
Electromagnetism - Lecture 2

Electric Fields

• Review of Vector Calculus

• Differential form of Gauss’s Law

• Poisson’s and Laplace’s Equations

• Solutions of Poisson’s Equation

• Methods of Calculating Electric Fields

• Examples of Electric Fields
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Vector Calculus

Gradient operator (“grad”) of a scalar field φ is a vector

∇φ =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k

Divergence operator (“div”) of a vector field K is a scalar

∇.K =
∂Kx

∂x
+

∂Ky

∂y
+

∂Kz

∂z

Curl operator (“curl”) of a vector field K is an axial-vector

∇×K =

[

∂Kz

∂y
−

∂Ky

∂z

]

i +

[

∂Kx

∂z
−

∂Kz

∂x

]

j +

[

∂Ky

∂x
−

∂Kx

∂y

]

k

Operators in cylindrical and spherical polar coordinates can be

found in Riley, Hobson & Bence P.276 and P.279
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Useful Identities

• Divergence theorem:
∮

A
K.dS =

∫

V
∇.Kdτ

• Stokes’s theorem:
∮

L
K.dl =

∫

A
∇×K.dS

• “curl grad = 0”: ∇× (∇φ) = 0

• “div curl = 0”: ∇.(∇×K) = 0

• “del squared = div grad” of a scalar: ∇
2φ = ∇.(∇φ)

∇
2φ =

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2

“del squared” of a vector is a vector with components from

the second derivatives of Kx, Ky, Kz respectively

• “curl curl = grad div - del squared”

∇× (∇×K) = ∇(∇.K) −∇
2K
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Differential Form of Gauss’s Law

Applying the divergence theorem to the integral of the electric flux

over a closed surface:
∮

A

E.dS =

∫

V

∇.Edτ =

∫

V

ρ

ε0
dτ

Removing the integral over the volume gives the differential form of

Gauss’s Law:

∇.E =
ρ

ε0
At any point in space the divergence of the electric field is

proportional to the local charge density

For the magnetic field the divergence is always zero!
∮

A

B.dS = 0 ∇.B = 0
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Poisson’s Equation

Replacing E with −∇V in the differential form of Gauss’s Law:

leads to Poisson’s equation:

∇
2V = ∇.∇V = −∇.E = −

ρ

ε0

At any point in space the second derivative of the electrostatic

potential is proportional to the local charge density

In the absence of free charges this reduces to Laplace’s equation:

∇
2V = 0

the solution of which is a uniform field E = E0, V = V0 + E0x
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Solutions of Poisson’s Equation

• If you know V or E everywhere you can obtain ρ everywhere

by differentiation

• If you know ρ everywhere you can obtain V by numerical

integration over the contributions from charge elements:

V =
∑

i

dVi ρ =
∑

i

dρi dV =
ρdτ

4πε0r

Principle of linear superposition

• If a potential obeys Poisson’s equation and the boundary

conditions it is the only solution (uniqueness theorem)

“sometimes easy to find solution by mere inspection or

simple trials of plausible solutions” (Duffin P.96)
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Calculating Electric Fields

1. By summing the contributions to V as scalars and then taking

the gradient:

V =

∫

dV =

∫

V

ρdτ

4πε0r
E = −∇V

The easiest method for a non-uniform charge distribution

2. By summing the contributions to E (or F) as components of

vectors

Ez =

∫

dEz =

∫

V

ρdτ cos θ

4πε0r2
ẑ and Ex, Ey

3. By using Gauss’s Law:

ΦE =

∮

A

E.dS =

∫

V

ρdτ

ε0

For symmetric problems and uniform charge distributions
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Electric Field of Nucleus

Treat nucleus as insulating sphere with radius R and uniform

charge density ρ

Apply Gauss’s Law to spherical shells of radius r < R and r > R

Outside the nucleus there is a point charge field:

Er4πr2 =
ρ 4

3
πR3

ε0
Er(r > R) =

Q

4πε0r2

V (r > R) = −

∫ r

∞

Erdr =
Q

4πε0r

Inside the nucleus the field increases linearly with r:

Er4πr2 =
ρ 4

3
πr3

ε0
Er(r < R) =

ρr

3ε0

V (r < R) = V (R) −

∫ r

R

Erdr =
Q

4πε0R
+

ρ(R2
− r2)

6ε0
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Electric Field of Infinite Line Charge

Apply Gauss’s Law to a cylindrical volume (axis along line)

By symmetry there is no component Ez parallel to the line charge

No contribution to the surface integral from ends of cylinder

- only true for an infinite line charge!

An infinite uniform line charge λ has a 1/r field:

E⊥2πrL =
λL

ε0
E⊥ =

λ

2πε0r

V = −

∫

E⊥dr =
λln(r)

2πε0
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Electric Field of Finite Line Charge

For a line charge of finite length L calculate the sum of the E

contributions:

dE =
λdl

4πε0r2
r̂

At the centre of the line only E⊥ is non-zero

The projection of this component introduces a cos θ

Trick is to change the integral from dl to dθ:

dE⊥ =
λ

4πε0a
cos θdθ

E⊥ =
λL

4πε0a(a2 + L2/4)1/2

L → 0 gives 1/r2 point charge field

L → ∞ gives 1/r field
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Notes:

Diagrams:
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Notes:

Diagrams:
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Electric Field of Infinite Surface Charge

Apply Gauss’s Law to a cylindrical volume with axis ⊥ to surface

By symmetry there is no component E|| parallel to the surface

No contribution to the surface integral from sides of cylinder

- only true for an infinite surface!

An insulating surface has equal and opposite fields inside and

outside

2E⊥πR2 =
σπR2

ε0
E⊥ =

σ

2ε0
An infinite uniform surface charge σ gives a uniform field

A conducting surface has no field inside, so the field outside is

twice as large:

E⊥πR2 =
σπR2

ε0
E⊥ =

σ

ε0
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Electric Field of Finite Disk of Charge

For a disk of charge of radius R calculate the sum of the V

contributions along its axis from two-dimensional charge elements:

d2V =
σadadφ

4πε0r

First integrate over dφ round ring of radius a:

dV =
σada

2ε0(z2 + a2)1/2

Then integrate over da from 0 to R:

V =
σ

2ε0

(

(z2 + R2)1/2
− z

)

Taking the gradient of V only Ez = −∂V/∂z is non-zero:

Ez =
σ

2ε0

(

1 −
z

(z2 + R2)1/2

)
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Notes:

Diagrams:
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Notes:

Diagrams:
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