Electromagnetism - Lecture 5

Capacitors & Electrostatic Energy

- Examples of Capacitors
- Calculations of Capacitance
- Electrostatic Energy
- Introduction of Dielectrics
- General Result for Electrostatic Energy Density
Capacitors

A capacitor is formed from two conductors with equal and opposite surface charges $+\sigma$ and $-\sigma$ separated by an insulating gap.

Capacitance C is the ratio of the total charge Q on each conductor to the potential difference V across the gap:

$$C = \frac{Q}{V} = \frac{\sigma A}{V}$$

The unit of capacitance is the Farad $F = C/V$

Practical capacitors are between pF and μF
Parallel Plate Capacitor

The electric field for infinite plates is obtained from Gauss’s Law or by using the superposition of two uniform fields. There is a uniform field in the gap of width d:

$$E_{gap} = \frac{\sigma}{\varepsilon_0} \hat{d}$$

The field outside the plates is zero!

The potential difference and capacitance are:

$$V = Ed = \frac{Qd}{A\varepsilon_0} \quad C = \frac{Q}{V} = \frac{A\varepsilon_0}{d}$$

Note that C is a purely geometric property of the plates!
Cylindrical Capacitor

Two concentric conducting cylinders of length l and radii a and b, carry line charges $+\lambda$ and $-\lambda$

Use Gauss’s Law assuming $l \gg a, b$:

$$E_{\text{gap}} = \frac{\lambda}{2\pi\epsilon_0 r} \hat{r}$$

There is no field for $r < a$ or $r > b$!

The potential difference and capacitance are:

$$V = \int_{a}^{b} E \cdot dr = \frac{Q}{2\pi\epsilon_0 l} \ln(b/a)$$

$$C = \frac{Q}{V} = \frac{2\pi\epsilon_0 l}{\ln(b/a)}$$

Again C is a purely geometric property
Energy Stored in a Capacitor

Work is done to assemble charges $\pm Q$ on capacitor plates

$$W = \int VdQ = \int \frac{Q}{C}dQ$$

This work is stored as **electrostatic energy**

$$U_E = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} QV = \frac{1}{2} CV^2$$

For a parallel plate capacitor:

$$U_E = \frac{\varepsilon_0 AV^2}{2d}$$

This can be written in terms of the electric field between the plates:

$$U_E = \frac{\varepsilon_0 (Ad)E^2}{2}$$
Electrostatic Energy Density

Electrostatic Energy is stored in a capacitor through the creation of the Electric field in the gap

The energy density of an electric field is proportional to the square of its amplitude:

$$\frac{dU_E}{d\tau} = \frac{1}{2} \varepsilon_0 |E|^2$$

A useful exercise is to prove this gives the correct electrostatic energy for a cylindrical capacitor
Electrostatic Energy of Nucleus

A Uranium nucleus has $Z = 92$ protons and $N = 146$ neutrons uniformly distributed over a radius $R \approx 10^{-15}$ m

Electric field of nucleus:

\[
E(r < R) = \frac{Zer}{4\pi\epsilon_0 R^3} \hat{r} \quad E(r > R) = \frac{Ze}{4\pi\epsilon_0 r^2} \hat{r}
\]

Total electrostatic energy by integration over energy density:

\[
dU_E = \frac{1}{2} \epsilon_0 |E|^2 d\tau
\]

\[
U_E = \int_0^R \left(\frac{Zer}{4\pi\epsilon_0 R^3} \right)^2 2\pi\epsilon_0 r^2 dr + \int_R^{\infty} \left(\frac{Ze}{4\pi\epsilon_0 r^2} \right)^2 2\pi\epsilon_0 r^2 dr
\]

\[
U_E = \frac{(Ze)^2}{40\pi\epsilon_0 R} + \frac{(Ze)^2}{8\pi\epsilon_0 R} = 1.17 \times 10^{-10} J = 730\text{MeV}
\]
Energy of Nuclear Fission

A symmetric $^{238}_{92}$U fission creates two $^{119}_{46}$Pd daughter nuclei

Note that fission actually prefers to be asymmetric!

Nuclear radii obey $R \propto A^{1/3}$ where $A = Z + N$

Electrostatic energy of daughter nuclei compared to 238U:

$$U'_E = 2 \left(\frac{U_E}{4(0.5)^{1/3}} \right) = 0.63U_E = 460\text{MeV}$$

Predicted release of *electrostatic* energy in fission is 270 MeV

Observed release is about 200 MeV
Dielectrics in Capacitors

Capacitance depends on the insulating material in the gap

\[C = \varepsilon_r C_0 \] where \(C_0 \) is the result for a vacuum

\(\varepsilon_r \geq 1 \) is the dielectric constant of the material

Energy stored in capacitor is increased by dielectric material:

\[U = \frac{1}{2} CV^2 = \varepsilon_r U_0 \]

Electrostatic energy density is proportional to \(\varepsilon_r \)

\[\frac{dU_E}{d\tau} = \frac{1}{2} \varepsilon_r \varepsilon_0 |\mathbf{E}|^2 \]
Simple Model for Dielectrics

If an electric dipole is placed between the capacitor plates it aligns itself with the electric field in the gap \(\mathbf{p} \parallel \mathbf{E} \)

Potential energy of dipole:

\[U = -\mathbf{p} \cdot \mathbf{E} \]

The energy stored between the plates is *increased* by this amount

In dielectric materials the atoms or molecules become **polarized** with intrinsic electric dipole moments pointing in the direction of the external field.

This will be explained in more detail in a later lecture
Proof of Electrostatic Energy Density

A set of \(n - 1 \) charges at positions \(\mathbf{r}_j \) gives a potential at \(\mathbf{r}_i \):

\[
V(\mathbf{r}_i) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^{n-1} \frac{Q_j}{|\mathbf{r}_i - \mathbf{r}_j|}
\]

Work done to bring up a charge \(Q_i \) from infinity to point \(\mathbf{r}_i \):

\[
W_i = Q_i V(\mathbf{r}_i) = \frac{Q_i}{4\pi\varepsilon_0} \sum_{j=1}^{n-1} \frac{Q_j}{|\mathbf{r}_i - \mathbf{r}_j|}
\]

The total energy stored in the system of \(n \) charges is:

\[
U_E = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{n} \sum_{j<i} Q_i Q_j = \frac{1}{8\pi\varepsilon_0} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{Q_i Q_j}{|\mathbf{r}_i - \mathbf{r}_j|}
\]

Generalize to a double integral over the charge density \(\rho \):

\[
U_E = \frac{1}{8\pi\varepsilon_0} \int \int \frac{\rho(\mathbf{r}_i)\rho(\mathbf{r}_j)}{|\mathbf{r}_i - \mathbf{r}_j|} d\tau_i d\tau_j
\]
Perform one integral over $d\tau$ to get the potential V:

$$U_E = \frac{1}{2} \int \rho(r)V(r)d\tau$$

Then use Poisson’s equation to eliminate the other ρ:

$$U_E = -\frac{\epsilon_0}{2} \int V\nabla^2 V d\tau$$

Now the tricky bit - integrate this by parts:

$$\int_0^\infty V \nabla.(\nabla V)d\tau = [V(\nabla V)]_0^\infty - \int_0^\infty (\nabla V)(\nabla V)d\tau$$

Apply the boundary conditions $V(\infty) = 0$ and $\nabla V(0) = 0$:

$$U_E = \frac{\epsilon_0}{2} \int (\nabla V)^2 d\tau = \frac{\epsilon_0}{2} \int |E|^2 d\tau$$

This proof comes from Jackson P.40-41