure with tolerance 10−7 and with the symmetric

unimproved clover definition of the gauge field strength tensor (Fig.5.5).

β = 4.17 β = 4.22 β = 4.25
Configurations 330→ 570 345→ 605 390→ 510

Measurement step 5 5 5
Binning 4 4 4
a−1GeV 2.576(21) 2.958(21) 3.223(21)

Table 5.9 The exploratory configurations used for this study, we have binned
every 20th Monte Carlo time, and for the estimate of the lattice
spacing we have used [32] as we do not know the scaling behaviour
with a of the lattice spacing to the continuum, so we have to use the
flat assumption.

Tab.5.9 shows the configurations we worked with for this quick study. The lower bound

is taken from an estimate of thermalisation, the number of β = 4.25 configurations
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measured was small. Fitting linearly the lattice spacings for each bare coupling β we

obtain for this scaling trajectory,

a−1(GeV ) = −31.0(1.3) + 8.04(32)β. (5.49)

As we are measuring the field strength tensor for the calculation of G(t) and the flow

stopping time, it is computationally almost free to compute the näıve gauge definition

of the topological charge. We plot the topological charge for the three β’s at t ≈ W 2
0

to investigate the tunnelling properties. This is shown in the plots in Fig.5.18.
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Figure 5.18 The topological charge evaluated at t ≈ W 2
0 from the adaptive

Wilson flow procedure. The dashed line is to guide the eye.

Fig.5.18 shows the worrying issue that plagues many modern lattice simulations [8]. As

the lattice spacing is decreases, the topological charge changes very slowly in Monte

Carlo time. At our largest inverse bare coupling β = 4.25 the topological charge barely

fluctuates from 0, this raises concerns about our algorithm’s ability to sample the

parameter space adequately and calls into question whether we remain ergodic as the

lattice spacing is reduced with this gauge action and with periodic boundary conditions

on the fields.

As a tool for investigating future, large-scale simulation programs. Small, Wilson flow

studies can be invaluable in mapping out the available parameter space quickly and
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effectively. With the ability to measure accurately the lattice spacing (we attained a

sub percent statistical error for the lattice spacing from 48 configurations with binning

factor of four) and to investigate the topological sampling simultaneously this method

is a must for investigations into new simulation parameters, gauge actions and alike.

Due to improvements in accurately determining renormalisation constants with very few

configurations via step-scaling, and in conjunction with the Wilson flow. We propose

a fast and accurate way to compute step-scaling functions that determine the running

of renormalisation constants between scales by determining the scale using the Wilson

flow. With accurate determination of the lattice spacing over a handful of well separated

configurations and accurate measurement of renormalisation constants perturbative

matching errors can be greatly reduced by matching our data non-perturbatively up

to a high scale where continuum perturbation theory matching can be performed with

limited perturbative series truncation error. Such a technique could be invaluable for

measurements of the strong coupling where in Chapter.4 we have seen large systematic

errors in matching to continuum perturbation theory.
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Chapter 6

K0 − K̄0 mixing in and beyond the

Standard Model

Our simulations are performed using Domain Wall Fermions, which have the luxury of

very small chiral symmetry breaking and should be considered as a great playground for

Flavour Physics calculations. Early investigations of K0-K̄0mixing using the Wilson

action [5] or the overlap operator [119] on quenched gauge configurations [19] were

performed. As well as a recent nf=2 dynamical Twisted Mass [75] calculation [24].

We present our continuum limit evaluations of the higher dimensional operators that

constrain flavour violation in the Kaon sector Beyond the Standard Model (BSM) and

produce an independent analysis on our collaboration’s evaluation of the Standard

Model (SM) bag parameter Bk.

6.1 Flavour Changing and Kaon Oscillation

The effective matrix element for Kaon mixing in the standard model is computed via

the (dimension 6) Vector-Axial operator O1. And can be parametrised by the “effective

Hamiltonian” [50],

H∆s=2
eff =

G2
F M2

w

16π2
V ∗

U1,sVU1,dS(U1)C(µ)〈K̄0|O1(µ)|K0〉. (6.1)

Where C(µ) is a Wilson coefficient which divides out the running of the operator with

the renormalisation scale µ and is scheme and model dependent. VU1,d is an element

of the CKM matrix [42, 103] for the quarks U1 = c, t mixing with the s and S(U1)

is the Inami-Lim function for the quark U1 [100]. The matrix element (in the 〈 〉),
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which describes the long distance physics can only be computed non-perturbatively,

whereas the other coefficients such as C(µ) which describes the short, are computed

using perturbation theory.

We can compute the Kaon bag parameter, B1(µ) (Bk) via the equation in the Vacuum

Saturation Approximation (VSA),

8

3
f2

km2
kBk(µ) = 〈K̄0|O1(µ)|K0〉. (6.2)

It is measured on the lattice by fitting to a constant the following correlation function

in Euclidean time t (taking the results and definitions from Sec.1.4.1),

Bk(µ) =
c(1)(ti, t, tf )(µ)WLW

8
3c(ti, t)A0,P

WLc(t, tf )P,A0

LW
. (6.3)

Where the correlator (c(1)) has been renormalised non-perturbatively at the scale µ, as

discussed below and in Appendix.A.1.

The BSM calculation is the extension of the SM one to theories which may change the

flavour of Kaons via some hitherto unknown mechanism which is not only “left handed”

(not mediated by the W-boson), for instance super-symmetric (SUSY) theories. The

long distance information for the Operator Product Expansion (OPE) is the same as the

SM one but with the extension to a larger basis of four quark interpolating operators.

The Wilson coefficients are dependent on the particular BSM model under consideration

but the matrix element encoding the non-perturbative information remains the same.

The relation in the VSA for the Kaon bag parameters in the SUSY basis are,

−5

3
f2

km2
k

(
mk

ms(µ) + md(µ)

)2

B2(µ) = 〈K̄0|O2(µ)|K0〉,

1

3
f2

km2
k

(
mk

ms(µ) + md(µ)

)2

B3(µ) = 〈K̄0|O3(µ)|K0〉,

2f2
k m2

k

(
mk

ms(µ) + md(µ)

)2

B4(µ) = 〈K̄0|O4(µ)|K0〉,

2

3
f2

km2
k

(
mk

ms(µ) + md(µ)

)2

B5(µ) = 〈K̄0|O5(µ)|K0〉. (6.4)

These can be computed on the lattice as (where c(i) is the i’th operator’s four point

function in the SUSY basis, which have appropriate normalisations Ni =
(
−5

3 , 1
3 , 2, 2

3

)
),

Bi(µ) =
c(i)(ti, t, tf )(µ)

WLW

Nic(ti, t)P,P
WLc(t, tf )P,P

LW
. (6.5)

The factor
(

mk
ms(µ)+md(µ)

)2
has been argued to introduce unnecessary systematics to
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the computation [62], and although the bag parameters are traditionally the object of

measurement, the ratio (where “lattice” is the measurement of the quantities from the

lattice, and experiment are the experimentally measured quantities taken from [22]),

Ri(µ) =

[
f2

k

m2
k

]

experiment

[
m2

k

f2
k

c(i)(ti, t, tf )(µ)WLW

c(1)(ti, t, tf )(µ)WLW

]

lattice

, (6.6)

is considered to be a more worthwhile measurement [19]. This is because systematic

error cancellation may occur in the ratio of four point functions, and there is no need to

introduce the renormalised quark masses which also introduce systematic error. Also,

the dimensionless factor
(

m2
k

f2
k

)
removes the leading chiral behaviour, making chiral

extrapolations smoother (as can be seen in Fig.6.10). It should be noted that the

physical point mk,lattice = mk,experiment these ratios give directly the BSM to the SM

contributions.

The matrix elements that contribute to neutral Kaon mixing are the parity even

operators. As we cannot compute the color-mixed contributions of the operators in

the SUSY basis, we instead compute the operators in the renormalisation basis (the

non-perturbative renormalisation is performed in the renormalisation basis too). The

SUSY basis color mixed operators can then be computed by Fierz transformation, from

the parity even renormalisation basis operators which are,

QV V ±AA = s̄γµds̄γµd± s̄γµγ5ds̄γµγ5d,

QSS±PP = s̄ds̄d± s̄γ5ds̄γ5d,

QTT = s̄σµνds̄σµνd. (6.7)

Where σµν = 1
2 [γµ, γν ] is the tensor operator. The relation between the color mixed

(where a and b are color indices) (s̄aΓdb)(s̄bΓda) and the unmixed (s̄aΓda)(s̄bΓdb), lies

in the matrix equation [101],




Γ = S

V

T

A

P




Mixed

=
1

4




−1 −1 1 1 −1

−4 2 0 2 4

6 2 0 2 6

4 2 0 2 −4

−1 1 1 −1 −1







S

V

T

A

P




Unmixed

. (6.8)

The relation between the color mixed and unmixed operators in the renormalisation

141



basis is,




V + A

V −A

S + P

S − P

T




Mixed

=




1 0 0 0 0

0 0 −2 0 0

0 −1
2 0 0 0

0 0 0 −1
2

1
2

0 0 0 3
2

1
2







V + A

V −A

S + P

S − P

T




Unmixed

. (6.9)

Which gives us the following relations between the renormalisation basis operators Qi

and the SUSY basis quantities Oi.

O1 = QV V +AA,

O2 = QSS+PP ,

O3 = −1

2
(QSS+PP −QTT ) ,

O4 = QSS−PP ,

O5 = −1

2
(QV V −AA) . (6.10)

Where the indices could equally be understood as 1 = V V + AA, 2/3 = SS +

PP (unmixed/mixed) and 4/5 = SS − PP (unmixed/mixed).

6.2 Renormalisation

The non-perturbative matching coefficients in the RI-MOM scheme and their conversion

to MS, were computed by N.Garron and A.Lytle using Landau gauge fixed volume

sources [87], and partially twisted fermionic boundary conditions [61, 127] (to reduce

unwanted O(4) symmetry breaking due to the lattice). The use of non-exceptional

momentum configurations is the state of the art for many procedures and has been

used to compute Bk to very high precision [10], but cannot be used in this study

due to unknown matching factors for the Q3, Q4 and Q5 operators, this will lead to

large systematic uncertainties from the non-perturbative renormalisation procedure. A

discussion on some of the details of the renormalisation procedure can be found in

Appendix.A.1.

We now reiterate the most salient points of the renormalisation procedure. We perform

the MS scheme matching through the intermediate lattice RI-MOM scheme values of

our operators (at some suitable scale µ) using,

ri(µ)MS =

[
ZMS

ij (µ)〈Qj〉
ZMS

1j (µ)〈Qj〉

]

Lattice

. (6.11)
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Although the perturbative matching is performed in the näıve dimensionally reduced

(NDR)-MS [11, 48], with some abuse of notation we will just call MS. After

renormalisation, we use the relations in Eq.6.1 to convert to the SUSY basis. We then

perform the mass correction in Eq.6.6 to remove the leading order chiral behaviour and

to provide the renormalised ratios of the BSM contributions to the SM ones in our

chosen scheme. The RI-MOM is an exceptional scheme, this allows zero-momentum

transfer between legs which then allows for so-called Goldstone pole contamination,

this has to be subtracted explicitly from the renormalisation matrix Zij(µ) [86].

Considering the renormalisation of the bag parameters, we have the renormalisation

basis’s b’s,

bi(µ)MS =
ZMS

ij (µ)

Zdenom(µ)2
〈K̄0|Qj |K0〉

〈K̄0|denom|0〉〈0|denom|K〉Lattice

. (6.12)

Where “denom”=A for i=1, and “denom”=P, otherwise. We then use the relations in

Eq.6.1 to convert to the SUSY basis Bi’s. Again incorporating the matching through

the RI-MOM to MS at 3 GeV to quote our results. The factors ZA(µ) and ZP (µ) have

been computed for the datasets we use at our chosen renormalisation scale in [12, 17].

6.3 The 243 dataset

For our analysis and eventual extrapolation to the continuum, we use the coarse (β =

2.13) and the fine (β = 2.25) nf=2+1 DWF datasets. A table of the relevant ensemble

information is in Tab.6.1 for the coarse and Tab.6.4 for the fine.

Light sea mass (amu) 0.005 0.01 0.02
configurations 155 152 146
MC time-step 40 20 20
Valence masses 0.005,0.03,0.035,0.04 0.01,0.03,0.035,0.04 0.02,0.03,0.035,0.04

Table 6.1 The coarse ensembles used for this analysis. The simulated sea
strange quark mass was ams = 0.04. This ensemble is the 243

ensemble in Tab.4.3. This ensemble has renormalisation constants
ZMS

P (3 GeV ) = 0.69778(9), ZA = 0.71651(46), inverse lattice spacing
a−1 = 1.73(3) GeV and mres = 0.003076(58).

We consider both Unitary (same valence quark masses m(x, y) as strange (ms) or

degenerate light (ml) sea quark masses) and Partially Quenched (PQ) (different

valence quark masses compared to sea quark masses). This is performed by setting

the bare quark mass in the Dirac operator to be different from the one used in the

ensemble generation at the time of inversion and propagator computation, there is a
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small systematic error from including the partially quenched data. For the computation

of the BSM ratios for K0-K̄0mixing, we use Coulomb gauge fixed wall sources, where

the Coulomb gauge fixing was performed using the techniques outlined in Sec.3.5 (i.e.

Fourier Acceleration on a slice by slice basis with random restarts upon failure to

converge within a sufficient number of iterations). The gauge fixing accuracy was

set to be Θ = 10−20. For this measurement, we set (in the language of Eq.6.5 and

1.60) walls at ti = 0, tf = 32/a. We have symmetry around t = 32/a and we have

another measurement of the operator in the range t = 32/a → t = 63/a, this will be

symmetrized to boost statistics.

6.3.1 2 point function analysis

To ensure the full statistical resolution when measuring amplitudes and masses of

quark correlation functions, we also average or “fold” the forward and backward

propagators together, and fit only the region decaying exponentially so as to not be

fitting the contributions from the centre or the edges of the lattice where discretisation

effects are most pronounced. Following [4, 12, 108] we use the definition of the

pseudoscalar decay constant from Eq.1.58, where the amplitudes and masses (N s1,s2

O1,O2

and mPS from Eq.1.57) are computed from a simultaneous uncorrelated fit to the four

channels NW,L
P,P , NW,L

P,A , NW,L
A,A , NW,W

P,P , which constrains the common mass between the

four correlators. Previously five channels were used but we consider the NW,W
P,A too

noisy and found issues with our fit converging on a solution for the fine ensemble for

this channel.

We begin by looking at the effective mass of our propagators using the simple definition

in Eq.1.54. We use this measure to deduce the upper and lower fit ranges we can use

for the exponential fit to compute the mass and amplitude, as this should be the range

for which the effective mass plateaus.

As can be seen in Fig.6.1 the channels agree on the aml = 0.005 Unitary Pion’s mass

being around 0.2a−1[GeV ]. All of the channels plateau and agree between the t/a =

7→ 24 (inclusive) region, for our final result we use the fit range t/a = 9→ 22 based on

the four point function analysis below. We note that at t/a > 32 we see the influence

of the propagator travelling backwards in Euclidean time, as the correlator at (t+1)/a

is now greater than at t, the logarithm gives a negative effective mass.

Fig.6.2 shows the simultaneous fit to a cosh ((P,P),(A,A)) or sinh (P,A) for the lightest

Unitary Pion data, whose effective mass plot was shown in Fig.6.1. As the correlation

function is plotted on a logarithmic scale, the exponential decay of the correlation

functions is nicely visible. The data for the masses as a function of the light,degenerate
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Figure 6.1 The effective mass from Eq.1.54 for the lightest coarse ensemble’s
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the colon in the legend are the local operators used (O1, O2) and to
the right of the colon the source types (s1, s2).
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Figure 6.2 The correlation function of the lightest coarse ensemble’s Unitary
Pion, for the four channels. As in Fig.6.1, the terms on the left of
the colon are the local operators and on the right the source types.
The data has been folded.

valence quarks used “x” and the (equal to or heavier) strange valence quarks used “y”

for each of the datasets is shown in Tab.6.2.

The data presented in Tab.6.2 is consistent within error with the results published in
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mx my mxy(0.005) mxy(0.010) mxy(0.020) fxy(0.005) fxy(0.010) fxy(0.020)

0.0400 0.0400 0.4318(3) 0.4334(4) 0.4382(3) 0.1092(3) 0.1100(3) 0.1124(3)
0.0350 0.0350 0.4053(3) 0.4070(4) 0.4118(3) 0.1064(2) 0.1073(3) 0.1098(3)
0.0300 0.0300 0.3774(3) 0.3790(4) 0.3839(3) 0.1035(3) 0.1044(3) 0.1070(3)
0.0200 0.0400 - - 0.3841(4) - - 0.1068(3)
0.0200 0.0350 - - 0.3694(4) - - 0.1055(3)
0.0200 0.0300 - - 0.3542(4) - - 0.1042(3)
0.0200 0.0200 - - 0.3220(4) - - 0.1013(3)
0.0100 0.0400 - 0.3497(4) - - 0.1007(3) -
0.0100 0.0350 - 0.3339(4) - - 0.0994(3) -
0.0100 0.0300 - 0.3173(4) - - 0.0980(3) -
0.0100 0.0100 - 0.2412(4) - - 0.0917(3) -
0.0050 0.0400 0.3326(4) - - 0.0975(3) - -
0.0050 0.0350 0.3161(4) - - 0.0962(3) - -
0.0050 0.0300 0.2987(4) - - 0.0948(3) - -
0.0050 0.0050 0.1911(4) - - 0.0860(2) - -

Table 6.2 The measured masses and decay constants for the coarse datasets used
in this analysis. As we are only Partially-Quenching the valence
sector in the strange quark masses for our measurements of Kaon
quantities, many of the light quark data is not available. The argument
of mxy is the degenerate light sea quark mass. The results are from a
simultaneous fit over four correlator channels using fit range 9 → 22
inclusive.

[4, 12] which were obtained using periodic plus anti-periodic boundary conditions on

the Fermions (effectively doubling the temporal extent of the lattice) when inverting

the propagators and using ti = 5, tf = 59. We do not compute the axial current

renormalisation constant ZA(µ) or the pseudoscalar current renormalisation constant

ZP (µ) or mres, because now we know we are consistent with previous computations of

masses and amplitudes we can use the previous results for these quantities. We now

move on to discussing the computation of the three point function, renormalised ratios,

bag parameters and our chiral extrapolations.

6.3.2 4 point function analysis

Our methodology for extracting the ratios of the BSM effective operators to the SM

one is to fit to a constant at some applicable plateau the renormalisation basis ratio ri,

and for completeness and comparison with other previous studies the bag parameters

bi. We then renormalise to MS at µ=3 GeV using Eqs.6.11 or 6.11, and use the Fierz

identities of Eq.6.1 to convert to the SUSY basis. We do not simulate our physics at

the physical light or strange mass, so a chiral extrapolation to the physical Kaon is

then performed (incorporating the known mres for this ensemble).

146



10 20 30 40 50 60
t / a

-21

-20

-19

-18

-17

<
 Q

V
V

-A
A

 >
 / 

<
 Q

V
V

+
A

A
 >

< Q
VV-AA

 > / < Q
VV+AA

 >

(a) VV-AA ratio.

10 20 30 40 50 60
t / a

-17

-16

-15

-14

-13

<
 Q

SS
+

PP
 >

 / 
<

 Q
V

V
+

A
A

 >
 

< Q
SS-PP

 > / < Q
VV+AA

 > 

(b) SS+PP ratio.

10 20 30 40 50 60
t / a

25

26

27

28

29

30

31

32

<
 Q

SS
-P

P >
 / 

<
 Q

V
V

+
A

A
 >

< Q
SS-PP

 > / < Q
VV+AA

 >

(c) SS-PP ratio.

10 20 30 40 50 60
t / a

-9

-8.5

-8

-7.5

-7

<
 Q

T
T
 >

 / 
<

 Q
V

V
+

A
A

 >

< Q
TT

 > / < Q
VV+AA

 >

(d) TT ratio.

Figure 6.3 The renormalisation basis unrenormalised ratios (ri’s) for the
lightest Unitary Kaon for the coarse ensemble.

The unrenormalised, renormalisation basis ratios of the BSM effective operators against

the SM operator for the lightest unitary Kaon mx = 0.005,my = 0.040 are shown in

Fig.6.3. We have not folded the data yet, but we can see that it is symmetric and we

shall in later measurements. This will reduce statistical error if the data is uncorrelated,

whilst also evening out some of the larger correlations in euclidean time that are clearly

evident. We have shown the lightest Unitary Kaon’s results because it is in some sense

the worst behaved, its mass is the lightest and so the plateau length should be the

shortest. Considering the plots, we deduce an acceptable fit range for the plateaus to

be t/a = 9 → 22 inclusive. The quoted results for the rest of this section and the

proceeding ones will be from this range. Other, acceptable ranges, were tested and

the agreement within measurement was always considerably better than the statistical

resolution of the measurement.

The forced, block diagonal (i.e. omitting chirally forbidden mixing of operators)

renormalisation matrix ZMS
ij (3 GeV ) for this ensemble is1 (divided by the axial current

1Computed by both N.Garron and A.Lytle
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renormalisation Z2
A),

ZMS

ij

Z2

A

(3 GeV ) =




0.9051(13) 0 0 0 0

0 1.0710(4) 0.4402(12) 0 0

0 0.0634(9) 0.7212(61) 0 0

0 0 0 0.7393(56) −0.0277(10)

0 0 0 −0.4766(8) 1.2517(24)




. (6.13)

The renormalised ratios (Eq.6.6) for the ml = 0.01 Unitary Kaon are shown in Fig.6.4.

Upon renormalisation, a change of basis and the removal of the leading chiral behaviour,

we see that the BSM effective operators are greatly enhanced compared to the SM one,

as was seen in previous studies [5, 19, 24, 38].
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Figure 6.4 The ml = 0.01 Unitary Kaon’s Ri’s renormalised in MS at 3 GeV
and folded at t/a = 32.

6.3.3 Chiral results

We must extrapolate our results to the physical point [mk]experiment = [mk]lattice. We

choose to do this by extrapolating to the Unitary Pion data to the physical Pion in the

light quark sector, this will yield the value amchiral
q . We then extrapolate to the value,

ams + amchiral
q for fixed, PQ and Unitary strange quark mass for the Kaons.

To match to the physical strange quark mass we interpolate (because we had PQ

strange quark data lower than the physical strange quark mass and Unitary higher)

to the physical strange quark mass for this ensemble which we set to be the point
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Figure 6.5 Unitary light quark extrapolation to the physical Pion, with result
a (ml + mres) = 0.00140(8).
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Figure 6.6 Chiral extrapolations in the light sector for the coarse ensemble for
the renormalised ratios in MS at 3 GeV for the ratios R1,2,3. Squares
indicate the light quark extrapolated value and circles the data. The
lines are a linear fit, and are used for the extrapolated result.

where R1 = 1, which should be very close if not exactly amphys
s = 0.0345. This can be

considered as the same as remeasuring the physical strange quark mass.

Fig.6.6 illustrates the extrapolations in the light quark sector for the renormalised

ratios of Eq.6.6. The data was fit linearly in order to extrapolate to the physical
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Figure 6.7 The light quark extrapolations as shown in Fig.6.6 for the
renormalised ratios R4 and R5.

point (squares), defined by the value in Fig.6.5. We can see that the ams = 0.035

extrapolated to the physical light quark, is almost directly at the physical Kaon. Its

partially quenched strange mass was chosen to be so, as amphys
s = 0.0345 [12]. Each

fit was linear and had χ2/dof of less than 1, we note that the mass dependence on the

fits is very benign.
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Figure 6.8 Strange quark interpolation for the coarse lattice using the Unitary
and partially quenched data. Squares represent the light sector chiral
extrapolation and diamonds the physical strange quark interpolation,
the dashed lines are a linear fit to the chirally extrapolated data. The
results of the interpolation are presented in Tab.6.3.

Once we have chirally extrapolated in the light quark sector, we must interpolate to

the physical strange quark mass, which is shown in Fig.6.8. We do so by setting the

physical point to be the point where the ratio R1 = 1, this is very close to the physical

strange quark mass quoted in [12]. From Fig.6.8 we can see that the mass dependence
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is again very mild and under control in this interpolation.

Our chirally extrapolated results at the physical point are shown in Tab.6.3, with

statistical errors only as we save the systematic error estimation for the a2 → 0

extrapolation discussion. From this analysis we obtain results that are comparable in

magnitude and sign to our results in [38] using the fine ensemble (discussed in Sec.6.4),

suggestive of the a2 → 0 extrapolation being fairly mild.

i RMS
i (µ = 3 GeV ) BMS

i (µ = 3 GeV )

1 1.0 0.511(15)
2 -14.20(23) 0.435(10)
3 5.47(11) 0.836(22)
4 25.05(44) 0.656(20)
5 4.91(6) 0.379(12)

Table 6.3 Physical point, coarse ensemble ratios and bag parameters renor-
malised in MS at 3 GeV, errors are statistical only.

We see from Tab.6.3 we obtain a reasonable evaluation of Bk, with 4% statistical error.

The majority of the error comes from the RI-MOM non perturbative renormalisation

procedure, which turns out to be one of the largest sources of systematic error of the

whole procedure, as will be discussed when we produce our final a2 → 0 extrapolation

in Sec.6.5.

6.4 The 323 dataset

The PQ and Unitary valence quark data available for the fine 323 ensemble was much

larger than the coarse, it was generated using the CPS code and its evaluation of Bk was

used in the analysis of [12]. Coulomb gauge fixed wall sources were used, with a gauge

fixing accuracy of Θ = 10−14. The gauge fixing was not performed using our code. The

available masses are shown in Tab.6.4. This data we analyse first formed a proceedings

[139], but we found that some of the Fierz identities were not held due to some of the

operators being incorrectly implemented. Forunately, there was enough information in

the data to reconstruct the full renormalisation basis using Fierz identities, but it is

unclear whether [139] was aware of this issue.

For this ensemble we have a greater range of partially quenched light quark masses than

the previous ensemble and only one partially quenched strange mass for the strange

interpolation to the physical point. The data was generated using a single source at

ti = tf = 0 and the inversion of the Dirac operator was performed twice, once with

fermions that are periodic (p) in time and once for fermions that are anti-periodic (a) in
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Light sea mass (amu) 0.004 0.006 0.008
configurations 300 312 252
MC timestep 20 20 20

Valence masses 0.002,0.004,0.006 0.002,0.004,0.006 0.002,0.004,0.006
0.008,0.025,0.03 0.008,0.025,0.03 0.008,0.025,0.03

Table 6.4 The fine ensemble data used for this analysis, this is the same
dataset that was used in the analysis for Bk in [12]. This ensemble

has renormalisation constants ZMS
P (3 GeV ) = 0.70572(9), ZA =

0.74469(13), inverse lattice spacing a−1 = 2.28(3) GeV and mres =
0.0006643(82).

time. The forward (fwd) and backward (bwd) propagating states are generated using

the combinations fwd = p+a, bwd = p−a, this effectively doubles the temporal extent

of the lattice, but should not improve the statistical resolution of the measurement.

The analysis follows the previous, coarse measurement. First we investigate the two

point correlation functions and compute the ratio
[

m2
k

f2
k

]
Lattice

, we follow [12] and use

the fit range t = 12→ 52 inclusive.

Comparing the order of the error from Tab.6.5 and Tab.6.2 we can see that the increased

statistics and self averaging from the larger volume has decreased the statistical error.

Our analysis is in good agreement with that of [12]. We proceed with the analysis of the

four point functions for this ensemble, an example of the quality of the data is shown

in Fig.6.9, which is of the lightest Unitary Kaon. Note how the periodic/anti-periodic

data allows access to a much larger plateau compared to the coarse data (which has

the same temporal extent) from Fig.6.3 and that the fit range 12 → 52 is clearly well

within the plateau region. As we saw from the coarse data, our four point function

result is quite correlated in Euclidean time, owing to the small lattice spacing between

time-slices. As such, a fit over as large a temporal region as possible whilst still in

plateau is hoped will even our temporal correlations and fluctuations.

To illustrate the mass dependence of the measure, we plot the ratios of the BSM opera-

tors to the SM with and without the multiplicative dimensionless factor
[

fk
mk

]2
Experiment

[
mxy

fxy

]2
Lattice

versus the ratio
[

mxy

fxy

]2
Lattice

, shown in Fig.6.10. We see that without this multiplicative

factor the ratios behave roughly as 1
mxy

and “blow up” as the mass goes to 0,

upon applying the mass correction we see approximately linear behaviour over the

entire range of masses except for the very lightest, and comparatively smoother chiral

behaviour. The physical point for this data is 10.16, with mk and fk taken from [22].

N.Garron calculated the following renormalisation matrix to match our data to MS at
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mx my mxy(0.004) mxy(0.006) mxy(0.008) fxy(0.004) fxy(0.006) fxy(0.008)
0.030 0.030 0.3217(1) 0.3215(1) 0.3226(1) 0.0812(1) 0.0809(1) 0.0816(1)
0.025 0.030 0.3079(1) 0.3077(1) 0.3088(1) 0.0797(2) 0.0794(1) 0.0802(1)
0.008 0.030 0.2565(1) 0.2565(1) 0.2582(1) 0.0734(2) 0.0733(1) 0.0744(1)
0.006 0.030 0.2500(1) 0.2501(1) 0.2518(1) 0.0726(2) 0.0725(1) 0.0733(1)
0.004 0.030 0.2434(1) 0.2436(1) 0.2455(1) 0.0717(2) 0.0717(1) 0.0732(2)
0.002 0.030 0.2367(1) 0.2371(1) 0.2391(1) 0.0711(2) 0.0713(2) 0.0729(2)
0.025 0.025 0.2935(1) 0.2933(1) 0.2944(1) 0.0781(2) 0.0779(1) 0.0787(1)
0.008 0.025 0.2395(1) 0.2396(1) 0.2412(1) 0.0719(2) 0.0719(1) 0.0730(1)
0.006 0.025 0.2326(1) 0.2327(1) 0.2344(1) 0.0711(1) 0.0711(2) 0.0723(1)
0.004 0.025 0.2255(1) 0.2258(1) 0.2275(1) 0.0703(2) 0.0703(1) 0.0717(1)
0.002 0.025 0.2183(1) 0.2188(1) 0.2206(1) 0.0697(2) 0.0699(1) 0.0714(2)
0.008 0.008 0.1711(1) 0.1714(1) 0.1728(1) 0.0660(1) 0.0660(1) 0.0671(1)
0.006 0.008 0.1612(1) 0.1617(1) 0.1631(1) 0.0651(1) 0.0652(1) 0.0664(1)
0.004 0.008 0.1509(1) 0.1514(1) 0.1527(1) 0.0642(2) 0.0643(1) 0.0656(1)
0.002 0.008 0.1398(1) 0.1406(1) 0.1418(1) 0.0634(2) 0.0637(2) 0.0651(1)
0.006 0.006 0.1508(1) 0.1513(1) 0.1526(1) 0.0642(2) 0.0643(1) 0.0655(1)
0.004 0.006 0.1395(1) 0.1402(1) 0.1414(1) 0.0633(1) 0.0635(1) 0.0647(1)
0.002 0.006 0.1274(1) 0.1283(1) 0.1294(1) 0.0624(2) 0.0627(1) 0.0641(1)
0.004 0.004 0.1272(1) 0.1280(1) 0.1292(1) 0.0623(1) 0.0625(1) 0.0639(1)
0.002 0.004 0.1136(1) 0.1147(1) 0.1157(1) 0.0613(2) 0.0616(2) 0.0631(1)
0.002 0.002 0.0979(1) 0.0992(1) 0.1001(1) 0.0602(2) 0.0605(2) 0.0621(1)

Table 6.5 The measured masses and decay constants for the fine datasets used
in this analysis. The fit range t = 12 → 52 inclusive, was used
throughout this study. The errors are computed from a Bootstrap
analysis with 100 bootstraps. As in the coarse dataset analysis, an
uncorrelated simultaneous fit to four channels was performed.

3 GeV for this ensemble,

ZMS

ij

Z2

A

(3 GeV ) =




0.9329(4) 0 0 0 0

0 1.0562(9) 0.3963(36) 0 0

0 0.0484(6) 0.6904(77) 0 0

0 0 0 0.7135(70) −0.0128(3)

0 0 0 −0.4303(32) 1.2625(19)




. (6.14)

The factors are quite similar to those of the coarse ensemble, i.e. large mixing between

the VV-AA and SS-PP, and the SS+PP and TT. The error for the SS-PP channel’s

mixing with the TT is large compared to the coarse ensemble’s. We use this matrix

to compute the fine ensemble’s analogue to the graph Fig.6.4 for the lightest Unitary

Kaon data shown in Fig.6.9, this is shown in Fig.6.11.

Fig.6.11 shows the renormalised Ri’s for the lightest Unitary Kaon. As previously

noticed for the coarse ensemble, the ratios of the BSM to the SM effective operators
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Figure 6.9 Renormalisation basis four point function ratios for the lightest
(ml = 0.004) Unitary Kaon. This is to be compared with the coarse
data analysis in Fig.6.3.
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Figure 6.10 The renormalised ratios of SUSY basis operators in MS at 3
GeV, with and without the multiplicative mass improvement of[

mxy

fxy

]2
Lattice

for all of our fine ensemble data.

are greatly enhanced, and appear larger for the fine ensemble compared to the coarse.

As seen before, R3 and R5 are very similar in this scheme at this scale, and R2 and R4

are much larger than the SM contribution.
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Figure 6.11 The ml = 0.004 fine ensemble, renormalised ratios of Eq.6.6
renormalised from the RI/MOM scheme to MS at 3 GeV, and
converted to the SUSY basis.

6.4.1 Chiral limit results

The approach to the chiral limit was performed in exactly the same manner as in the

coarse ensemble analysis. Whereby extrapolation in the Unitary light quark sector

to the physical Pion was made (with result a (ml + mres) = 0.00097(3), and then

interpolation in the heavy quark sector with the aid of a Partially Quenched strange

quark valence data point to the physical strange defined as the point where R1 = 1,

which again lies very close to (mphys
s = 0.0273(7)) [12]. The graph of this extrapolation

and subsequent interpolation is shown in Fig.6.12.

Fig.6.12 attempts to illustrate the extrapolation and interpolation procedure of the

coarse data all on one graph. The upward triangles are the Unitary Kaon data and the

downward triangles are the PQ ams = 0.025 data points. Each of which is extrapolated

to the light quark physical point shown as the squares, and then the interpolated

physical strange evaluation is measured (this is the diamond on the plot). Comparing

the coarse and the fine chiral extrapolations to the physical point, we note that the

extrapolation in mass is very benign for both. And the fine ensemble evaluations tend

to be a little larger than the coarse evaluations for the ratios but otherwise similar in

magnitude and sign. We also see that the ratios R3 and R5 for the fine ensemble have

switched positions compared to the coarse ensemble. This is perhaps illustrative of

some scaling violation (large O(a2) effect).
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Figure 6.12 Chiral extrapolations for the fine data. Results for the extrapolation
in the light sector to the physical point (R1 = 1) for the ms = 0.03
(upward triangles) and the ms = 0.025 (downward triangles) are
shown as the squares at the end of their extrapolation lines, the
lines are the midpoint of the fit. The dashed black line illustrates the
interpolation to the physical strange quark mass which is shown as
a diamond, as in the coarse data Fig.6.8. The results are presented
in Tab.6.6.

6.5 Continuum results

We now present the continuum evaluations of the R’s and the B’s from the previous

two sections. We take as the lattice spacing of the coarse ensemble a−1 = 1.73(3) GeV

and the fine ensemble a−1 = 2.28(3) GeV , we fit our data linearly in a2 and extrapolate

to zero lattice spacing, this is taken as our näıve continuum limit evaluation.

i RMS
i (µ = 3 GeV ) BMS

i (µ = 3 GeV )

1 1.0 0.516(4)
2 -15.42(26) 0.424(6)
3 5.40(13) 0.743(17)
4 29.36(45) 0.678(9)
5 6.64(14) 0.451(11)

Table 6.6 Physical point, fine ensemble ratios and bag parameters renormalised
in MS at 3 GeV, errors are statistical only.
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Figure 6.13 The a2 → 0 extrapolated, ratios Ri’s in MS at 3 GeV, (Eq.6.6) from
the coarse and fine ensembles. The extrapolation was performed
using a linear fit to the data, the final results are shown in Tab.6.8.
The squares are the physical point data and the crosses are the
extrapolated result.
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Figure 6.14 The a2 → 0 extrapolated, RI/MOM renormalised and MS matched
bag parameters (Eq.6.5) from the coarse and fine ensembles. The
extrapolation was performed using a linear fit to the data, the final
results are shown in Tab.6.8. The squares are the physical point
data and the crosses are the extrapolated result.

6.5.1 Systematic errors

We have postponed inclusion of systematic errors until our final a2 → 0 result. We

identify three regions where errors are expected to contribute. These are considered to
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be from the finite volume/measurement effects and the non perturbative and continuum

perturbative renormalisation procedures.

To estimate the error of our measurement, we vary the fit range for the coarse data

over a sensible range (9, 10, 11, 12 → 19, 20, 21, 22, 23), whilst keeping the fine data’s

evaluation fixed at 12 → 52 to obtain an estimate of the stability of the measurement

and resulting continuum limit extrapolation for the ratios and bag parameters, we found

that for all operators under consideration the variation of the fit range contributed a

negligible (< 0.1%) effect. Which was completely dwarfed by the final result’s statistical

error.

We are also confident in our chiral extrapolations, as the mass extrapolations and

interpolations of the ratios and bag parameters are well described by a simple linear fit.

We find a correction of the order of < 1% from our chiral extrapolation for the central

value of R1 away from 1, incorporating the error in the extrapolation point this error

is effectively 0. We conclude that the dominant systematic errors arise from the non

perturbative renormalisation and the perturbative matching.

Following the discussion in [38] we note that the use of the exceptional RI-MOM scheme

is probably the dominant source of systematic uncertainty, as it introduces breaking

of chiral symmetry and unphysical mixing of all the renormalisation basis operators.

If we do not force the renormalisation matrix to be block-diagonal by incorporating

chirally forbidden contributions and symmetry breaking effects and then renormalise

with this non block-diagonal matrix and compare to our final (block diagonal) result,

we get a handle on the systematic uncertainty emanating from the non perturbative

renormalisation. This is the dominant error, and it should be noted that the use of non-

exceptional schemes have been seen to suppress the chirally forbidden operator mixings

for Bk(µ) [10]. We measure our block-diagonal and non continuum-extrapolated results

and take half the difference on the central values as an estimate for the error.

The perturbative matching error from the RI-MOM scheme to MS is subjective, as one

cannot estimate what the higher order terms in the series will be. The matching to

MS in three flavour QCD at µ = 3 GeV was is known at one-loop level [39, 48] with

the coefficients of the perturbative mixing matrix given in Eq.A.16. The error estimate

comes from taking half the difference between the leading order and the next to leading

order result for the matching coefficients of each operator on an example dataset. For

our analysis we choose the lightest Unitary Kaon from each ensemble and average the

result for the two, to perform this analysis.
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i npr(R) npr(B) PT Total(R) Total(B)

1 - 0.10 0.85 - 0.86
2 6.21 4.25 4.4 7.61 6.12
3 4.99 4.56 1.6 5.24 4.83
4 2.27 1.37 8.0 8.32 8.12
5 2.51 1.92 10.4 10.70 10.58

Table 6.7 The error budget for the two dominant sources of error, the
non perturbative renormalisation in the RI-MOM scheme (npr)
extrapolated to the continuum, and its subsequent matching to
continuum perturbation theory (PT) MS as a percentage correction,
errors are added in quadrature.

6.5.2 Final results and discussion

Our final, continuum results for the ratios and bag parameters for K0-K̄0mixing in

and beyond the standard model are shown in Tab.6.8. It is pleasing to note that our

evaluation of the continuum limit BMS
k (3 GeV ) is consistent with a previous evaluation

using these ensembles of 0.529(5)stat(15)syst [10] albeit with a larger statistical error,

emanating from our use of the exceptional RI-MOM, rather than the theoretically more

sound non-exceptional schemes. Which are available for the computation of Bk, the

SMOMγµ,γµ ,SMOM/q,/q,SMOMγµ,/q or SMOM/q,γµ .

i RMS
i (µ = 3 GeV ) BMS

i (µ = 3 GeV )

1 1.0 0.521(24)(4)
2 -17.07(69)(130) 0.409(20)(25)
3 5.31(33)(28) 0.618(54)(33)
4 35.21(122)(293) 0.709(33)(59)
5 8.98(35)(96) 0.548(28)(59)

Table 6.8 The a2 → 0 extrapolated ratios and bag parameters, renormalised in
the RI-MOM scheme at 3 GeV and matched to MS and converted to
the SUSY basis. The extrapolation was performed using a linear fit.

Consulting Tab.6.8 we see that our our statistical error is between 5% and 9% for our

operators, with R3 having the largest percentage statistical error. The large systematics

are due to our conservative estimate about the convergence of the perturbative matching

to MS for these operators, as the matching is only at 1 loop order at a low matching

scale µ. Moving to a non-exceptional scheme was very beneficial in reducing the errors

in the non-perturbative renormalisation for Bk in previous studies. If perturbative

matching coefficients were known for the final 3 operators in Tab.6.8 we could see a

dramatic decrease in the error, both statistical and systematic.

Comparing the result from [38], we now know that the difference between the fine

ensemble evaluation and the continuum is quite large, with ratios R2 and R4 increasing
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by ≈ 10% and R5 increasing by ≈ 25% from the fine data to the continuum

extrapolation point, with only R3 being well within this estimate and consistent with a

flat continuum extrapolation. The same behaviour is seen for the bag parameters, where

the scaling violation of B5 appears very large. Our continuum results are consistent in

magnitude and sign with previous determinations [5, 19, 24] and a staggered fermion

preliminary computation [20]. The most recent, comparable results to ours are from

an nf=2 dynamical Twisted Mass calculation [24], we show a direct comparison of the

two measurements in Tab.6.9. We see that our result is compatible with theirs within

error for the ratios except for R4 and for the bag parameters, except for B4 and B5.

i RMS
i (µ = 3 GeV ) [24] BMS

i (µ = 3 GeV ) [24]

1 1.0 1.0 (0) 0.52(2) 0.51(2)
2 -17.1(15) -15.6(5) 0.41(3) 0.47(2)
3 5.3(4) 5.3(3) 0.62(6) 0.78(4)
4 35.2(32) 28.6(9) 0.71(7) 0.75(3)
5 9.0(10) 7.8(4) 0.55(7) 0.60(3)

Table 6.9 A comparison of our continuum result and that of [24]. Statistical
and systematic errors have been added in quadrature.

We have calculated the renormalised matrix elements that can be used to constrain

flavour physics beyond the standard model. We have performed the first computation

with nf=2+1 dynamical Domain Wall Fermions, with the benefit of good chiral

behaviour in the valence sector and in the sea. Our result is seen to be approximately

compatible with another determination which used a different fermionic action.

And with the addition of possible non-exceptional matching conditions for the non-

perturbative renormalisation in the near future, we envisage a greater reduction in the

error of our procedure.
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Chapter 7

Conclusions

In this thesis we have discussed our implementation for fixing to a smooth covariant

gauge, and discussed the method of Fourier acceleration. We have found that Fourier

acceleration does a good job of ameliorating critical slowing down, but the algorithm

still does scale with some small power of the lattice volume. Gauge fixing in lattice

gauge theories is an important tool for the matching of lattice QCD measurements

to perturbative physics and renormalising quantities non-perturbatively. For large

volumes it can become performance critical.

We investigated procedures in the attempt to improve the gauge fixing algorithm. We

found that upon applying higher order derivative terms and exact exponentiation in

the steepest-descent method for the evaluation of the gauge transformation matrices

was beneficial in reducing the average number of iterations to convergence of a

configuration, although the computational effort required to use such improvements

seemingly outweighed their benefits. In performing this evaluation we identified a

method (the “exact hermitian projection”) for taking the logarithm of SU(2) and SU(3)

matrices in a more efficient and numerically stable manner.

We applied the gauge fixing techniques to perform a first-principles measurement of the

renormalised QCD strong coupling αs using the amputated triple gluon vertex, without

the benefit of our fast gauge fixing implementation we would not have been able to

perform this calculation. We have called into question the validity of the measurement

using the exceptional M̃OMgg scheme, due to its amputation with a zero momentum

gluon propagator. We believe such an amputation to have very large finite volume

errors. This motivated us to perform the first computation of the non-exceptional
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(MOMggg scheme) amputated triple gluon vertex coupling, with results,

αMOMggg
nf=3 (3 GeV ) = 0.476(16)stat , αMS

nf=5(Mz) = 0.1273(9)stat(110)pert.

Even with the difficulties in locating sufficient momentum configurations satisfying the

kinematic, at the scale 3 GeV our continuum extrapolated measurement has statistical

error of 3%. Our evaluation (omitting systematic errors) of the nf=5 coupling in MS

at Mz is far from the world average of 0.1184(7) [25]. This is due to the low energy

scale at which we are forced to perform our matching to continuum perturbation theory,

and the low order of the series we can use to match our result to MS with. We have

performed the first measurement of the coupling for a non-SM theory, hence showing

its applicability for possible BSM scenarios.

We have introduced the method of smearing and discussed its link with the Wilson flow.

We have investigated the smearing radius for the first time using the non-perturbative

ratio of Landau gauge fixed gluon propagators, and found values that are significantly

lower than predicted by fat link perturbation theory. We have implemented a two-step

adaptive routine for the numerical integration of the Wilson flow, and shown at large

flow times it is far more performant than the fixed step-size integration usually used.

The adaptive routine has shown that for aggressive gauge actions and smearing methods,

much smaller step-sizes for integration accuracy O
(
10−6

)
are required than have been

quoted in the literature [32, 111]. We have computed the continuum parameter W0

from our ensembles,

W0 = 0.1806(14)(fm), W0(a) = 0.1806(14) − 0.0209(44)a2 .

We use the straight line extrapolation to compute the lattice spacing as if defined by

the Pion, Kaon and Omega for our scaling trajectory using the fit results to evaluate

a hitherto unknown lattice spacing of our ensembles. We used the adaptive Wilson

flow to discuss fast lattice spacing evaluations in the context of step-scaling and the

possibility of new simulation runs.

Our final topic was the evaluation of the SUSY-basis bag parameters Bi’s and ratios Ri’s

renormalised non-perturbatively in the RI-MOM scheme and matched at 3 GeV in the

continuum MS scheme. Our evaluation is the first continuum limit of the full basis of

(D=6) irrelevant operators with dynamical Domain Wall Fermions. We have computed

the renormalised SM bag parameter BMS
k (3 GeV ) = 0.521(24)(4) and our result agrees

within error of previous determinations [10]. Our final continuum extrapolated results

are shown in Tab.6.9, and we see similarity with previous evaluations, and have inferred

the areas where improvements to the method can be made.
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Appendix A

Appendices

A.1 Renormalisation of operators

Unphysical quantities such as the Kaon bag parameter must be renormalised in

some scheme using non-perturbative renormalisation before extrapolating the lattice

spacing to 0. The method of renormalisation we use is called the Rome-Southampton

regularisation invariant momentum scheme, or RI-MOM for short [114]. As we have

seen previously in the context of gluonic non-perturbative renormalisation (Chapter 4),

the general idea is to have a renormalisation factor Z(µ) that when multiplied with an

amputated, non-perturbative vertex function in some amenable gauge (such as Landau)

with sensible momentum transfer/renormalisation scale p2 = µ2, is equal to its tree level

continuum perturbative value. Again, with direct parallel to the gluonic measurement

in Chapter 4, we must [21] fix to Landau gauge to make a comparison to continuum

perturbation theory.

The renormalisation of flavour non-singlet quark bilinears is simple, and will provide

an illustrative example that can be utilised in the discussion of the renormalisation of

the four quark operators.

The renormalised quark bilinear is related to the bare one by (with arbitrary Dirac

matrix Γ),

[s̄Γd]renormalised = ZΓ(µ) [s̄Γd]bare . (A.1)

We define the momentum-space propagators by taking the Fourier transform of Landau

gauge fixed point source propagators,

S(x0, p) =
∑

x

eipµ(xµ−x0)S(x;x0). (A.2)
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The Fourier transform is over all dimensions. We then compute the vertex function,

VΓ(p)bare = S(x0, p)Γ
(
γ5S(x0, p)†γ5

)
. (A.3)

The vertex function is finally amputated by the ensemble averages (denoted 〈.〉) of the

quark propagator legs to give,

Π(p)Γ,bare = 〈S(x0, p)〉−1〈VΓ(p)bare〉〈γ5S(x0, p)†γ5〉−1 (A.4)

The amputated vertex function is projected so that,

ΛΓ,bare(p) = [Π(p)Γ,barePΓ(p)] . (A.5)

P(p) is a projection operator designed to ensure the renormalisation condition,

ZΓ(p)

Zq(p)
ΛΓ,bare(p) = 1. (A.6)

Where Zq(p) is the quark field renormalisation factor, which is defined from q(x)renormalised =

(Zq(µ))1/2 q(x)bare. Eq.A.6 allows for the computation of the renormalisation factor

ZΓ(p). The extension to the renormalisation of bilinears, to that of the four quark

operators follows similarly.

First, we define the renormalisation condition,

ZΓΓ(p)

Zq(p)2
ΛΓΓ,bare(p) = 1. (A.7)

Again Λ is the amputated, projected vertex function. We then define the momentum

space vertex function for our operators,

VΓΓ(p)abcd =
[
S(x0, p)Γ

(
γ5S(x0, p)†γ5

)]
ab

[
S(x0, p)Γ

(
γ5S(x0, p)†γ5

)]
cd

. (A.8)

Where the indices abcd are combined spin-color indices and so range from 1 to 12.

We must contract the four legs of this vertex using the ensemble averaged inverse

propagators,

ΠΓΓ(p)efgh = 〈S(x0, p)〉−1
ea 〈S(x0, p)〉−1

fb (VΓΓ(p)abcd)

× 〈γ5S(x0, p)†γ5〉−1
cg 〈γ5S(x0, p)†γ5〉−1

dh . (A.9)

The amputated vertex function for the four quark interpolating operators is based on

the summation of its constituent vertex functions, i.e.

ΠSS+PP (p)efgh = ΠSS(p)efgh + ΠPP (p)efgh. (A.10)
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Recalling from the introduction that four quark operator contractions have two separate

contributing parts, the “trace” and the “trace-trace” (Eq.1.62). The renormalisation

factor ΛSS+PP (p) is projected with,

ΛSS+PP (p) = Pefgh(p) (ΠSS+PP (p)efgh −ΠSS+PP (p)eghf ) . (A.11)

Where (although for the RI-MOM scheme there is no momentum dependence on the

projector, it is possible to define schemes with momentum dependent projectors),

Pefgh(p) =
1

3072
(δef δgh + (γ5)ef (γ5)gh) . (A.12)

We have the renormalisation condition for each operator,

ZΓΓ+Γ′Γ′(p)

Zq(p)2
ΛΓΓ+Γ′Γ′(p) = 1. (A.13)

For the normalisation of the bag-parameters, the Bi’s are defined by the ratio of the

four quark operator normalisation to the two correlators with appropriate normalisation.

For Bk = B1, the correlators in the denominator of Eq.6.3 under renormalisation pick

up a factor of
Z2

A
Z2

q
and for the Bi’s a factor of

Z2
P

Z2
q
. The normalisation factors for the

bag-parameters are then,

ZB1 =
ZV V +AA

Z2
A

ZB2,3,4,5 =
Z2,3,4,5

Z2
P

. (A.14)

The renormalisation factors can be handily written as a matrix equation.

The renormalisation of the other higher dimensional operators follows from the above

discussion, if chiral symmetry is broken then all of the operators in the renormalisation

basis mix with one another under renormalisation. Otherwise, in the renormalisation

basis for the massless theory the V V + AA channel is a singlet (in the (27,1)

representation) of the SU(3)L⊗SU(3)R flavour symmetry group for the valence quarks.

The V V −AA and SS −PP mix as part of the (6, 6̄) representation and the SS + PP

and TT transform under the (8, 8). The renormalisation matrix Zij(µ)RI−MOM , for

the mixing of operators under renormalisation for valence quarks with chiral symmetry

(Domain Wall or Overlap) should be block diagonal [15] up to discretisation effects

(such as length of the fifth dimension for DWF),




Q1

Q2

Q3

Q4

Q5




renormalised

=




Z11 0 0 0 0

0 Z22 Z23 0 0

0 Z32 Z33 0 0

0 0 0 Z44 Z45

0 0 0 Z54 Z55







Q1

Q2

Q3

Q4

Q5




bare

. (A.15)
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The mixing matrix for the 1 loop matching to MS from the RI-MOM scheme in Landau

gauge at some scale µ is [39],

ZMS
11 (µ) = 1− αMS

s (µ)

{
(7− 12 log(2))

(
1− 1

Nc

)}
,

ZMS
22 (µ) = 1− αMS

s (µ)

4π

{
1

Nc
(1 + log(2))

}
,

ZMS
23 (µ) = −αMS

s (µ)

4π
{4 (1 + log(2))} ,

ZMS
32 (µ) = −αMS

s (µ)

4π
{log(2)− 1} ,

ZMS
33 (µ) = 1− αMS

s (µ)

4π

{
2

Nc
(1 + log(2)) − 4Nc

}
,

ZMS
44 (µ) = 1− αMS

s (µ)

4π

{
7 +

1

Nc
(5 + 2 log(2)) − 4(Nc + log(2))

}
,

ZMS
45 (µ) = −αMS

s (µ)

4π

{
2

(
1

12

(
5− 13

Nc

)
− log(2)

3

(
2 +

5

Nc

))}
,

ZMS
54 (µ) = −αMS

s (µ)

4π

{
1

2

(
4(1− 8 log(2)) − 12

Nc
(1− 5 log(2))

)}
,

ZMS
55 (µ) = 1− αMS

s (µ)

4π

{
7

3
(1− 4 log(2)) − 1

3Nc
(5− 26 log(2))

}
. (A.16)

For our study we use the value of the coupling α(Mz)MS = 0.1184 and numerically

run 4.48 using the four loop beta function [126], and using appropriate threshold

matching to obtain the three flavour MS strong coupling at 3 GeV, which will be

our renormalisation scale. We measure our operators Qbare
k from our simulation and

renormalise to continuum MS with,

QMS
i (µ) = ZMS

ij (µ)ZRI-MOM
jk (µ)Qbare

k . (A.17)

Where in practice, we perform the matrix multiplication between the non-perturbative

renormalisation and the continuum perturbative matching implicitly.
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