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Materials can be experimentally characterized to terapascal pres-
sures by sending a laser-induced shock wave through a sample that
is precompressed inside a diamond-anvil cell. This combination of
static and dynamic compression methods has been experimentally
demonstrated and ultimately provides access to the 10- to 100-TPa
(0.1–1 Gbar) pressure range that is relevant to planetary science,
testing first-principles theories of condensed matter, and experi-
mentally studying a new regime of chemical bonding.

high pressure � planetary interiors � diamond-anvil cell � Hugoniot �
laser shock

In nature, and specifically when considering planets, high pres-
sures are clearly evident in two contexts: the conditions occurring

deep inside large planetary bodies and the transient stresses caused
by hypervelocity impact among planetary materials. In both cases,
typical peak stresses are much larger than the crushing strength of
minerals (up to �1–10 GPa, depending on material, strain rate,
pressure, and temperature), so pressures can be evaluated by
disregarding strength and treating the rock, metal, or ice as a fluid.
Ignoring the effects of compression, the central (hydrostatic) pres-
sure of a planet is therefore expected to scale roughly as the square
of the planet’s bulk density (�planet, assumed constant throughout
the planet) and radius (Rplanet):

Pcenter � 7 TPa��planet/� Jupiter�
2�Rplanet/RJupiter�

2. [1]

Here, the scaling factor is adjusted to match the central pressure of
Jupiter-like planets (RJupiter and �Jupiter are the radius and bulk
density of Jupiter, respectively), and the effects of compression and
differentiation (segregation of dense materials toward the center of
a planet) act to increase the central pressure for larger, denser, more
compressed, or more differentiated planets relative to Eq. 1.
Consequently, peak pressures in the 1- to 10-TPa range exist inside
large planets, with Earth’s central pressure being 0.37 TPa and
‘‘supergiant’’ planets expected to have central pressures in the 10-
to 100-TPa range.

In addition to static considerations, impact (the key process
associated with growth of planets and the initial heating that drives
the geological evolution of planets) is also expected to generate TPa
pressures. Impedance-matching considerations described below
can be combined with Kepler’s third law to deduce that peak impact
pressures for planetary objects orbiting a star of mass Mstar at an
orbital distance Rorbit are of the order

Pimpact � 1 TPa�Mstar/MSun���planet/5.5 g cm�3�

� �Rorbit/1 AU��1. [2]

Scaling here is to the mass of the Sun, and the average density and
orbit of Earth, the latter being in astronomical units (1 AU �
1.496 � 1011 m); also, the characteristic impact velocity (u0) is taken
as the average orbital velocity according to Kepler’s law, u0 �
2�Rorbit/Torbit with Torbit being the orbital period, and Eq. 2 assumes
a symmetric hypervelocity impact.

While recognizing that materials have been characterized at such
conditions through specialized experiments (e.g., shock-wave mea-
surements to the 10- to 100-TPa range in the proximity of under-
ground nuclear explosions and from impact of a foil driven by
hohlraum-emitted x-rays) (1–3), laboratory experiments tend to
achieve significantly lower pressures. As with planetary phenom-
ena, both static (diamond-anvil cell) and dynamic (shock-wave)
methods are available for studying macroscopic samples at high
pressures, but these are normally limited to the 0.1- to 1-TPa range
(4). Still, these pressures are of fundamental interest because the
internal-energy change associated with compression to the 0.1-TPa
(1 Mbar) level is roughly (5)

�E � �P�V � 105 joules per mole of atoms [3]

with volume changes (�V) being �20% of the 5-cm3 typical molar
volume of terrestrial-planet matter (here we consider a mole of
atoms, or gram-formula weight, which is 3.5, 5, and 6 cm3 for
diamond, MgO, and water, respectively, at ambient conditions).
The work of compression thus corresponds to bonding energies (�1
eV � 97 kJ per mole, characteristic of the outer, bonding electrons
of atoms), meaning that the chemical bond is profoundly changed
by pressures of 0.1 TPa. This expectation has been verified through
numerous experiments showing that the chemical properties of
matter are significantly altered under pressure: for instance, hy-
drogen, oxygen, and the ‘‘noble gas’’ xenon transform from insu-
lating, transparent gas, fluids, or crystals at low pressure to become
metals by �0.1 TPa (5, 6).

In this article, we briefly describe laboratory techniques that have
recently been developed for studying materials to the 10- to
100-TPa range of relevance to planetary science. In particular, as
most planets now known are supergiants of several (�1.5–8)
Jupiter masses orbiting stars at distances of a fraction of 1 astro-
nomical unit (7), Eqs. 1 and 2 imply a strong motivation for
characterizing materials up to the 100-TPa (1 Gbar) level. To reach
such conditions, we combine static and dynamic techniques for
compressing samples: specifically, propagating a shock wave
through a sample that has been precompressed in a diamond-anvil
cell (Fig. 1). By starting with a material that is already at high (static)
pressures, one reaches higher compressions than could be obtained
by driving a shock directly into an uncompressed sample.

Moreover, by varying the initial density (pressure) of the sample,
and also by pulse-shaping the shock-wave entering the sample, one
can tune the final pressure-density-temperature (P–�–T) state that
is achieved upon dynamic loading. This tuning is particularly
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relevant to planetary applications, because the average temperature
profile through the convective interior of a planet is isentropic,
rather than following a shock-compression curve (Hugoniot). Pre-
compression thus allows one to significantly reduce the heating that
tends to dominate the highest-pressure dynamic experiments, which
is important for better characterizing the interatomic forces under
compression.

Experimental Approach
Diamond-cell samples are necessarily small, �100–500 �m in
diameter by 5–50 �m in thickness, as it is the small area of the
diamond tip (culet) that allows high pressures to be achieved. Shock
compression of such small samples is not well suited to experiments
involving mechanical impact, for example, by a projectile launched
from a light-gas gun (which currently sets the state of the art for
high-quality shock-wave measurements, but involves sample dimen-
sions of centimeter diameter by millimeter thickness). Instead, a
laser-generated shock wave is better suited to the dimensions of the
diamond cell, with a well defined shock front of �200–500 �m
diameter being readily achieved at presently available facilities.

Several laser beams are typically focused onto the outer surface
of one of the diamond anvils, so as to generate an intense pulse of
light that is absorbed at the diamond surface (thin layers of
laser-absorbing plastic and x-ray-absorbing Au usually are depos-
ited on that diamond surface) (Fig. 2). The outermost diamond is
thereby vaporized, launching a high-amplitude pressure wave into
the anvil caused by a combination of the rapid thermal pressure

generated in the diamond (resulting from heating at nearly constant
volume) and linear-momentum balance (‘‘rocket effect’’) relative to
the diamond vapor that expands outward, back toward the incom-
ing laser beams. Such a high-amplitude wave has the property of
being self-steepening for a material with a normal equation of state
(�KS/�P � 0 for the adiabatic bulk modulus KS). As a result, a shock
front is created inside the anvil and propagates toward the sample
(8, 9).

The sample itself is precompressed inside a metal gasket, either
directly (e.g., if it is a fluid) or else within a pressure-transmitting
fluid (Fig. 2). Current methods allow samples to be precompressed
up to no more than �1–5 GPa, because the diamond anvil from
which the shock front enters needs to be thin, no more than
�100–400 �m thick (10, 11). This anvil amounts to little more than
a microscope-slide coverslip, albeit made of diamond. As discussed
below, this limitation arises from the short duration of laser pulses
available at present-day facilities.

Two types of calibrants are included in the gasket hole, along with
the sample: one or more small (�1–10 �m) chips of ruby and a
shock-wave standard. The ruby is used to measure the pressure of
the precompressed sample (P1), using the ruby-fluorescence
method (12), from which the density of the sample (�1) is deter-
mined before shock compression (the equation of state of the
sample must therefore be known at the precompression pressures).
The shock-wave standard consists of a metal plate, stepped so as to
have at least two well determined thicknesses, or of a well charac-
terized dielectric material that transforms to a metal under shock
loading. In either case, the mechanical response of the shock-wave
standard needs to be well known: i.e., to have a well determined
relationship between shock and particle velocities, US and up, as well
as the release or reshock response from the initial shock state.
Aluminum, platinum, and tungsten are examples of shock-wave
standards, and a measurement of the shock velocity (the shock-
wave transit-times across the different, well calibrated thicknesses
of the standard) then yields the particle velocity of the shock front
entering into the sample (3, 13).

Upon exiting the first diamond anvil, the shock front traverses the
sample chamber (including both sample and calibrants) and then
transits through the second (back) diamond anvil. At this point,
there is no concern if the shock wave decays, so the back anvil can
be of typical thickness for high-pressure experiments (�2.5 mm); it
serves as a window, containing the sample and allowing its char-
acterization during shock compression. Both anvils and the sample
(and calibrants) are normally vaporized during an experiment,
although the cell that contains the anvils is reuseable. With shock
velocities of order �20 km/s � 20 �m/ns, the entire experiment is
completed within a few nanoseconds.

A set of forward- and backward-traveling stress waves (shock or
rarefaction) is in general created at each interface between dia-
mond, calibrant, and sample, so a complete temporal record is

Fig. 1. Schematic of diamond-anvil cell (Left and Center), showing both a cross-section (blue arrow indicates direction of incoming, shock-wave generating
laser beams) and a pulled-apart view, and photograph (Right) of a diamond cell as a laser-induced shock is being generated during an experiment at the Omega
laser facility (University of Rochester, Rochester, NY).

Fig. 2. Schematic cross-section of diamond anvils and sample, with the drive
laser that creates the shock wave entering from the left. Supports for the anvils
are shown in purple, and, as described in the text, current laser systems require
the anvil on the shock-entry side to be thin. The sample is indicated, along with
a stepped shock-wave standard, and diagnostics described in the text [VISAR
and pyrometry (not shown)] record the dynamic compression of the sample
through the second anvil.
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needed of the various waves that traverse the sample. This record
is usually obtained by velocity interferometry from the surface of
any reflector (VISAR) (15), that provides a record of the shock and
material (particle) velocities inside the sample chamber (Fig. 3).
Briefly, VISAR operates by illuminating the sample with a single-
frequency laser and imaging the reflected light through an inter-
ferometer onto a detector. The interferometer is configured to have
unequal paths: a change in the frequency of the light passing
through it causes a change in the fringe phase in proportion to the
Doppler shift in frequency. The velocity of moving reflectors in the
target (interfaces and shock fronts) are thereby measured to �1%
precision. If the initial thickness of the (precompressed) sample is
known, a measurement of the shock-wave transit time determines
the shock velocity.

The pressure (PH), density (�H), and internal energy change
(EH � E1) of the sample during shock compression are then
determined by the Hugoniot relations that describe conservation
of mass, linear momentum, and energy (V � 1/� is specific
volume) (8):

�1US � �H�US � up� [4]

PH � P1 � �1USup [5]

EH � E1 � �1/2��PH � P1�� V1 � VH� . [6]

Here, subscripts H and 1 indicate the shock-compressed (Hugo-
niot) state and the initial, unshocked (in the present case,
statically precompressed) state, respectively; US is the velocity of
the shock front (assumed to be steady), and up is the particle
velocity to which the material is accelerated upon shock loading
(without loss of generality, the material is taken as having up �
0 before shock compression). These relations describe a 1D
compression such that, for unit cross-section, US and �1US define
a volume and corresponding mass of unshocked material that is

engulfed by the shock front in unit time. That mass is compressed
to a volume US � up having a density �H; the volume change (per
unit cross-section and mass transited by the shock front in unit
time) is thus given by �up in Eq. 4. The pressure change across
the shock front is the force per unit area (of cross-section), or the
mass �1US times the acceleration up in Eq. 5. Finally, Eq. 6 states
that (ignoring the precompression pressure P1) half the �P�V
compressional energy change is lost in accelerating the material
to the velocity up on shock loading, and (combining with Eqs. 4
and 5) the Hugoniot energy is proportional to up

2 (the internal
energy is expressed here in J/kg � m2�s�2).

It is empirically found that the shock-wave velocity scales
linearly with particle velocity for a wide variety of materials over
a moderate range of compressions (8, 13, 16, 17):

US � c � sup. [7]

The mass engulfed by the shock front per unit time, �1US, is
therefore proportional to up, and the energy flux deposited into
the sample then scales as �up

3 (energy per unit time and
cross-sectional area). For a laser-produced shock wave, assuming
the energy flux into the sample is proportional to the laser
intensity I, at least for a moderate range of intensities, one
consequently expects the shock pressure to scale roughly as

P � I2/3. [8]

In reality, laser-induced shock pressures appear to rise less
rapidly than Eq. 8, the exponent being closer to 0.6 than 0.7, no
doubt because of inefficiencies in laser-target coupling that can
become worse as I increases (18, 19) and to US ultimately
increasing sublinearly with up [deviations from Eq. 7 typically
involve a negative contribution quadratic in up (e.g., ref. 3), and
the occurrence of phase transitions under shock compression
likewise reduces US at a given up].

Although reasonable for understanding the conditions
achieved by laser-driven shock waves, Eq. 8 is inadequate for
determining the properties, notably, the equation of state, of a
sample at high pressures. Instead, one applies the fact that
conservation of mass and momentum require that both the
particle velocity and pressure be constant across each interface
traversed by the shock wave(s) (8, 16). Measuring the shock
velocity, hence pressure, density, and particle velocity in the
stepped shock-wave standard (blue point in Fig. 4), determines
the magnitude of the stress wave about to enter the sample itself.
The material velocity and pressure of the sample and standard
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interface
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Fig. 3. VISAR record from a laser-shock experiment through a precom-
pressed sample (14), showing velocity fringes as a function of time (horizontal
axis) obtained from an optical streak camera imaging light reflected off the
stepped-Al shock standard across the �300-�m width of the sample area
(vertical axis). Fringe positions are proportional to velocity of the reflecting
surface, so shifts in fringes (e.g., at breakout) indicate changes in velocity.
Curvature in breakout times indicate that the shock fronts are not exactly
planar, and the stepped breakout at the center of the image shows the
difference in travel time through the thin and thick Al steps (Fig. 2).

Fig. 4. Impedance matching solution for the Hugoniot pressure (PH) and
particle velocity (up) in the sample, as determined from the shock velocity US

measured across the sample that by Eq. 5 defines the slope of the red line (P1

is ignored here). The intersection with the equation of state of the standard
(blue curve), reflected about the pressure–particle velocity state achieved in
the standard (blue point), defines the common state (red point) behind the
forward- and backward-traveling waves in the sample and standard. In a
mechanical-impact experiment, u0 would correspond to the impact velocity of
the standard into the sample.
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are brought to the common values up and PH across the interface
(red point in Fig. 4): the pressure in the standard decreases or
increases, respectively, depending on whether it is less or more
compressible than the sample (Fig. 4 illustrates the former case,
with the pressure drop in the standard indicated by the curved
blue arrow; in detail, a correction is made to account for the fact
that the decompression follows an isentrope rather than the
Hugoniot).

Conditions Achieved
To evaluate the conditions generated in laser-shock experiments
on precompressed samples, we calculate the Hugoniot equation
of state by way of the Mie–Grüneisen approach that takes the
sample pressure (Hugoniot pressure PH achieved on shock
loading) as arising from two terms, compression along a refer-
ence path to the final volume (V) plus thermal pressure at that
(constant) volume (16, 17):

PH� V� � PS� V� � �� /V�	EH� V� � ES� V�
 . [9]

Here, the reference path is an isentrope, indicated by subscript
S, and the Grüneisen parameter � � V(�P/�E)V depends on
volume and temperature (or thermal energy): as described
below, ionization and other effects cause � to depend on
temperature.

The internal energy along the isentrope, ES(V), is given by the
isentropic equation of state PS(V) because �(�E/�V)S � PS. We
specifically use the Eulerian finite-strain formulation for the
isentrope, motivated by the fact that the Cauchy stress (the trace
of which gives the pressure) is intrinsically a function of Eulerian
strain (20), and that the resulting equation of state is empirically
found to successfully match experimental measurements involv-
ing both finite and infinitesimal compression (e.g., wave-velocity
measurements) (17, 21). That is, the internal energy change upon
isentropic compression is assumed well described by a Taylor
expansion in the Eulerian finite-strain measure f � (1/2) [(V/
V0)�2/3 � 1] (defined positive on compression)

�ES � �9/2�V0 K0S f 2	1 � �K�0S � 4�f � . . .
. [10]

K is the bulk modulus, subscript 0 indicates zero-pressure
conditions, and � is for differentiation as a function of pressure.
The coefficients have been evaluated in Eq. 10 such that PS and
�ES both vanish as f goes to zero. The resulting P–V equation of
state (Birch–Murnaghan form) is

PS � 3K0S f�1 � 2f �5/2	1 � �3/2��K�0S � 4�f � . . .
. [11]

Combining Eq. 9 with Eq. 6 yields

PH � �PS � �� /VH�	�P1� V1 � VH� /2 � �
V

1

VH

PS dV

�1���/VH��V1�VH�/2
�1 [12]

with P1 � P1(V1) being the precompression pressure at volume
V1, and PH � PH(VH) and PS � PS(VH) are the Hugoniot and
isentrope pressures at volume VH. Here, we ignore the possibility
of phase transformations to avoid complicating the discussion,
but such transformations (e.g., solid–solid, or melting) can be
taken into account if the equation of state and initial energy of
the high-pressure phase is known. Applying Eqs. 10 and 11 to Eq.
12, the Hugoniot pressure normalized by the zero-pressure
isentropic bulk modulus is

PH

K0S
� �A � B � C
� 1 �

�

2 � 	 1 � 2fH

1 � 2f1

 3/2

� 1� � �1

[13a]

A � 3�1 � 2fH�3/2fH �1 � 	2 � �3/2��K�0S � 4 � ��
 fH � 3

�K�0S � 4�	1 � �� /2�
 fH
2 � . . .
 [13b]

B � 9��/2��1 � 2fH�3/2f1
2	1 � �K�0S � 4�f1 � . . .
 [13c]

C � 3��/2��1 � 2f1�f1	�1 � 2fH�3/2 � �1 � 2f1�
3/2


� 	1 � �3/2��K�0S � 4�f1 � . . .
 . [13d]

Without precompression, f1 � 0; consequently, the terms B and
C vanish and the denominator in Eq. 13a is simplified.

To focus on general scaling relations, rather than detailed
calculations for specific materials, we assume K�0S � 4 (second
order or Birch equation of state), �/V � �0/V0 � constant and �0 �
1.5 because these are typical values for condensed matter (K�0S �
3–6 and �0 � 1–2 in many instances) (17). In addition, we add
an electronic component to the Grüneisen parameter, �e � 0.2,
to account for excitation of electrons when the thermal energy
exceeds [EH(V) � ES(V)]/K0SV0 � 0.1, and treat the precom-
pression as being isentropic rather than isothermal, ignoring
the approximately percent-level difference between the iso-
therm and isentrope pressure at volume V1. The results show that
Gbar (� 100 TPa) pressures are expected for materials com-

Fig. 5. Predicted pressure–density equations of state for condensed matter,
caused by isentropic compression (isentrope: heavy dark blue curve), shock
compression (Hugoniot: heavy red curve, �1/�0 � 1.0), and shock compression
of samples precompressed to initial densities of �1/�0 � 1.1, 1.5, 2.0, and 3.0
(thin red, green, turquoise, and blue curves, respectively) assuming K�0S � 4,
�0 � 1.5, and �e � 0.2 (see text). Pressure and density are normalized to the
zero-pressure bulk modulus and density, respectively, and the Mbar (� 100
GPa) and Gbar (� 100 TPa) pressure regimes are indicated based on a typical
value of K0S � 1011 Pa; corresponding central pressures for Earth, Jupiter, and
supergiant planets are indicated on the right. The Hugoniot for the linear US

� up relation (Eq. 7) and the density dependence of the electron–gas pressure,
PEG � �5/3 (ref. 9; only the slope, not the absolute value, has meaning here) are
shown by thin black and gray lines. Because c in Eq. 7 is the zero-pressure bulk
sound velocity, (K0S/�0)1/2, its value is absorbed in our pressure normalization;
in accord with K�0S
� � 4 for the finite-strain calculations, we set s � 5/4 (17).
Conditions near zero pressure are shown on a linear plot (Inset) to comple-
ment the log–log plot of the main figure.
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pressed �4- to 20-fold (in �/�0) for the Hugoniot and isentrope,
respectively (Fig. 5). Detailed pressures would differ for differ-
ent parameter values than those assumed here (larger values of
� increase the Hugoniot pressure at a given volume, and larger
values of K�0S increase both the adbiabat and Hugoniot pressure
at a given volume). Also, more terms may be needed in the
finite-strain expansions (Eqs. 10, 11, and 13) at high compres-
sions; and the linear US � up relation (Eq. 7) yields an infinite
Hugoniot pressure at a density �/�0 � s/(s � 1) � 5 for the value
of s used here (8, 16).

The effect of precompression is to significantly decrease the
thermal pressure of the Hugoniot state, with much of the P–�
regime between the Hugoniot and isentrope (or isotherm) being
accessible with as little as 50% (1.5-fold) initial precompression
(Fig. 5). Thus precompression is closely analogous to the appli-
cation of multiple shocks, including in the fact that breaking a
shock front into as few as four reverberations makes the com-
pression nearly isentropic (22). As compressible fluids of plan-
etary interest, such as H2 and He, can be subjected to relatively
large precompressions, it is evident that the high-pressure ther-
modynamic state can be effectively tuned over a broad range of
temperatures or internal energies (Fig. 6).

Megajoule-class lasers represent the state of the art in facilities
currently under development for laser-shock experiments (23).
As these consist of �102 beams, each delivering 1–10 kJ, Fig. 6
suggests that energies corresponding to Gbar pressures should be
deliverable to a precompressed sample even if only a fraction of
the beams can be used with limited efficiency (e.g., 10 1-kJ beams
coupled at 1% efficiency to provide 100 J in the sample). Thus,
Gbar pressures with tunable final thermal states will become
accessible in the laboratory.

One of the key benefits of the high energy-density laser
facilities is not only that they deliver pulses having high power

(�PW/cm2) over the 0.5- to 1-mm width of the sample area, but
also that they can do so for the relatively long period of �10–20
ns (versus the 	 �1- to 4-ns effective pulse width of current
facilities) (23). This capability is directly relevant to our exper-
iments, because the shock front is followed by a rarefaction wave
that develops at the end of the laser pulse (i.e., at time 	) and
catches up with the shock in a time interval �t from the initiation
of shock loading. The shock wave thus travels a distance US �t
before being attenuated. The rarefaction, which starts after the
interface has traveled a distance up	, travels at approximately the
velocity US � up because the material is moving at velocity up and
the local (high-pressure) sound velocity is about equal to the
shock velocity. Therefore, the catch-up distance is

� x � US�t � �US � up���t � 	� � up	 [14]

Fig. 6. Internal energy as a function of pressure corresponding to Fig. 5,
showing the isentrope and the Hugoniots for initially uncompressed (red) and
precompressed samples (thin red, green, light blue). Approximate dimen-
sional values for the axes are indicated assuming V0 � 5 cm3 per mol of atoms
and K0S � 1011 Pa; a typical precompressed sample size is �400 �m diameter
by 10 �m thick, or �300 nmol of atoms. Note that the pressure dependence of
the Hugoniot energy for the linear US � up relation (Eq. 7) (black) is similar to
that derived from the Mie–Grüneisen analysis (Eq. 9).

Fig. 7. VISAR records of shock-loaded H2O (precompressed to �1 GPa)
showing the transition from transparent behavior at P � 50 GPa and T � 3,500
K (Left: reflection of diamond-sample interface is visible through the shock-
compressed sample, before and after first breakout); to opaque at P � 100 GPa
and 3,500 � T � 9,000 K (Center: reflection disappears on breakout); to
reflecting at P � 150 GPa and T � 9,000 K (Right: new reflection appears from
shock front, as evident from time-dependent (curved) fringes after breakout)
(14). Time and distance across the sample are along the horizontal and vertical
axes, respectively, and red (vs. blue) colors indicate higher recorded intensity
of light.

Fig. 8. Predicted contours of electrical conductivity (thin gray solid and
dashed curves) for He as a function of pressure and temperature, showing that
metallic properties can be induced either by high P or high T. These influences
can be separately documented by varying the initial density of the sample:
colored dot-dash curves trending from lower left toward upper right indicate
Hugoniots for different degrees of precompression (1- to 7-fold initial com-
pression, as indicated by the color scale). Electrical conductivity can be exper-
imentally inferred from optical absorption and reflectivity (see Fig. 7), and the
contours shown here are based on thermodynamic and semiconductor models
(24–26). A model isentrope for Jupiter’s interior is shown for comparison
(dashed black curve).
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such that

� x � US
2	/up � �102 �m/ns�	 . [15]

As a result, a 10- to 20-ns pulse width allows use of an
�1-mm-thick diamond on the entry side, typical of the anvils that
are used in static-compression experiments at Mbar pressures.
Rather than being limited to the 1- to 5-GPa pressures, as at
present, precompressions to the 100-GPa range should thus be
possible in experiments at the largest laser facilities now under
development (e.g., a millimeter-diameter laser-generated shock
front generated at the surface of a 0.8-mm-thick diamond anvil
avoids side rarefaction). That is, samples already transformed to
a high-pressure, for example, metallic, state could serve as
starting materials for experiments to the 10- to 100-TPa level.

Initial Experiments and Future Potential
Fig. 7 illustrates the potential of laser-shock experiments on
precompressed materials. Here, VISAR is used to characterize
the optical properties of the sample and determine the Hugoniot
pressure and density. In addition, an estimate of the blackbody
temperature of the sample is obtained by optical pyrometry. The
experiments clearly show that H2O transforms from a transpar-
ent dielectric at low pressures and temperatures (light visible
even after transmission through the shock-compressed region) to
a metallic-like state (light reflected off the shock front) when
taken to pressures and temperatures exceeding 100–150 GPa
and 6,000–9,000 K (14). The profound change in outer, valence-
electron states (i.e., in chemical bonding) induced by high
pressures and temperatures is visibly evident.

It is crucial that pressure and temperature can be separately
tuned because either can induce electronic changes in materials.
Helium, for instance, can be either thermally ionized or pres-
sure-ionized, and it is by varying the initial compression that one
can experimentally validate theoretical expectations of the con-
ditions under which the insulator–metal transition takes place
(Fig. 8). The effect of ionization is to increase the pressure at a
given density, and this is handled by including an explicit
temperature dependence to the Grüneisen parameter. To the
degree that electrons are thermally ionized, the thermal pressure
intrinsically becomes a function of temperature (or thermal
energy) and, along with other pressure-induced (e.g., structural)
phase transitions, this influences the equation of state. A major
incentive for precompressing samples is to be able to vary such
high-temperature phenomena, so as to be able to experimentally
distinguish them from the effects of compression alone.

These results, illustrating dramatic changes in chemical bond-
ing at Mbar (100 GPa) conditions, reinforce the significance of
being able to achieve significantly higher pressures in the future
(Figs. 5 and 6). Evidently, compressional-energy changes can
reach keV in the Gbar (100 TPa) regime, comparable to energies
of core-electron orbitals. Deep-electron levels within the atom
can therefore participate in chemical bonding, and an entirely
new type of chemistry becomes accessible in a (subnuclear)
regime that is as yet unexplored by experiments.
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