
Electromagnetism - Lecture 15

Waves in Conductors

• Absorption in Conductors

• Skin Depth

• Reflection at Conducting Surfaces

• Radiation Pressure

• Power Dissipation

• Conservation of Electromagnetic Energy
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Maxwell’s Equations in Conductors

Maxwell’s Equations M1-3 are as for insulators:

∇.D = ρC ∇.B = 0

∇× E = −∂B

∂t

but M4 in conductors includes a free current density JC = σE:

∇×H =
∂D

∂t
+ JC

∇×B = µ0εrε0
∂E

∂t
+ µ0σE

where we have again assumed that µr = 1

2



Solution of M1-4 in Conductors

Taking the curl of M3:

∇× (∇× E) = − ∂

∂t
(∇× B) = ∇(∇.E) −∇2E

using M1 with the assumption that the free charge density is zero:

∇ρc = εrε0∇(∇.E) = 0

Subtituting for B from M4 leads to a modified wave equation:

∇2E =
∂

∂t
(∇×B) = µ0εrε0

∂2E

∂t2
+ µ0σ

∂E

∂t

The first order time derivative is proportional to the conductivity σ

This acts as a damping term for waves in conductors
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Notes:

Diagrams:
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Plane Waves in Conductors

The solution can be written as an attenuated plane wave:

Ex = E0e
i(ωt−βz)e−αz

Substituting this back into the modified wave equation:

(−iβ − α)2E0 = µ0εrε0(iω)2E0 + µ0σ(iω)E0

Equating the real and imaginary parts:

−β2 + α2 = −µ0εrε0ω
2 2βα = µ0σω

For a good conductor with σ � εrε0ω:

α = β =

√

µ0σω

2

For a perfect conductor σ → ∞ there are no waves and E = 0
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Skin Depth

The attenuation length in a conductor is known as the skin depth:

δ =
1

α
=

√

2

µ0σω

Skin depths for a good conductor (metal):

• δ ≈ 10cm at ν = 50Hz (mains frequency)

• δ ≈ 10µm at ν = 50MHz (radio waves)

High frequency waves are rapidly attenuated in good conductors

Practical application of this for RF shielding of sensitive equipment

against external sources of EM waves.
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Magnetic Field of Plane Wave

The magnetic field of a plane wave in a good conductor can be

found using M4:

∂Hy

∂z
= −σEx = −σE0e

i(ωt−αz)e−αz

where we neglect the term in the wave equation proportional to εr

Hy =
σE0

(1 + i)α
ei(ωt−αz)e−αz = H0e

i(ωt−αz−π/4)e−αz

Note that there is a phase shift of π/4 between E and H

The amplitude ratio depends on the ratio of σ and ω:

H0

E0
=

√

σ

µ0ω

In a good conductor H0 � E0 and they are no longer related by c!
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Notes:

Diagrams:
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Reflection at a Conducting Surface

We just consider the case of normal incidence

The incident wave has:

EI = E0Ie
i(ωt−k1z)x̂ BI =

E0I

c
ei(ωt−k1z)ŷ

The reflected wave has:

ER = E0Rei(ωt+k1z)x̂ BR =
E0R

c
ei(ωt+k1z)ŷ

The transmitted wave inside the conductor has:

ET = E0T ei(ωt−αz)e−αzx̂ BT =
α

ω
(1 − i)E0T ei(ωt−αz)ŷ

For a perfect conductor ET = 0 and the wave is completely reflected
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Boundary Conditions at Conducting
Surface

From H tangential:

1

µ0
(B0I − B0R) =

1

µ0
B0T

√
ε0(E0I − E0R) =

√

σ

2ω
(1 − i)E0T

From E tangential:

E0I + E0R = E0T

The reflected amplitude is:

E0R

E0I
= − (

√

σ/2ωε0(1 − i) − 1)

(
√

σ/2ωε0(1 − i) + 1)

The − sign gives a phase change π on reflection from a conductor
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Radiation Pressure

The reflection coefficient is:

R =
E2

0R

E2
0I

≈ 1 − 2

√

2ωε0
σ

For a good conductor σ >> 2ωε0, R → 1.

A metallic surface is a good reflector of electromagnetic waves.

The reflection reverses the direction of the Poynting vector

N = E×H which measures energy flux

There is a radiation pressure on a conducting surface:

P =
2< N >

c
= ε0E

2
0
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Notes:

Diagrams:
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Power Dissipation in Skin Depth

The transmission coefficient is initially:

T =
E2

0T

E2
0I

≈ 2

√

2ωε0
σ

but this rapidly attenuates away within the skin depth

Power is dissipated in the conduction currents

dP

dτ
= J.E = σ|E|2

Time-averaging and integrating over the skin depth:

<
dP

dA
>= −δ

2

√
2σωε0E

2
0I = ε0E

2
0Ic

This result balances the radiation pressure
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Conservation of Electromagnetic Energy

The power transferred to a charge moving with velocity v is:

P = F.v = qE.v

In terms of current density J = Nev:

P =

∫

V

J.Edτ

We can use M4 to replace J:
∫

V

J.Edτ =

∫

V

[E.(∇× H) −E.
∂D

∂t
]dτ

The first term can be rearranged using:

∇.(E× H) = H.(∇×E) −E.(∇×H)
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Notes:

Diagrams:
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and M3 can be used to replace ∇×E:
∫

V

J.Edτ = −
∫

V

[∇.(E ×H) + E.
∂D

∂t
+ H.

∂B

∂t
]dτ

The integral over the volume dτ can be removed to give local

energy conservation:

J.E = −[∇.N +
∂UE

∂t
+

∂UM

∂t
]

• Power dissipated in currents is J.E

• Change in energy flux is div of Poynting vector ∇.(E ×H)

• Time variation of electric field energy density is ∂(D.E)/∂t

• Time variation of magnetic field energy density is ∂(B.H)/∂t
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