Lecture 16 - Electroweak Theory

- Electroweak Unification
- W and Z Boson masses and widths
- Z production at LEP
- Forward-backward asymmetries
- W production at colliders
- Precision tests of Electroweak theory

SU(2) Isospin and U(1) Hypercharge

The combined groups $SU(2)_L \times U(1)$ describe electroweak symmetry $SU(2)_L$ describes weak isospin (I₃) couplings to left-handed fermions (or right-handed antifermions)

U(1) describes weak hypercharge (Y) couplings

The weak charged currents are described by SU(2) matrices τ^{\pm} :

$$\tau^{+} = \frac{1}{2}(\tau_{1} + i\tau_{2}) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \tau^{-} = \frac{1}{2}(\tau_{1} - i\tau_{2}) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$J^{+} = \bar{\chi}_{\nu_{e}}\gamma^{\mu}\tau^{+}\chi_{e} \qquad J^{-} = \bar{\chi}_{e}\gamma^{\mu}\tau^{-}\chi_{\nu_{e}}$$

These are the currents associated with W^+ and W^- exchange

Electroweak Neutral Currents

The third component of weak isospin describes a weak neutral current:

$$J^{3} = \bar{\chi}\gamma^{\mu}\frac{1}{2}\tau_{3}\chi = \bar{\chi}_{\nu_{e}}\gamma^{\mu}\chi_{\nu_{e}} - \bar{\chi}_{e}\gamma^{\mu}\chi_{e} \qquad \tau_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

The electromagnetic current couples to charge Q:

$$J^{EM} = \bar{\chi} \gamma^{\mu} Q \chi$$

This can be rewritten in terms of I_3 and Y:

$$Q = I_3 + \frac{Y}{2}$$
 $J^{EM} = J^3 + \frac{1}{2}J^Y$

The EM current is a sum of weak isospin and hypercharge

Electroweak Unification

The combined electroweak interaction has a Lagrangian:

$$\mathcal{L} = g\vec{J}.\vec{W} + g'J^YB$$

 \vec{W} is a triplet of vector bosons $W^{1,2,3}$ coupling to weak isospin currents $J^{1,2,3}$ with strength g

 B^0 is a singlet vector boson coupling to the weak hypercharge current J^Y with strength g^\prime

The physical vector bosons are:

$$W^{\pm} = \sqrt{\frac{1}{2}} (W^1 \mp i W^2)$$

 $Z^0 = W^3 \cos \theta_W - B^0 \sin \theta_W$ $A^0 = W^3 \sin \theta_W + B^0 \cos \theta_W$ where the neutral W^3 and B^0 mix to give Z^0 and photon A^0

The Weinberg Angle

The mixing angle θ_W is measured to be:

 $\sin^2 \theta_W = 0.2221$

The weak isospin, hypercharge and EM couplings are related by:

 $g\sin\theta_W = g'\cos\theta_W = e$

The electroweak Lagrangian can be written out in terms of the physical weak and electromagnetic currents:

$$\frac{g}{\sqrt{2}}(J^-W^+ + J^+W^-) + \frac{g}{\cos\theta_W}(J^3 - \sin^2\theta_W J^{EM})Z^0 + eJ^{EM}A^0$$

The first terms describe W^{\pm} couplings with strength gThe last term describes photon couplings with strength eThe middle term describes the neutral Z^0 coupling. It has pieces from both J^3 and J^{EM} !

Masses of W and Z Bosons

The mass of the W boson can be related to $\sin \theta_W$:

$$\frac{G_F}{\sqrt{2}} = \frac{g^2}{8M_W^2} \qquad M_W = \sqrt{\frac{e^2\sqrt{2}}{8G_F \sin^2 \theta_W}} = \frac{37.4}{\sin \theta_W} \text{GeV}$$

The mass of the Z boson is related to the mass of the W boson:

$$M_Z = \frac{M_W}{\cos \theta_W} = \frac{75}{\sin 2\theta_W} \text{GeV}$$

These are now very accurately measured:

 $M_W = 80.425 \pm 0.038 \text{ GeV}$ $M_Z = 91.1876 \pm 0.0021 \text{ GeV}$

The large masses of the W and Z compared to the zero mass of the photon **break** electroweak symmetry

Leads to introduction of Higgs mechanism - see next lecture

Neutral Current Couplings of Z

The Z boson has left-handed couplings from J^3 and J^{EM} and right-handed couplings from J^{EM} :

$$g_L = I_3 - Q \sin^2 \theta_W \qquad g_R = -Q \sin^2 \theta_W$$

Usually expressed as vector and axial-vector couplings c_V and c_A :

$$c_V = g_L + g_R = I_3 - 2Q\sin^2\theta_W$$
 $c_A = g_L - g_R = I_3$

Lepton	$2c_V$	$2c_A$	Quark	$2c_V$	$2c_A$
$ u_e, u_\mu, u_ au$	1	1	u, c, t	$1 - \frac{8}{3}\sin^2\theta_W$	1
e, μ, au	$-1 + 4\sin^2\theta_W$	-1	d, s, b	$-1 + \frac{4}{3}\sin^2\theta_W$	-1

Electroweak theory predicts the weak neutral current couplings which depend on fermion type!

Z Couplings to fermions

The couplings of the Z^0 to $f\bar{f}$ are:

$$\Gamma(Z^0 \to f\bar{f}) = \frac{g^2}{48\pi\cos^2\theta_W} (c_V^2 + c_A^2)_f M_Z$$

The couplings to charged leptons are:

$$\Gamma(Z^0 \to \ell \bar{\ell}) = \frac{g^2}{192\pi \cos^2 \theta_W} M_Z = 84 \text{ MeV}$$

Sum of all quark couplings gives ratio of hadron jets to leptons:

$$R = \frac{\Gamma(Z^0 \to \text{hadrons})}{\Gamma(Z^0 \to \text{leptons})} = 20.767 \pm 0.025$$

The couplings to neutrinos give the *invisible* width:

$$\Gamma(Z^0 \to \nu \bar{\nu}) = 166 \text{ MeV}$$
 $\Gamma(Z^0 \to invisible) = 499 \pm 1.5 \text{ MeV}$

The total width requires 2.988 ± 0.023 neutrinos with $m_{\nu} < M_Z/2$

Interference between photon and Z

 $e^+e^- \rightarrow f\bar{f}$ is described by sum of Z^0 and photon diagrams:

$$\mathcal{M}_{Z} = \frac{\sqrt{2}G_{F}M_{Z}^{2}}{s - M_{Z}^{2}} [g_{R}^{f}\bar{f}_{R}\gamma^{\mu}f_{R} + g_{L}^{f}\bar{f}_{L}\gamma^{\mu}f_{L}][g_{R}^{e}\bar{e}_{R}\gamma^{\mu}e_{R} + g_{L}^{e}\bar{e}_{L}\gamma^{\mu}e_{L}]$$

$$\mathcal{M}_{\gamma} = rac{e^2}{s} [\bar{f}\gamma^{\mu}f] [\bar{e}\gamma^{\mu}e]$$

The cross-sections depend on fermion helicities:

$$\frac{d\sigma}{d\Omega}(e_L^- e_R^+ \to \mu_L^- \mu_R^+) = \frac{\alpha^2}{4s}(1 + \cos\theta)^2 |1 + rg_L^\mu g_L^e|^2$$
$$\frac{d\sigma}{d\Omega}(e_L^- e_R^+ \to \mu_R^- \mu_L^+) = \frac{\alpha^2}{4s}(1 - \cos\theta)^2 |1 + rg_R^\mu g_L^e|^2$$

where r is ratio of coefficients of Z^0 and photon amplitudes

Forward-Backward Asymmetries

Combining all four possible helicity combinations:

$$\frac{d\sigma}{d\Omega}(e^+e^- \to \mu^+\mu^-) = \frac{\alpha^2}{4s}[A_0(1+\cos^2\theta) + A_1\cos\theta]$$

$$A_0 = 1 + 2Re[r]c_V^2 + |r|^2(c_V^2 + c_A^2)^2 \qquad A_1 = 4Re[r]c_A^2 + 8|r|^2c_V^2c_A^2$$
The $\cos\theta$ term gives a forward-backward asymmetry
$$A_{FB} = \frac{F-B}{F+B} \qquad F = \int_0^1 \frac{d\sigma}{d\Omega}d\Omega \qquad B = \int_{-1}^0 \frac{d\sigma}{d\Omega}d\Omega$$

$$A_{FB} = \frac{3A_1}{8A_0} \qquad A_{FB}(s \ll M_Z) = \frac{3}{2}Re(r)c_A^2 = -\frac{3c_A^2G_Fs}{\sqrt{2}e^2}$$

 A_{FB} is small at low s where $|r| \ll 1$ and photon dominates $A_{FB} \approx 0$ at $\sqrt{s} = M_Z$ where Z^0 dominates

W Boson Production

The W and Z bosons were discovered in $p\bar{p}$ collisions at CERN $W \to \ell \nu$ decays to high p_T lepton and high missing E_T of ν

W^+W^- Pair Production at LEP-2

From 1996-2001 LEP-2 produced W pairs at $\sqrt{s} \approx 200$ GeV.

Cross-section is a sum of: ν_e exchange (t-channel) + virtual photon (s-channel) + Z^0 with trilinear gauge coupling $Z^0W^+W^-$

	Measurement	Fit	O ^{meas} –O 0 1	^{fit} ∣/σ ^{meas} 2 3	
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02767			Summary of
m _z [GeV]	91.1875 ± 0.0021	91.1874			electroweak
Γ _z [GeV]	2.4952 ± 0.0023	2.4965	-		
$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	41.481			measurements
R	20.767 ± 0.025	20.739			http://lepewwg.
A ^{0,I} _{fb}	0.01714 ± 0.00095	0.01642	-		
A _I (Ρ _τ)	0.1465 ± 0.0032	0.1480	-		web.cern.cn/
R _b	0.21629 ± 0.00066	0.21562			LEPEWWG/
R _c	0.1721 ± 0.0030	0.1723			Cood o moore out with
A ^{0,b} _{fb}	0.0992 ± 0.0016	0.1037			Good agreement with
A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742			electroweak theory
A _b	0.923 ± 0.020	0.935			(apart from A^b_{FP} ?)
A _c	0.670 ± 0.027	0.668			
A _l (SLD)	0.1513 ± 0.0021	0.1480			
$\sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314			
m _w [GeV]	80.425 ± 0.034	80.389			
Γ _w [GeV]	2.133 ± 0.069	2.093	_		
m _t [GeV]	178.0 ± 4.3	178.5			
			0 1	2 3	