
Lecture 4 - Dirac Spinors

• Schrödinger & Klein-Gordon Equations

• Dirac Equation

• Gamma & Pauli spin matrices

• Solutions of Dirac Equation

• Fermion & Antifermion states

• Left and Right-handedness
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Non-Relativistic Schrödinger Equation

Classical non-relativistic energy-momentum relation for a particle

of mass m in potential U :

E =
p2

2m
+ U

Quantum mechanics substitutes the differential operators:

E → ih̄
δ

δt
p→ −ih̄∇

Gives non-relativistic Schrödinger Equation (with h̄ = 1):

i
δψ

δt
=

(

−
1

2m
∇2 + U

)

ψ
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Solutions of Schrödinger Equation

Free particle solutions for U = 0 are plane waves:

ψ(~x, t) ∝ e−iEtψ(~x) ψ(~x) = ei~p.~x

Probability density:

ρ = ψ∗ψ = |ψ|2

Probability current:

~j = −
i

2m
(ψ∗∇ψ − ψ∇ψ∗)

Conservation of probability gives the continuity equation:

δρ

δt
+ ∇ ·~j = 0
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Klein-Gordon Equation

Relativistic energy-momentum relation for a particle of mass m:

pµp
µ = E2 − |~p|2 = m2

Again substituting the differential operators:

pµ → ih̄δµ

Gives the relativistic Klein-Gordon Equation (with h̄ = 1):
(

−
δ2

δt2
+ ∇2

)

ψ = m2ψ
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Solutions of Klein-Gordon Equation

Free particle solutions for U = 0:

ψ(xµ) ∝ e−ipµxµ

= e−i(Et−~p·~x)

There are positive and negative energy solutions:

E = ±
√

p2 +m2

The -ve solutions have -ve probability density ρ.

Not sure how to interpret these!

The Klein-Gordon equation is used to describe spin 0 bosons

in relativistic quantum field theory.

5



Dirac Equation

In 1928 Dirac tried to understand negative energy solutions by

taking the “square-root” of the Klein-Gordon equation.

(

iγ0 δ

δt
+ i~γ · ~∇−m

)

ψ = 0

or in covariant form:

(iγµδµ −m)ψ = 0

The γ “coefficients” are required when taking the “square-root” of

the Klein-Gordon equation

Most general solution for ψ has four components

The γ are a set of four 4 × 4 matrices γ0, γ1, γ2, γ3

Dirac equation is actually four first order differential equations
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Properties of Gamma Matrices

Multiplying the Dirac equation by its complex conjugate should

give back the Klein-Gordon equation:
(

−iγ0 δ

δt
− i~γ · ~∇−m

) (

iγ0 δ

δt
+ i~γ · ~∇−m

)

ψ = 0

The gamma matrices are unitary:

(γ0)2 = 1 (γ1)2 = (γ2)2 = (γ3)2 = −1

The gamma matrices anticommute:

γiγj + γjγi = 0 i 6= j

These conditions can be written as:

γµγν = gµν
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Representation of gamma matrices

The simplest representation of the 4 × 4 gamma matrices that

satisfies the unitarity and anticommutation relations:

γ0 =





I 0

0 −I



 γi =





0 σi

−σi 0



 i = 1, 2, 3

The I and 0 are the 2 × 2 identity and null matrices

I =





1 0

0 1



 0 =





0 0

0 0





The σi are the 2 × 2 Pauli spin matrices:

σ1 =





0 1

1 0



 σ2 =





0 −i

i 0



 σ3 =





1 0

0 −1




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Solutions of Dirac equation

The wavefunctions can be written as:

ψ ∝ u(p)e−ipµ·x
µ

This is a plane wave multiplied by a four component spinor u(p)

Note that the spinor depends on four momentum pµ

For a particle at rest ~p = 0 the Dirac equation becomes:
(

iγ0 δ

δt
−m

)

ψ =
(

iγ0(−iE) −m
)

ψ = 0

Eu =





mI 0

0 −mI



u

There are four eigenstates, two with E = m and two with E = −m.

What is the interpretation of the −m states?
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Spinors for particle at rest

The spinors associated with the four eigenstates are:

u1 =















1

0

0

0















u2 =















0

1

0

0















u3 =















0

0

1

0















u4 =















0

0

0

1















and the wavefunctions are:

ψ1 = e−imtu1 ψ2 = e−imtu2 ψ3 = e+imtu3 ψ4 = e+imtu4

Note the reversal of the sign of the time exponent in ψ3, ψ4!
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Interpretation of eigenstates

ψ1 describes an S=1/2 fermion of mass m with spin ↑

ψ2 describes an S=1/2 fermion of mass m with spin ↓

ψ3 describes an S=1/2 antifermion of mass m with spin ↑

ψ4 describes an S=1/2 antifermion of mass m with spin ↓

Fermions have exponents −imt, antifermions have +imt

Negative energy solutions E = −m are either:

Fermions travelling backwards in time

Antifermions travelling forwards in time

Reminder that vacuum energy can create fermion/antifermion pairs
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Spinors of moving particles

Fermions:

u1 =















1

0

pz/(E +m)

(px + ipy)/(E +m)















u2 =















0

1

(px − ipy)/(E +m)

−pz/(E +m)















Antifermions:

v2 =















pz/(E +m)

(px + ipy)/(E +m)

1

0















v1 =















(px − ipy)/(E +m)

−pz/(E +m)

0

1















Note we have changed from u3(p) → v2(−p) and u4(p) → v1(−p)
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Wavefunctions of electron and positron

Electron with energy E and momentum ~p

ψ = u1(p)e−ip·x ↑

ψ = u2(p)e−ip·x ↓

Positron with energy E and momentum ~p

ψ = v1(p)eip·x = u4(−p)e−i(−p)·x ↑

ψ = v2(p)eip·x = u3(−p)e−i(−p)·x ↓

Note the reversal of the sign of p in both parts of the antifermion

wavefunction and the change from u to v spinors
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Helicity States

Choose axis of projection of spin along direction of motion z

Spinors u1,2 describe electron states with spin parallel or

antiparallel to momentum pz.

Spinors v1,2 describe positron states with spin parallel or

antiparallel to momentum pz.

= −1λ

= +1λ

pσ
u  

v  

v  

1

1u  

2

2

+ve

−ve

−ve

+ve

antiparticle

particle

}
}
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Left and Right-handedness

The operator (1 − γ5) projects out left-handed helicity H = −1

H =
~σ.~p

|~σ||~p|

The operator (1 + γ5) projects out right-handed helicity H = +1

γ5 ≡ iγ0γ1γ2γ3 =





0 I

I 0



 (γ5)2 = 1
{

γ5, γµ
}

= 0

Massless fermions with p = E are purely left-handed

Massless antifermions with p = E are purely right-handed
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