Lecture 8 Quantum Chromo Dynamics

QCD is quantum field theory of strong interactions describes couplings of quarks and gluons through **colour**

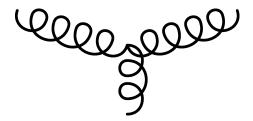
- Feynman Rules for QCD
- SU(3) Group Symmetry
- Colour States of Quarks & Gluons
- Strong Coupling Constant α_s
- Azymptotic Freedom & Confinement
- QCD Potential

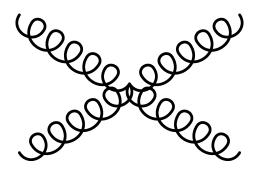
Rules for QCD Feynman diagrams

- A quark has one of three **colour** states (red, green or blue). An antiquark has one of three anticolours.
- A gluon propagator has a colour and an anticolour.
 - There are **eight** possible gluon states
 - Gluons have strong interactions with each other
- Colours are conserved at quark-gluon vertices
 - A quark-gluon vertex has a factor $-ig_s\lambda^a\gamma^\mu$. λ^a are **generator matrices** of SU(3) colour symmetry.
 - The quark and gluon colours are combined with the λ^a to give an overall **colour factor**, c_f , in the amplitude.
- The coupling constant $g_s = \sqrt{\alpha_s}$ is a function of q^2 :
 - At small q^2 it is $\mathcal{O}(1)$, and QCD is non-perturbative
 - At large q^2 it is smaller, and QCD becomes perturbative

Gluon Self Interactions

Gluons interact with each other through their colour and anticolour states. There can be three or four gluon vertices:





The three gluon vertex has a complicated factor:

$$-g_s f^{abc} \left[g_{\mu\nu} (q_1 - q_2)_{\lambda} + g_{\nu\lambda} (q_2 - q_3)_{\mu} + g_{\lambda\mu} (q_3 - q_1)_{\nu} \right]$$

 f^{abc} are color structure constants related to the λ^a matrices:

$$\left[\lambda^a, \lambda^b\right] = 2i \sum_c f^{abc} \lambda^c$$

SU(3) Colour Symmetry

An SU(3) group symmetry is related to colour conservation

- Three colour quantum numbers are separately conserved
- Strong interaction coupling g_s is same for all colour states
- Invariance under rotation in three-dimensional colour space $U = e^{-i\alpha_a \cdot \lambda^a}$ is a "non-Abelian" gauge symmetry

There are two types of "colourless" states:

Mesons have symmetric colour-anticolour wavefunctions:

$$\chi_c = \frac{1}{\sqrt{3}}(r\bar{r} + b\bar{b} + g\bar{g})$$

Baryons have antisymmetric three-colour wavefunctions:

$$\chi_c = \frac{1}{\sqrt{6}}(rgb - rbg + brg - bgr + gbr - grb)$$

The λ matrices of SU(3)

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\lambda^4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \lambda^5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \qquad \lambda^6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\lambda^7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad \lambda^8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Colour states of Quarks and Gluons

Three quark states:
$$r = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 $b = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $g = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Gluon states are **colour octet** of SU(3) (from λ^a):

$$G_{1} = \frac{1}{\sqrt{2}} (r\bar{b} + \bar{r}b) \qquad G_{2} = \frac{-i}{\sqrt{2}} (r\bar{b} - \bar{r}b)$$

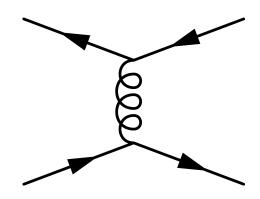
$$G_{4} = \frac{1}{\sqrt{2}} (r\bar{g} + \bar{r}g) \qquad G_{5} = \frac{-i}{\sqrt{2}} (r\bar{g} - \bar{r}g)$$

$$G_{6} = \frac{1}{\sqrt{2}} (b\bar{g} + \bar{b}g) \qquad G_{7} = \frac{-i}{\sqrt{2}} (b\bar{g} - \bar{g}b)$$

$$G_{3} = \frac{1}{\sqrt{2}} (r\bar{r} - b\bar{b}) \qquad G_{8} = \frac{1}{\sqrt{6}} (r\bar{r} + b\bar{b} - 2g\bar{g})$$

No **colour singlet** gluon state: $G_0 = \frac{1}{\sqrt{3}} \left(r\bar{r} + g\bar{g} + b\bar{b} \right)$

Quark-Antiquark Scattering



Matrix element for quark-antiquark scattering:

$$-i\mathcal{M} = \left[\bar{u}_3 c_3^{\dagger}\right] \left[\frac{-ig_s}{2} \lambda^a \gamma^{\mu}\right] \left[u_1 c_1\right] \left[\frac{-ig_{\mu\nu} \delta^{ab}}{q^2}\right] \left[\bar{v}_2 c_2^{\dagger}\right] \left[\frac{-ig_s}{2} \lambda^b \gamma^{\nu}\right] \left[v_4 c_4\right]$$

$$\mathcal{M} = c_f \frac{\alpha_s}{4q^2} \left[\bar{u}_3 \gamma^{\mu} u_1 \right] \left[\bar{v}_2 \gamma_{\mu} v_4 \right]$$

where the colour factor is:

$$c_f = (c_3^{\dagger} \lambda^a c_1)(c_2^{\dagger} \lambda^a c_4)$$

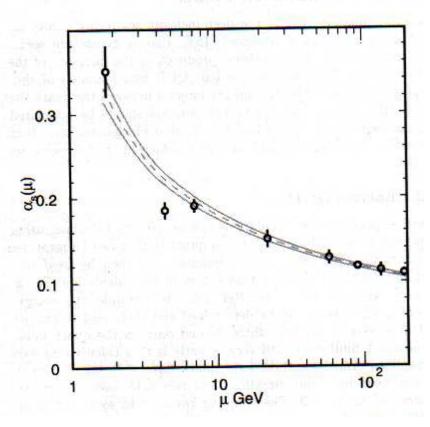
Colour factors in qq and $q\bar{q}$ Scattering

quark states	gluon states	c_f
$rr \leftrightarrow rr$	G_7,G_8	+2/3
$r ar{r} \leftrightarrow r ar{r}$	G_7,G_8	-2/3
$rb \leftrightarrow rb$	G_7,G_8	-1/3
$rb \leftrightarrow br$	G_1,G_2	+1
$r \bar{r} \leftrightarrow b \bar{b}$	G_1,G_2	-1
$rar{b} \leftrightarrow rar{b}$	G_7,G_8	+1/3

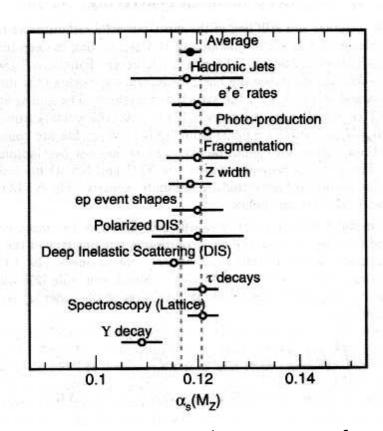
... and similarly for the other colour combinations by replacing $r \to b, r \to g$ and $b \to g$ and assigning the relevant gluon states

See Halzen & Martin Pp.67-69 for detailed calculations of c_f

Strong Coupling Constant α_s



Hard to measure running of α_s at low mass scale μ !



 α_s is measured to a few % at $\mu = M_Z$

Description of Running of α_s

In strong interactions the running of α_s is due to:

- Screening of colour by quark-antiquark $(f\bar{f})$ pairs
- Anti-screening of colour by gluons

Anti-screening of gluons dominates $\Rightarrow \alpha_s$ decreases with q^2

$$\alpha_s(q^2) = \frac{12\pi}{(33 - 2N_f)ln\left(\frac{q^2}{\Lambda_{QCD}^2}\right)}$$
 (QCD)

 $N_f \le 6$ is the number of available quark flavours at a given q^2 $\Lambda_{QCD}=217\pm25$ MeV is the QCD scale parameter

Reminder - in QED screening of electric charge by $f\bar{f}$ pairs:

$$\alpha(q^2) = \frac{\alpha(\mu^2)}{1 - \frac{\alpha(\mu^2)}{3\pi} \ln\left(\frac{q^2}{\mu^2}\right)}$$
(QED)

Azymptotic Freedom

At low $q^2 \approx \Lambda_{QCD}^2$ quarks and gluons are tightly bound inside meson and baryons

QCD calculations in this region are non-perturbative

Usually solved by numerical methods (Lattice QCD)

Example: baryon and meson masses

At high $q^2 \gg \Lambda_{QCD}^2$ quarks and gluons are **azymptotically free**

QCD calculations in this region are perturbative

Can be solved by summing diagrams in powers of α_s (like QED)

Example: Gluon emission and hard scattering in DIS

It is difficult to understand transition between two regions

Example: fragmentation of partons into jets of hadrons

Confinement

Quarks and gluons are **confined** inside hadrons and cannot be directly observed as free partons

There are many models of confinement:

- The valence quark model of hadrons (next lecture)

 Ignores effects of sea quarks and gluons at low x
- The colour flux-tube model
- The QCD potential model

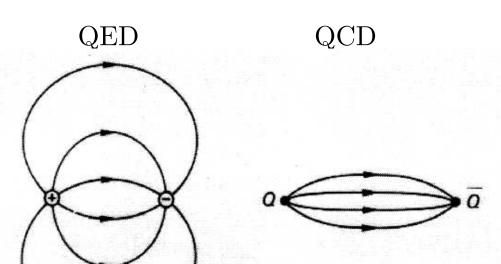
None of these models provides a rigorous approach to non-perturbative QCD but they are conceptually useful

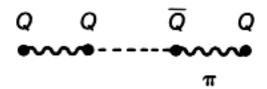
Colour Flux-tube Model

Colour field lines compressed into flux-tube between quarks

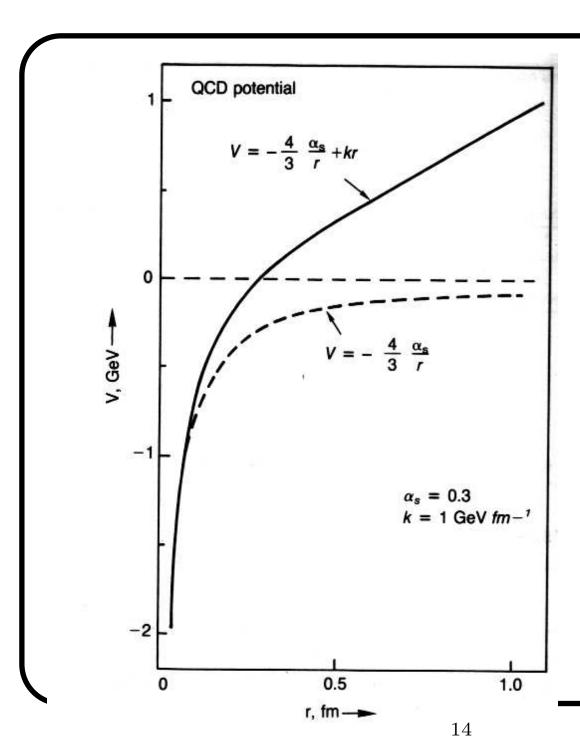
Energy stored is like in an elastic string

Can break into $q\bar{q}$ pair:





Potential $V = kr \Rightarrow$ need infinite energy to separate quarks



QCD potential

$$V_{q\bar{q}}(r) = -\frac{4}{3}\frac{\alpha_S}{r} + kr$$

Mesons are $q\bar{q}$ bound states in a QCD potential well