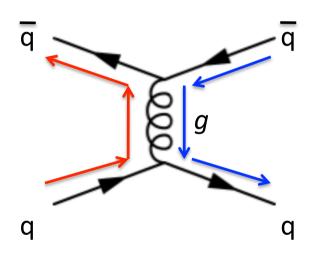
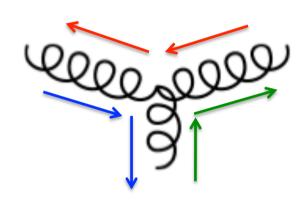
Lecture 8 – Quantum ChromoDynamics (QCD)

The theory of strong interactions between quarks and gluons





Coupling is to three "colour" charges r(ed), b(lue) and g(reen)

Gluons carry colour-anticolour charges and have self-interactions

Colour Symmetry

- Strong couplings are the same for all colour states
- Each of the three colours is separately conserved
- Colour symmetry is described by an SU(3) group The generators of SU(3) are eight 3x3 matrices λ^{α}
- Strong interactions are invariant under a rotation in SU(3) space

$$U = e^{-i\alpha_a \lambda^a}$$

Technically this is known as a "non-Abelian" symmetry

Quark states:
$$r = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 $b = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $g = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

SU(3) Matrices

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \qquad \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Gluon Colour States

Naively there are 9 states: rr, bb, gg, rb, br, rg, gr, bg, gb

In SU(3) these are arranged into a **colour octet** (allowed for gluons):

$$G_1 = 1/\sqrt{2} [rb + br]$$
 $G_2 = 1/\sqrt{2} [rb - br]$

$$G_4 = 1/\sqrt{2} [r\overline{g} + g\overline{r}]$$
 $G_5 = 1/\sqrt{2} [r\overline{g} - g\overline{r}]$

$$G_6 = 1/\sqrt{2} [b\overline{g} + g\overline{b}]$$
 $G_7 = 1/\sqrt{2} [b\overline{g} - g\overline{b}]$

$$G_3 = 1/\sqrt{2} [rr - b\bar{b}]$$
 $G_8 = 1/\sqrt{6} [rr + b\bar{b} - 2g\bar{g}]$

and a colour singlet which is symmetric (forbidden for gluons):

$$G_0 = 1/\sqrt{3} \left[r + b \overline{b} + g \overline{g} \right]$$

Feynman Rules for QCD

An incoming (outgoing) quark has a spinor and a colour

$$uc(\overline{u}c^{\dagger})$$

- An incoming (outgoing) antiquark has $\overline{\mathbf{v}}$ \mathbf{c}^{\dagger} (\mathbf{v} \mathbf{c})
- An incoming (outgoing) gluon has a polarization vector and a colour-anticolour state ε^{μ} G_{α} ($\varepsilon^{\mu*}$ G_{α}^{*})
- A quark-gluon vertex has a strong coupling and a colour factor

$$g_{\rm s} \lambda^{\alpha} \gamma^{\mu}$$

 (λ^{α}) is the SU(3) generator matrix corresponding to the gluon state)

- A gluon propagator has a factor $\,g_{\mu\nu}\,\delta^{\alpha\beta}\,/{
 m q}^2\,$
- A quark propagator has a factor $(\gamma^{\mu}q_{\mu} + m)/(q^2 m^2)$

Gluon-gluon interactions

Three gluon vertex

There is also a four gluon vertex (see P.288 of Griffiths)

This vertex has a complicated factor:

$$g_{\rm s} \, {\rm f}^{\, {
m lpha} {
m eta} {
m f}} \, \left[\, g_{\mu
u} \, ({
m q}_1 - {
m q}_2)_{\lambda} \, + g_{
u \lambda} \, ({
m q}_2 - {
m q}_3)_{\mu} \, + \, g_{\lambda \mu} \, ({
m q}_3 - {
m q}_1)_{
u} \,
ight]$$

where the gluons have four momenta q_1 , q_2 , q_3 (all into vertex) and colour-anticolour states α , β , γ

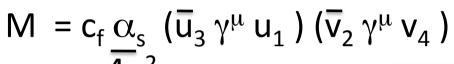
The "colour structure constants" $f^{\alpha\beta\gamma}$ are defined by anticommutators of the λ matrices:

$$[\lambda^{\alpha}, \lambda^{\beta}] = 2 i f^{\alpha\beta\gamma} \lambda^{\gamma}$$

They are just numbers (see P.287 of Griffiths)

Quark-(Anti)quark Scattering

Not directly observable. No free quarks or antiquarks. Colour states not detectable.



 $c_f = (c_3^{\dagger} \lambda^{\alpha} c_1) (c_2^{\dagger} \lambda^{\alpha} c_4)$ is a colour factor (also just a number)

Observables are averaged over initial state colours and summed over final states colours

quark states	gluon states	c_f
$rr \leftrightarrow rr$	G_7,G_8	+2/3
$rar{r} \leftrightarrow rar{r}$	G_7,G_8	-2/3
$rb \leftrightarrow rb$	G_7,G_8	-1/3
$rb \leftrightarrow br$	G_1,G_2	+1
$rar{r} \leftrightarrow bar{b}$	G_1,G_2	-1
$rar{b} \leftrightarrow rar{b}$	G_7,G_8	+1/3

Quark-(Anti)quark states

Overall colour factors are classified by their colour symmetry.

Quark-antiquark octet states e.g. $(r \, \overline{b} - b \, \overline{r})$ (correspond to G_1 - G_8)

$$c_f = +1/3$$

Quark-antiquark singlet state $r\bar{r} + b\bar{b} + g\bar{g}$ (corresponds to G_0)

$$c_f = -8/3$$

Griifiths P.289-294
Halzen & Martin P.67-69
Perkins 3rd edition Appendix J
N.B. there are differences in signs and factors of 2 between these!

Quark-quark symmetric states sextet, e.g. r r , (r b + b r)

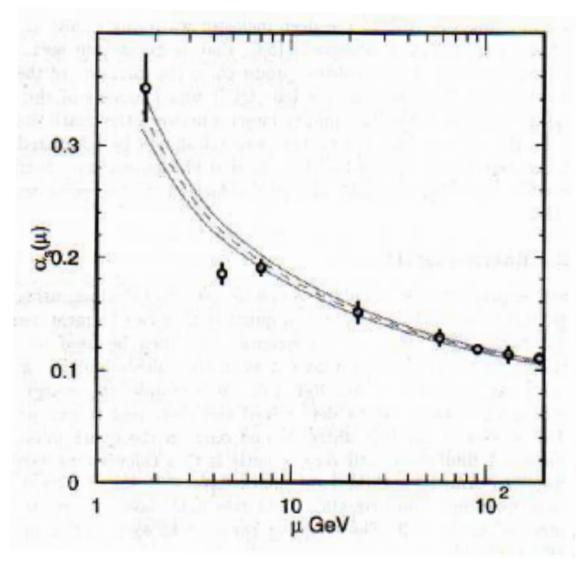
$$c_f = +2/3$$

Quark-quark antisymmetric states triplet, e.g. (r b – b r)

$$c_f = -4/3$$

Applies to gluon exchange in a meson Applies to gluon exchange in a baryon

Strong Coupling α_{s}



 $\alpha_s = g_s^2$ is a steep function of energy scale μ (renormalization scale)

 α_s ~ 1 at low energy

$$\alpha_s$$
~ 0.1 at μ = M_7

Description of Running of α_s

Reminder – running of α_{EM} was attributed to screening of electric charge by fermion-antifermion pairs:

$$\alpha_{\rm EM}(q^2) = \alpha(\mu^2) \left(1 - \alpha(\mu^2) \frac{z_f}{3\pi} \ln(|q|^2/\mu^2)\right)^{-1}$$

Running of α_s is attributed to:

- 1) Screening of colour charge by quark-antiquark pairs
- 2) Anti-screening of colour charge by gluons

$$\alpha_{\rm s}({\rm q}^2) = 12\pi \left((33 - 2N_{\rm f}) \ln (|{\rm q}|^2/\Lambda^2) \right)^{-1}$$

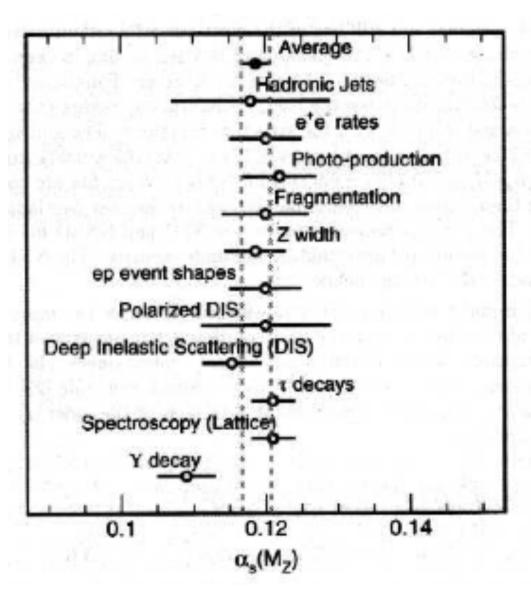
 $\Lambda_{\rm OCD}$ ~ 220 MeV

$$ln(\Lambda^2) = ln(\mu^2) - 12\pi \left((33 - 2N_f) \alpha_s(\mu^2) \right)^{-1}$$

 N_f = 2-6 is the number of "active" quark flavours (depends on q²) Anti-screening by gluons dominates

Leads to a decrease of α_s as a function of q^2

Measurements of α_s (M_Z)



Hadronic jets (Lecture 10)

e⁺e[−] → hadrons (Lecture 10)

Z width (Lecture 15)

ep event shapes & Deep Inelastic Scattering (Lecture 7)

Tau decays (Lecture 11)

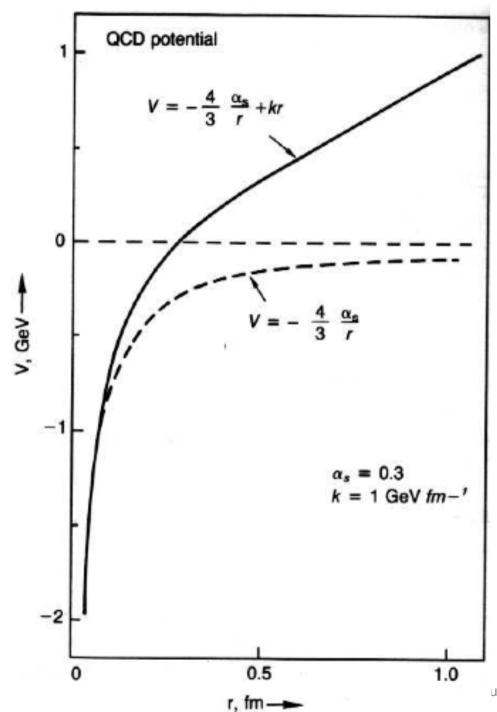
Hadron spectroscopy & decays (Lectures 9 & 11)

Azymptotic Freedom

- At large $q^2 >> \Lambda^2$ the strong coupling α_s is significantly < 1
 - In this limit it is possible to calculate strong amplitudes perturbatively
 - Sum over expansion in powers of α_s : leading order, next-to-leading order (NLO), next-to-next-to-leading order (NNLO) ...
- Large q² corresponds to short distances << 1 fm
 - Cannot describe mesons and baryons perturbatively
 - Can describe high energy collisions perturbatively
 - Heavy quark decays (Lecture 11) are somewhere between these limits
 - Fragmentation of partons to form hadronic jets (Lecture 10) is another example of an intermediate case
- Deep inside hadrons the quarks and gluons do behave like free particles. Hence the validity of the parton model for high energy proton collisions.

Confinement

- At small $q^2 \sim \Lambda^2$ the strong coupling α_s is large (and diverging)
 - In this limit it is not possible to calculate strong amplitudes perturbatively
- Corresponds to distances ~ 1 fm
 - This is the size of mesons and baryons
- Non-perturbative calculations of strong interactions are done using numerical methods (Lattice QCD)
- The quarks and gluons are no longer free particles inside hadrons
 - What is the mechanism that confines them?
 - Why are mesons and baryons the only allowed bound states?
 - Why are strong interactions between hadrons short range (~1fm) even though the gluon is massless?
- Consider a set of models of confinement ...



QCD Potential

Short distance part (1/r term) from quark-antiquark gluon exchange

$$V(q\overline{q}) = -4 \frac{\alpha_s}{3} + kr$$

Long distance part (k r term) is modelled on an elastic spring

k is known as the string tension

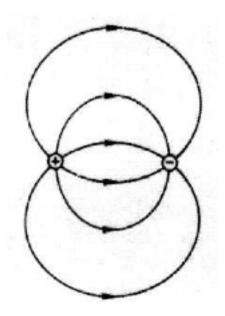
This model provides a good description of the bound states of heavy quarks: charmonium (c c) bottomonium (b b)

Colour Flux-tube Model

QED

Field lines extend out to infinity with strength 1/r²

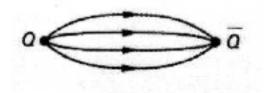
Electromagnetic flux conserved to infinity



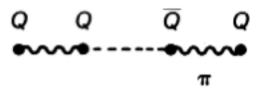
QCD

Field lines are compressed into region between quark and antiquark

Colour flux is confined within a tube. No strong interactions outside the flux-tube.



Breaking a flux tube requires the creation of a quark-antiquark pair



Like breaking a string! Requires energy to overcome string tension

Valence Quark Model

- Mesons are quark-antiquark bound states
 - Symmetric colour singlet state:

$$1/\sqrt{3} [rr + bb + gg]$$

- Colour singlet does not couple to a gluon (no G₀ gluon state)
- Baryons are three quark bound states
 - Antisymmetric colour singlet state:

$$1/\sqrt{6}$$
 [rgb-rbg+brg-bgr+gbr-grb]

- Also does not couple to gluon because colour singlet
- Gluon exchanges only occur inside mesons and baryons
- Model ignores sea quarks and gluons (they don't matter at low q²)
- Are there other types of colour singlet bound states?
 - Some evidence for glueballs (gg, ggg) as predicted by Lattice QCD
 - Hybrid mesons (q q g), four quark states (qq qq), Pentaquarks (qqq qq)?