Lecture 5
Quantum Electrodynamics (QED)

The quantum field theory of electromagnetic interactions

QED rules for Feynman diagrams
Relativistic electron-muon scattering ey~ — e~ u~

Muon pair production ete™ — putu~

Moeller (e~e~ — e~ e~ ) and Bhabha (eTe™ — e*e™) scattering

Higher order corrections
Gyromagnetic ratio g — 2

Renormalization & Gauge Invariance




QED rules for Feynman diagrams

Incoming (outgoing) fermions have spinors u (u).
Incoming (outgoing) antifermions have spinors v (v).
Incoming (outgoing) photons have polarisation vectors e* (e**).
Each vertex has a factor iey* where e = v4rma
A virtual photon propagator is —ig,., /¢*.

A virtual fermion of mass m has a propagator
i(yup" +m)/(p* —m?).

A minus sign is needed to antisymmetrise diagrams that differ
only by the interchange of two identical fermions.




Electron-Muon scattering

Start from scattering of spinless particles (Lecture 3)
Add Dirac spinors, electromagnetic currents and couplings

Matrix element has one first order photon exchange diagram:

1
M = 62(?137”%1)?(@47”%2) ¢ =ps—m)° =t

For relativistic fermions scattering does not change helicity
(proof on P.126 of Halzen & Martin)

Four spin configurations at high energies
M(TLTL) - MUATLED) - MATTT) ML

Matrix element squared is product of electromagnetic currents

64

M|? = q_4L6LM Li = [wy"wg) [ugyH u;)*




Electron-Muon cross-section

Take average over initial spins and sum over final spins:

1 2 4 (8% +u?)
M = (2s1 +1)(2s2 + 1) Z M = 2¢ t2

sSpins

where s, t, u are Mandelstam variables (see Lecture 3)

14 (14 cosB)”] [1+ 4cost6/2]
2:2 4[ :2 4
M c (1 — cosh)? ‘ sin* 0/2

Differential cross-section in CM frame:

do o
dQ  8ssin*6/2

(1 +4cos*6/2)

where 1/s comes from flux and phase space factors

In Lab frame the no recoil limit E. < my, gives the non-relativistic
Rutherford scattering formula




Muon pair production

ete” — pTu~ occurs via annihilation of electron-positron into

virtual photon, and then creation of a muon pair.

Related to e u= — e~ ™~ by crossing symmetry s < t

(t% + u?)

\./\/l|2(€+e_ _ ,u+,u_) — 264 >
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e — T

Cross-section for e

At high energies annihilating fermion /antifermion have opposite
helicities. Again there are four possible spin combinations:

M(TUTL) = M(1111) = €*(1 + cos )
M(TLLT) = M(111]) = €*(1 — cos b)

Spin-averaged matrix element squared: |[M|?2 = e? (1 + cos? 9)
Differential cross-section in centre-of-mass:

do o2

dS) 4s (

where 1/s comes from flux and phase space factors.

1 + cos? 0)

Total cross-section is simply:

Ao
0o =
3s
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Fig. 6.6 The total cross section for e e”— p~p™ medsured
at PETRA versus the center-of-mass energy.




TABLE 6.1
Leading Order Contributions to Representative QED Processes

~ Feynman Diagrams |OM|%/2e*
Forward Backward Forward Interference Backward

peak peak
Meller scattering
L s 52+u2_+232+52+r2
A 2 tu u’

(u < t symmetric)

(Crossing 5 < u)

Forward “Time-like™ Forward Interference Time-like

Bhabha scattering >\’\<
e et—eet

e p e pn

(Crossing | s & 1) ' y
Rt 3
e e’ —>pp’ 2

Halzen & Martin P.129




Higher order QED diagrams

“Dressed” fermions
Vertex corrections
“Bubble” propagators

A real (or virtual)
A virtual photon

fermion emits A | . |
connects fermions rea (or virtua )

and reabsorbs

aCross a previous photon creates
vertex. fermion /antifermion

a virtual photon.

pairs.
Each pair of vertices + virtual particle adds a factor o = 1/137

Sum of higher order QED corrections converges!




Anomalous Gyromagnetic Ratio g — 2

An example where higher order corrections are important
Measures the relationship between spin and magnetic moment

The magnetic moment of an electron is:

- eh

f=gupS hB = 5
MeC

where up = 5.8 x 1071t MeV/T is the Bohr magneton.

From the Dirac equation the gyromagnetic ratio for pointlike
fermions is exactly g = 2

Higher order QED diagrams give an “anomalous” value for g

slightly different from 2.




Accuracy of QED

Anomalous moment of electron:

9
Eaperiment - [gT] = 0.0011596521869(41)

9
Theory : [gT] — 0.00115965213(3)

Anomalous moment of muon:

— 2
Ezxperiment : [gT] = 0.0011659160(6)
L

— 2
Theory : [gT] = 0.0011659203(20)
7

The most precise test of any theory! Error is not from QED!
Comes from bubble diagrams with quark-antiquark pairs (QCD)




Renormalisation

Higher order contributions with large virtual four-momentum

transfers give divergent integrals.

Absorbed by redefinitions of spinors, propagators & couplings:

er = e [1 ~ Zin (A—2> + O(a2)] .

3 m?
where A is the cutoff value of the four-momentum.
This procedure is known as renormalisation

For QED it is usually sufficient to ignore terms O(a?)

The electromagnetic current becomes:

JP = er(uyHu)




The running of «

A consequence of renormalisation is that the value of the coupling

constant o becomes a function of ¢*:

a(q2) _ a(ILLQ)

| ey, ()

where 1 is a reference four-momentum transfer which is used to

remove the dependence on the cutoff parameter A.
At low energies a=1/137
At Mz =90 GeV a=1/128

Can be though of as a correction to the “bare” electric charge to
account for “screening” by higher order diagrams with virtual

photons and fermion/antifermion pairs.




Gauge Invariance of QED

Electromagnetic interactions are invariant under:

e A phase transformation of the fermion wavefunctions:
b — €0q) & — e~
e A gauge transformation of the vector potential:
A, —A,+0,0

The gauge tnvariance of QED is related to the conservation of

charge and the masslessness of the photon.

In particle physics this is known as a U(1) group symmetry




