
Lecture 5

Quantum Electrodynamics (QED)

The quantum field theory of electromagnetic interactions

• QED rules for Feynman diagrams

• Relativistic electron-muon scattering e−µ− → e−µ−

• Muon pair production e+e− → µ+µ−

• Moeller (e−e− → e−e−) and Bhabha (e+e− → e+e−) scattering

• Higher order corrections

• Gyromagnetic ratio g − 2

• Renormalization & Gauge Invariance
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QED rules for Feynman diagrams

• Incoming (outgoing) fermions have spinors u (ū).

• Incoming (outgoing) antifermions have spinors v̄ (v).

• Incoming (outgoing) photons have polarisation vectors ǫµ (ǫµ∗).

• Each vertex has a factor ieγµ where e =
√

4πα

• A virtual photon propagator is −igµν/q
2.

• A virtual fermion of mass m has a propagator

i(γµp
µ +m)/(p2 −m2).

• A minus sign is needed to antisymmetrise diagrams that differ

only by the interchange of two identical fermions.
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Electron-Muon scattering

Start from scattering of spinless particles (Lecture 3)

Add Dirac spinors, electromagnetic currents and couplings

Matrix element has one first order photon exchange diagram:

M = e2(ū3γ
µu1)

1

q2
(ū4γ

µu2) q2 = (p3 − p1)
2 = t

For relativistic fermions scattering does not change helicity

(proof on P.126 of Halzen & Martin)

Four spin configurations at high energies

M(↑↓↑↓) M(↓↑↓↑) M(↑↑↑↑) M(↓↓↓↓)

Matrix element squared is product of electromagnetic currents

|M|2 =
e4

q4
LeLµ Li = [ūiγ

µui][ūiγ
µui]

∗
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Electron-Muon cross-section

Take average over initial spins and sum over final spins:

|M|2 =
1

(2s1 + 1)(2s2 + 1)

∑

spins

|M|2 = 2e4
(s2 + u2)

t2

where s, t, u are Mandelstam variables (see Lecture 3)

|M|2 = 2e4
[1 + (1 + cos θ)2]

(1 − cos θ)2
= 2e4

[1 + 4 cos4 θ/2]

sin4 θ/2

Differential cross-section in CM frame:

dσ

dΩ
=

α2

8s sin4 θ/2

(

1 + 4 cos4 θ/2
)

where 1/s comes from flux and phase space factors

In Lab frame the no recoil limit Ee ≪ mµ gives the non-relativistic

Rutherford scattering formula
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Muon pair production

e+e− → µ+µ− occurs via annihilation of electron-positron into

virtual photon, and then creation of a muon pair.

�

Related to e−µ− → e−µ− by crossing symmetry s↔ t

|M|2(e+e− → µ+µ−) = 2e4
(t2 + u2)

s2
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Cross-section for e
+
e
− → µ

+
µ
−

At high energies annihilating fermion/antifermion have opposite

helicities. Again there are four possible spin combinations:

M(↑↓↑↓) = M(↓↑↓↑) = e2(1 + cos θ)

M(↑↓↓↑) = M(↓↑↑↓) = e2(1 − cos θ)

Spin-averaged matrix element squared: |M|2 = e4
(

1 + cos2 θ
)

Differential cross-section in centre-of-mass:

dσ

dΩ
=
α2

4s

(

1 + cos2 θ
)

where 1/s comes from flux and phase space factors.

Total cross-section is simply:

σ =
4πα2

3s
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Halzen & Martin P.129
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Higher order QED diagrams

“Dressed” fermions

�

A real (or virtual)

fermion emits

and reabsorbs

a virtual photon.

Vertex corrections

�
A virtual photon

connects fermions

across a previous

vertex.

“Bubble” propagators

�
A real (or virtual)

photon creates

fermion/antifermion

pairs.

Each pair of vertices + virtual particle adds a factor α = 1/137

Sum of higher order QED corrections converges!
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Anomalous Gyromagnetic Ratio g − 2

An example where higher order corrections are important

Measures the relationship between spin and magnetic moment

The magnetic moment of an electron is:

~µ = gµB
~S µB =

eh̄

2mec

where µB = 5.8 × 10−11MeV/T is the Bohr magneton.

From the Dirac equation the gyromagnetic ratio for pointlike

fermions is exactly g = 2

Higher order QED diagrams give an “anomalous” value for g

slightly different from 2.
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Accuracy of QED

Anomalous moment of electron:

Experiment :

[

g − 2

2

]

e

= 0.0011596521869(41)

Theory :

[

g − 2

2

]

e

= 0.00115965213(3)

Anomalous moment of muon:

Experiment :

[

g − 2

2

]

µ

= 0.0011659160(6)

Theory :

[

g − 2

2

]

µ

= 0.0011659203(20)

The most precise test of any theory! Error is not from QED!

Comes from bubble diagrams with quark-antiquark pairs (QCD)
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Renormalisation

Higher order contributions with large virtual four-momentum

transfers give divergent integrals.

Absorbed by redefinitions of spinors, propagators & couplings:

eR = e

[

1 − α

3π
ln

(

Λ2

m2

)

+ O(α2)

]1/2

where Λ is the cutoff value of the four-momentum.

This procedure is known as renormalisation

For QED it is usually sufficient to ignore terms O(α2)

The electromagnetic current becomes:

Jµ = eR(ūγµu)

12



The running of α

A consequence of renormalisation is that the value of the coupling

constant α becomes a function of q2:

α(q2) =
α(µ2)

1 − α(µ2)
3π ln

(

q2

µ2

)

where µ is a reference four-momentum transfer which is used to

remove the dependence on the cutoff parameter Λ.

At low energies α = 1/137

At MZ = 90 GeV α = 1/128

Can be though of as a correction to the “bare” electric charge to

account for “screening” by higher order diagrams with virtual

photons and fermion/antifermion pairs.
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Gauge Invariance of QED

Electromagnetic interactions are invariant under:

• A phase transformation of the fermion wavefunctions:

ψ → eieθψ ψ̄ → e−ieθψ̄

• A gauge transformation of the vector potential:

Aµ → Aµ + ∂µθ

The gauge invariance of QED is related to the conservation of

charge and the masslessness of the photon.

In particle physics this is known as a U(1) group symmetry
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