Lecture 14 Mixing and CP Violation

- Mixing of neutral K^0 mesons
- CP violation in K^0 decays
- T violation and CPT conservation
- Observation of charm mixing
- B_d and B_s mixing
- CP violation in B decays

Mixing of Neutral Mesons

A second order weak interaction transforms an initial K^0 , D^0 or B^0 into a final \bar{K}^0, \bar{D}^0 or \bar{B}^0 :

 K^0 and B^0 "box" diagrams contain two W bosons and two u-type quarks

 D^0 box diagram contains two W bosons and two d-type quarks

General Description of Mixing

A state that is initially K^0 or \bar{K}^0 evolves as a function of time:

$$\psi(t) = a(t)|K^0 > +b(t)|\bar{K}^0 > \qquad i\frac{d\psi}{dt} = \mathbf{H}\psi(t)$$

 ${\bf H}$ is an effective Hamiltonian describing time-dependent mixing:

$$\mathbf{H} = \mathbf{M} - \frac{i}{2}\mathbf{\Gamma}$$

where **M** and Γ are 2×2 mass and decay matrices

Diagonal elements of **H** are flavour-conserving, $\Delta S = 0$

Off-diagonal elements of **H** are flavour-changing, $\Delta S = 2$ They describe the mixing transitions $K^0 \leftrightarrow \bar{K}^0$

If \mathbf{H} is diagonal there is no mixing, and the flavour states of neutral mesons are the same as their decay eigenstates

The Decay Eigenstates K_S and K_L

The matrix **H** has eigenvectors corresponding to the weak decay eigenstates K_L and K_S

 $|K_S\rangle = p|K^0\rangle + q|\bar{K}^0\rangle \qquad |K_L\rangle = p|K^0\rangle - q|\bar{K}^0\rangle$

$$\frac{q}{p} = \frac{2\mathbf{M}_{12}^* - \frac{i}{2}\Gamma_{12}^*}{\Delta m_K - \frac{i}{2}\Delta\Gamma_K} \qquad |q|^2 + |p|^2 = 1$$

The flavour eigenstates have equal mass (CPT theorem):

$$M(K^0) = M(\bar{K}^0) = 498 \mathrm{MeV}$$

The weak eigenstates have different masses and lifetimes:

$$\Delta m_K = m_L - m_S = (3.52 \pm 0.01) \times 10^{-12} \text{MeV} = 0.53 \times 10^{10} s^{-1}$$

 $\tau_L = 51ns$ $\tau_S = 0.09ns$ $\Delta\Gamma_K = 1.1 \times 10^{10} s^{-1}$

CP Eigenstates K_1 and K_2

The combined operation of Charge Conjugation and Parity:

 $CP|K^0 > = |\bar{K}^0 > \qquad CP|\bar{K}^0 > = |K^0 >$

CP eigenstates are:

$$K_{1} = \frac{1}{\sqrt{2}} [K^{0} + \bar{K}^{0}] \qquad CP = +1$$
$$K_{2} = \frac{1}{\sqrt{2}} [K^{0} - \bar{K}^{0}] \qquad CP = -1$$

If CP is conserved $K_1 \to 2\pi$ and $K_2 \to 3\pi$

$$CP|\pi^{+}\pi^{-} >= CP|\pi^{0}\pi^{0} >= +1$$
$$CP|\pi^{+}\pi^{-}\pi^{0} >= CP|\pi^{0}\pi^{0}\pi^{0} >= -1$$

 $\tau_S < \tau_L$ explained by more phase space for $K_1 \to 2\pi$ than $K_2 \to 3\pi$

Weak and CP Eigenstates

If |p/q| = 1 can identify $K_S = K_1$, $K_L = K_2$

$$|K_{S}\rangle = \frac{(p+q)}{\sqrt{2}}|K_{1}\rangle + \frac{(p-q)}{\sqrt{2}}|K_{2}\rangle$$
$$|K_{L}\rangle = \frac{(p-q)}{\sqrt{2}}|K_{1}\rangle + \frac{(p+q)}{\sqrt{2}}|K_{2}\rangle$$

Writing $p = 1 + \epsilon$, $q = 1 - \epsilon$, where ϵ is in general complex:

$$K_L = \frac{1}{\sqrt{1 + |\epsilon|^2}} [\epsilon K_1 + K_2] \qquad K_S = \frac{1}{\sqrt{1 + |\epsilon|^2}} [K_1 + \epsilon K_2]$$

If the weak states are not identical to the CP eigenstates there should be some decays $K_S \rightarrow 3\pi$ and $K_L \rightarrow 2\pi$

 $\epsilon \neq 0$ measures CP violation in K^0 decays

Observation of CP violation

In 1964 $K_L \rightarrow 2\pi$ decays were observed:

$$\eta_{+-} = \frac{K_L \to \pi^+ \pi^-}{K_S \to \pi^+ \pi^-} = \epsilon + \epsilon'$$

$$\eta_{00} = \frac{K_L \to \pi^0 \pi^0}{K_S \to \pi^0 \pi^0} = \epsilon - 2\epsilon'$$

 ϵ represents CP violation in the mixing amplitude

 ϵ' represents direct CP violation between $\Delta I = 1/2$ and $\Delta I = 3/2$

After 40 years the magnitudes and phases are now measured:

$$\begin{aligned} |\epsilon| &= (2.232 \pm 0.007) \times 10^{-3} \qquad \phi_{\epsilon} = (43.5 \pm 0.05)^{\circ} \\ \left| \frac{\epsilon'}{\epsilon} \right| &= (1.66 \pm 0.26) \times 10^{-3} \qquad \phi_{\epsilon'} = (42.3 \pm 1.5)^{\circ} \end{aligned}$$

T violation in Semileptonic Decays

 $K^0 \to \pi^- \ell^+ \nu$ and $\bar{K}^0 \to \pi^+ \ell^- \nu$ are *flavour-specific* decays which obey the $\Delta Q = \Delta S$ rule

The semileptonic charge asymmetry in K_L decays measures ϵ :

 $\frac{\Gamma(K_L \to \pi^- \ell^+ \nu) - \Gamma(K_L \to \pi^+ \ell^- \nu)}{\Gamma(K_L \to \pi^- \ell^+ \nu) + \Gamma(K_L \to \pi^+ \ell^- \nu)} = 2\operatorname{Re}(\epsilon) = (3.27 \pm 0.12) \times 10^{-3}$

Can test T violation in mixing using initial K^0 and \bar{K}^0 beams:

$$\Gamma(K^0 \to \bar{K}^0 \to \pi^+ \ell^- \nu) \neq \Gamma(\bar{K}^0 \to K^0 \to \pi^- \ell^+ \nu)$$

Agrees with expectation if T,CP are violated but CPT is conserved

A test of CPT conservation is the comparison of:

$$\Gamma(K^0 \to \pi^- \ell^+ \nu) = \Gamma(\bar{K}^0 \to \pi^+ \ell^- \nu)$$

CPT violation parameter $Re(\delta) = (2.9 \pm 2.7) \times 10^{-4}$

Mixing of B_d mesons

Measured by B factories (BaBar & Belle) using coherent production $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B^0 \bar{B}^0$ Δt is the difference between the two B^0 decay times

Mixing of B_s mesons

From the ratio of the two B mixing results: $\left|\frac{V_{td}}{V_{ts}}\right| = 0.211 \pm 0.007$

CP Violation in *B* Decays

There are three types of CP violation that can be observed:

• CP violation in **mixing**, due to the weak eigenstates being different from the CP eigenstates, $|q/p| \neq 1$.

 $A_{SL}(b \to clv) = -0.0012 \pm 0.0010$

• **Direct** CP violation in decay amplitudes $A(B \to f)$ and $\overline{A}(\overline{B} \to \overline{f})$, due to $|A/\overline{A}| \neq 1$. This does not require mixing, and is seen in both charged and neutral *B* decays.

$$A_{CP}(B^0 \to K^{\pm} \pi^{\mp}) = -0.093 \pm 0.015$$

• CP violation in the **interference** between mixing and decay amplitudes $A(B^0 \to f)$ and $\overline{A}(\overline{B}^0 \to f)$. This requires $\text{Im}\lambda \neq 0$, where $\lambda = q\overline{A}/pA$.

The CKM parameters ρ and η

Unitarity triangle: $V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$ Normalised sides are $|V_{ub}/V_{cb}|$, $|V_{td}/V_{ts}|$ and 1 Angles are α , β (phase of V_{td}) and γ (phase of V_{ub}) CP violation requires non-zero complex phase η

