
Bagel for BlueGenes

Peter Boyle

May 17, 2012

BlueGene/Q Compute chip

Floating point

• 16 compute cores per chip @ 1600 MHz

• Quad SIMD double/single precision FMAC
⇒ 8 flops per clock per core ⇒ hard to use due to SIMD constraints (quad real,
paired complex) ⇒ 204.8 Gflop/s peak per node

• 4 hardware threads per core - execution of different threads is interleaved to help
keep pipelines full.

Memory

• 16KB L1 cache (shared between 4 threads) for each core (819GB/s across chip)

• 4KB L1p prefetch engine for each core

• 32MB L2 cache (563 GB/s peak read+write)

• 4/8/16 GB DDR (42GB/s peak)

Note bandwidth drop off Network

• 5-d torus interconnect

• 2GB/s peak per link ⇒ 40GB/s Send+Receive

• Similar partitioning to QCDOC possible – better MPI support needed

• 5th dimension remains local

• Copper within a midplane

• Optical torus globally

Eyesight test

Can you find this unit in this die photo?

System design

Simple performance analysis

FP/Memory/NetworkDesign balance (GFlop/s : GB/s :GB/s ratio)

• Ideal balance based on counting bytes & flop/s in SU(3)
200:600:60

• BG/Q (high L2 hit rate) L2 resident
200:600:40

• BG/Q (low L2 hit rate) DDR resident
200:40:40

Simple analysis

• Machine is very fast from 32MB L2 cache

• Cache friendly programming is a must.

• 5d Domain Wall QCD reuse rates in sparse matrix can be very high
with right loop ordering:
• Gauge field reused Ls ∼ 16 times at L1 level
• Each input spinor reused 2× (Nd + 1) = 10 times at L2 level
• Each output spinor field takes 1320 flops to compute.

• The memory system has involved a significant co-design element from QCD

• Can map QCD efficiently to the 5d torus

There is a real benefit from integrating a network equivalent to 10 PCIe links on chip!

Bagel domain specific compiler

Bagel maintains a virtual RISC-like model, with pipeline scheduler and translation
rules for various architectures.
3-7 × speed up over C++, and up to 65% of peak on key leaf routines
Has been a key component of co-design project with IBM
BFM is a library of physics kernels written to use bagel and supporting many forms of
Wilson type lattice fermions.

• Wilson

• Twisted mass

• Domain Wall

• Generalised 5d Cayley / ContinuedFraction / Partial Fraction chiral fermions

• The continued fraction and partial fraction do not yet support preconditioning

Optimisation for BlueGene: SIMD

Transform internal data layout to force there to be SIMD parallelism

• Geometric decomposition is familiar in QCD: multiple nodes do exactly the same
thing

• So why the hell do we get confused when Nc = 3 is hard to fit into SSE vectors?

Reorder to put a logical node index innermost to force SIMD parallelism:
complex Array [2][Nxyzt][Nsc] → Array [Nxyzt][Nsc][2]
Each node loops over Nxyzt local sites, applying operations in spin color indices to two
logical nodes worth of data.
Wasteful pack/unpack/permute operations managing SIMD lanes are automatically
reduced to a single face
Generalises to longer SIMD vectors easily (Intel MIC?)

Optimisation for BlueGene: Memory system

• L2 store bandwidth is 1
2

Load bandwidth

• Store payload 16 bytes. Load payload 128 bytes. Store transaction rate is high.

• Consequence: much higher penalty for stores than for loads.

• Forces a choice of loop ordering in collecting the terms in DW

loop xyzt
loop s
loop mu

Load neighbor 4-spinor
spin-project
if (mu<8)

load gauge link
SU3 multiply

Accumulate result (12 regs)
end loop mu
store result

end loop s
end loop xyzt

Pro: suppresses stores
reuses gauge links Ls times (L1)
reuses fermion field 10 times (L2)

Con: only 384 byte sequential accesses

Mitigation:
introduced L1p modes to
i) programme size of a spinor
ii) enable hints prefetch next spinor.
iii) Assist user mode line locking in L1.
Retain gauge link
while read 10× Ls fermions

Optimisation for BlueGene: Threading and communication

Threads: Use 64 threads per node, in a single MPI task

• Use fast L2 barriers for 1µs synchronisation within node

• Expose largest possible packet size to message passing system

• All threads can work on all tasks, even the collection of a single face.
Not possible if geometrically associate threads with data.

Comms: SPI optimisation

• Perform Dslash halo exchange by programming dma hardware

• Provided patch to QMP to make sure it’s MPI and my SPI comms agree on
layout

• Efficiently map 3d and 4d application torii to the 5d physical torus so that nearest
neigbours ... are

• -qmp-geom native, -qmp-geom native3d

• Saturates link bandwidth on my communication tests with O(30GB/s).

• Overlaps communications with computation unlike MPI

Code output

bfmcommspi: Printing all sorts of ugly stuff to convince you this is hard

bfmcommspi: SPI device memory pool 67108864 bytes

bfmcommspi: allocated SPI device memory pool in virtual memory space 0x00000019c8000000 - 0x00000019cc000000

bfmcommspi: called KernelCreateMemoryRegion to pin this in contiguous physical region

bfmcommspi: Memory translation is as follows:

bfmcommspi: SPI device memory Base Physical Address 0000000005000000

bfmcommspi: SPI device memory Base Virtual Address 00000019c5000000

bfmcommspi: allocating Block Address Translation (BAT) id 0 Group 0

bfmcommspi: allocating Block Address Translation (BAT) id 0 Group 4

bfmcommspi: allocating Block Address Translation (BAT) id 0 Group 8

bfmcommspi: allocating Block Address Translation (BAT) id 0 Group 12

bfmcommspi: allocating Block Address Translation (BAT) id 0 Group 16

bfmcommspi: allocating Block Address Translation (BAT) id 0 Group 20

bfmcommspi: allocating Block Address Translation (BAT) id 0 Group 24

bfmcommspi: allocating Block Address Translation (BAT) id 0 Group 28

bfmcommspi: preallocating reception counters, buffers, descriptors in this device memory pool

bfmcommspi: Injection FIFO setup

bfmcommspi: Global Interrupt Barriers initialised

bfmcommspi: preallocated section of device heap state for reinitialisation

bfmcommspi: SPI setup is complete

bfmcommspi: End of scary messages

* QMP BlueGene/Q Native topology

* Torus: 4 x 4 x 4 x 4 x2

* SMP: 1 tasks per node

* MPI: 512 tasks

* 3d torus: Folding B and E dimensions, A and C/D

* Physical XxYxZxT = 4x4x4x8

* Logical XxYxZxT = 4x4x4x8

Performance : Double precision
DW kernel on a single with no communication or linear algebra overhead

1000 10000 1e+05
5d local volume

0

10

20

30

40

50

60

70

80

90

100

G
fl

op
/s

 p
er

 n
od

e

Performance : Double precision
DW on 512 nodes, spread out in 4d, performance per node vs local volume

1000 10000 1e+05
5 local volume

0

10

20

30

40

50

60

70

80

90

100

G
fl

op
/s

 p
er

 n
od

e

Performance : Double precision
DWF CGNE on 512 nodes, spread out in 4d, performance per node vs local volume

1000 10000 1e+05
5d local volume

0

10

20

30

40

50

60

70

80

90

100

G
fl

op
/s

 p
er

 n
od

e

Performance : Double precision
DWF CGNE on 512 nodes, spread out in 4d, performance per node vs local volume

larger and Nf/2 times fewer in number. This should, in
principle, allow for a significant reduction in latency costs.
The results shown in Sect. VI are for the first loop ordering;
the latter variation is still under development.

VI. PERFORMANCE AND SCALING

The LLNL Sequoia supercomputer will have 96 racks for
a total of 96K nodes or 1.5 million cores. At the time of this
writing only 16 racks have been made available to perform
first scaling studies and produce first results. We fully expect
to have access to the 96 rack system to complete these studies
in summer 2012.

!!
!

!

!

!

0 50000 100000 150000 200000 250000
0

100

200

300

400

500

600

700

BG!Q Cores

Sp
ee
du
p
"T
Fl
op
s#

Weak Scaling of DWF CG Inverter

Fig. 2. Weak scaling with 84 lattice sites per node on up to 16K nodes of
LLNL Sequoia BG/Q (the largest machine available to us as of May 2012).
The speedup increases linearly with a rate of 40 Gflops/node.

As can be seen from Fig. 2, the weak scaling of our
application is nearly perfect to 16K nodes (262,144 cores)
and we expect that this will continue to the full machine size
with the same rate of 40 Gflops/node. In Fig. 3 scaling data
on 512 nodes is shown for a variable problem size per node.
This is equivalent to strong scaling because our application has
only nearest neighbor communications and infrequent global
sums. This plot allows one to see in more detail the “peak”
region. Strong scaling of our application is good, with a “sweet
spot” corresponding to per node lattice size of 84 . One can
see the typical tradeoff between communication and memory
latencies and bandwidths. As the number of machine nodes
increases, the local problem shrinks, and its surface-to-volume
ratio increases. Hence more data needs to be communicated
per flop, exposing performance to network limitations. On the
other hand, as the local problem size increases the memory re-
quirements exceeds L2 cache, necessitating lower speed access
to external memory. Between these constraints is the optimal
local lattice size. Nevertheless, the drop of performance around
the optimal spot is at the 30% to 50% level, allowing flexibility
in the application.

In Fig. 4 we present true strong scaling data from the
available LLNL Sequoia machine partitions. Machine sizes
ranging from 0.5 rack to 16 racks were used for a fixed

!
!

!

!!

!

!
!
!

!
! !

! ! ! !

0 10000 20000 30000 40000 50000
0

10

20

30

40

50

4D Subgrid Volume

Pe
rf
or
m
an
ce
!G
Fl
op
s"
no
de
#

Strong Scaling of DWF CG Inverter

Fig. 3. Scaling data on 512 nodes but for a variable on-node problem size.
This is equivalent to strong scaling as the application has only nearest neighbor
communications and very infrequent global sums. The peak corresponds to a
local problem size of 84 lattice sites and demonstrates the typical network -
memory performance tradeoff.

!
!

!

!

!
!

0 50000 100000 150000 200000 250000
0

10

20

30

40

50

BG!Q Cores

Pe
rf
or
m
an
ce
"G
Fl
op
s!
no
de
#

Strong Scaling of DWF CG Inverter "322"1282 Vol.#

Fig. 4. Strong scaling for a fixed size problem (322 × 1282 lattice) in
different partition sizes ranging from 0.5 rack to 16 racks.

problem size. Again the peak corresponds to an 84 on-node
sub-lattice.

As discussed, the highest speed obtained by our application
is ≈ 40 Gflops/node. A BG/Q node has a peak speed of ≈ 200
Gflops/node that is achieved when 4 multiply-add instructions
are executed during every clock cycle of the fastest clock
domain. One multiply-add corresponds to 2 floating point
operations; however, the corresponding multiply-add hardware
is fused and peak can be achieved only if the application has a
perfect pairing of multiply and add operations. Our application
has a fraction of unpaired multiplies and adds coming from
the application of the γ matrices in Eq. 1. These 4×4 complex
matrices have entries that are known constants throughout
the simulation and only amount to multiplication by ±1 of
the real and imaginary parts of the vector to which they are
applied. If these multiplications were not counted as useful,

6

Scaling (thanks to LLNL for running this)

Double precision weak scaling on 84 × 8 local volume:

larger and Nf/2 times fewer in number. This should, in
principle, allow for a significant reduction in latency costs.
The results shown in Sect. VI are for the first loop ordering;
the latter variation is still under development.

VI. PERFORMANCE AND SCALING

The LLNL Sequoia supercomputer will have 96 racks for
a total of 96K nodes or 1.5 million cores. At the time of this
writing only 16 racks have been made available to perform
first scaling studies and produce first results. We fully expect
to have access to the 96 rack system to complete these studies
in summer 2012.

!!
!

!

!

!

0 50000 100000 150000 200000 250000
0

100

200

300

400

500

600

700

BG!Q Cores

Sp
ee
du
p
"T
Fl
op
s#

Weak Scaling of DWF CG Inverter

Fig. 2. Weak scaling with 84 lattice sites per node on up to 16K nodes of
LLNL Sequoia BG/Q (the largest machine available to us as of May 2012).
The speedup increases linearly with a rate of 40 Gflops/node.

As can be seen from Fig. 2, the weak scaling of our
application is nearly perfect to 16K nodes (262,144 cores)
and we expect that this will continue to the full machine size
with the same rate of 40 Gflops/node. In Fig. 3 scaling data
on 512 nodes is shown for a variable problem size per node.
This is equivalent to strong scaling because our application has
only nearest neighbor communications and infrequent global
sums. This plot allows one to see in more detail the “peak”
region. Strong scaling of our application is good, with a “sweet
spot” corresponding to per node lattice size of 84 . One can
see the typical tradeoff between communication and memory
latencies and bandwidths. As the number of machine nodes
increases, the local problem shrinks, and its surface-to-volume
ratio increases. Hence more data needs to be communicated
per flop, exposing performance to network limitations. On the
other hand, as the local problem size increases the memory re-
quirements exceeds L2 cache, necessitating lower speed access
to external memory. Between these constraints is the optimal
local lattice size. Nevertheless, the drop of performance around
the optimal spot is at the 30% to 50% level, allowing flexibility
in the application.

In Fig. 4 we present true strong scaling data from the
available LLNL Sequoia machine partitions. Machine sizes
ranging from 0.5 rack to 16 racks were used for a fixed

!
!

!

!!

!

!
!
!

!
! !

! ! ! !

0 10000 20000 30000 40000 50000
0

10

20

30

40

50

4D Subgrid Volume

Pe
rf
or
m
an
ce
!G
Fl
op
s"
no
de
#

Strong Scaling of DWF CG Inverter

Fig. 3. Scaling data on 512 nodes but for a variable on-node problem size.
This is equivalent to strong scaling as the application has only nearest neighbor
communications and very infrequent global sums. The peak corresponds to a
local problem size of 84 lattice sites and demonstrates the typical network -
memory performance tradeoff.

!
!

!

!

!
!

0 50000 100000 150000 200000 250000
0

10

20

30

40

50

BG!Q Cores
Pe
rf
or
m
an
ce
"G
Fl
op
s!
no
de
#

Strong Scaling of DWF CG Inverter "322"1282 Vol.#

Fig. 4. Strong scaling for a fixed size problem (322 × 1282 lattice) in
different partition sizes ranging from 0.5 rack to 16 racks.

problem size. Again the peak corresponds to an 84 on-node
sub-lattice.

As discussed, the highest speed obtained by our application
is ≈ 40 Gflops/node. A BG/Q node has a peak speed of ≈ 200
Gflops/node that is achieved when 4 multiply-add instructions
are executed during every clock cycle of the fastest clock
domain. One multiply-add corresponds to 2 floating point
operations; however, the corresponding multiply-add hardware
is fused and peak can be achieved only if the application has a
perfect pairing of multiply and add operations. Our application
has a fraction of unpaired multiplies and adds coming from
the application of the γ matrices in Eq. 1. These 4×4 complex
matrices have entries that are known constants throughout
the simulation and only amount to multiplication by ±1 of
the real and imaginary parts of the vector to which they are
applied. If these multiplications were not counted as useful,

6

Expect over 1Pflop/s sustained QCD performance in single precision when they
next run my code.

Performance : Summary

Current status (subject to upwards revision)

DWF, CGNE Single up to 65Gflop/s per node
DWF, CGNE Double up to 45Gflop/s per node

Mobius, CGNE Single up to 35Gflop/s per node
Mobius, CGNE Double up to 27Gflop/s per node

• Recall QCD has imbalanced multiplies and adds
Saturating the floating point pipeline would only deliver 160Gflop/s

• The above corresponds to around 28% efficiency in double, and 41% in single for
the whole DWF conjugate gradient.

This is good... but I hope to do better in future...

Status: regression to Chroma

Unpreconditioned
BFM tests general-5d-cg-unprec, general-5d-munprec regresses to chroma for:

HtCayleyZolo, HwCayleyZolo,

HmCayleyTanh, HtCayleyTanh, HwCayleyTanh,

HwContFracZolo, HwPartFracZolo

Preconditioned
BFM tests general-5d-cg-prec, general-5d-mprec regresses to chroma for:

HtCayleyZolo, HwCayleyZolo, HmCayleyTanh, HtCayleyTanh, HwCayleyTanh

I am convinced the Chroma preconditioner for Cayley Zolo is a bad choice

I intend to release a library that has efficient implementation of all reasonable 5d
chiral fermion approaches + Wilson + TwistedMass + Clover

Calling Example

g5dParams parms;
if (solver == HtCayleyTanh)
Printf(‘‘Testing HtCayleyTanh aka DWF’’);
parms.ShamirCayleyTanh(mq,M5,Ls);
else if (solver == HmCayleyTanh)
parms.ScaledShamirCayleyTanh(mq,M5,Ls,htscale);
Printf(‘‘Testing HmCayleyTanh Moebius’’);
else if (solver == HwCayleyTanh)
parms.WilsonCayleyTanh(mq,M5,Ls,hwscale);
Printf(‘‘Testing HwCayleyTanh aka Borici’’);
else if (solver == HtCayleyZolo)
parms.ShamirCayleyZolo(mq,M5,Ls,shamirlo,shamirhi);
Printf(‘‘Testing HtCayleyZolo’’);
else if (solver == HwCayleyZolo)
parms.WilsonCayleyZolo(mq,M5,Ls,wilsonlo,wilsonhi);
Printf(‘‘Testing HwCayleyZolo aka Chiu’’);

bfmCayleyCG<double>(sol,src,u,PP,PA,PAc,PJ5,parms,1.0e-12,80000);

Outstanding work

• Cayley code has the 5th dim handled in cache unfriendly loop order
Uses assembler, but more work to do
(vector ops over whole 4d, 5d matrix loops outer most). (3 days work?)

• Smarter inner single/outer double solver (1 days work?) to deliver single
performance
Especially good for out of cache performance

• Cayley Zolotarev O(10x) more iterations than Cayley Tanh (random gauge
323 × 64)
Better preconditioner for Zolotarev/Cayley (2 days work?)„

Mee Meo
Moe Moo

«
→

„
Mee 0
0 Moo

« „
1 M−1

ee Meo

M−1
oo Moe 1

«
• Precondition contfrac/part frac (2 days?).

Unpreconditioned has no particular penalty for Zolatarev vs Tanh
The Continued Fraction and Partial Fraction matrix forms are very easy to
implement force term for HW kernel; less so for HT .

• Revisit prefetching strategy on FPGA and eliminate stalls
Have a single node DW code that got 107Gflop/s (or 65%) prior to my tweaks
for comms

First results for Kl3 with 180 MeV pion

Very preliminary (Karthee Sivalingam, James Zanotti, Andreas Juttner):

f+(0) = 0.9645(35)→ f+(0) = 0.9635(21)
f+(0) m2

pi

f
mphy

0 (0)

Summary

• CPS+Bagel immediately able to run DWF RHMC very efficiently

• CPS+Bagel immediately able to run Mobius/Tanh RHMC pretty efficiently

• Bagel requires better preconditioner of work to run Mobius/Zolotarev

• Bagel requires preconditioning to seriously run Continued and Partial fraction 5d

• CPS requires force term to run Continued and Partial fraction 5d

• CPS requires work for smeared link force terms

