

AIDA : a 16-Channel Amplifier ASIC to Read Out the Advanced Implantation Detector Array for Experiments in Nuclear Decay Spectroscopy

Davide Braga Stephen Thomas

Rutherford Appleton Laboratory, STFC

IEEE NSS

FAIR, GSI (Facility for Antiproton and Ion Research)

High Energy Implant: ≤ 20 GeV Low-Energy Decay: ≥ 25 KeV DESPEC (DEcay SPECtroscopy) Neutron Detector Array Beam **DSSD** Array Planar Ge

October 2009

Specifications

•Input range: $20\text{GeV} \rightarrow 25\text{KeV} (\sim 10^6 : 1)$

•Short separation between high and low energies events (<10µs)

•Integral non linearity < 0.1%

•Autonomous overload detection and recovery

Input referred noise 5KeV

Front end

Front end

Layout

Front End

- -Large feedback capacitors
- -Internal biasing
- -Low-impedance power distribution:
 - -high number of PADs to
 - gnd/vdd
 - -maximized metal coverage

Back End

October 2009

Layout

- -Large feedback capacitors
- -Internal biasing
- -Low-impedance power distribution:
 - -high number of PADs to
 - gnd/vdd
 - -maximized metal coverage

1: variable Medium Energy (ME) + constant ME

1: variable Medium Energy (ME) + constant ME

2: variable High Energy (HE) + constant ME

2: variable High Energy (HE) + constant ME

12/15

3: constant HE + variable ME

13/15

3: constant HE + variable ME

13/15

Future development

-Support module, optimized for power supply distribution, shielding and decoupling, currently being manufactured;

-Once delivered, testing of analog performance and integration with data acquisition card (FPGA);

-Second and final iteration, with some minor adjustments and noise optimization, possibly on-chip calibration capacitors.

Acknowledgements

Thanks to:

- Thomas Davinson, University of Edinburgh
- Patrick Coleman-Smith, STFC, Daresbury Laboratory
- Ian Lazarus, STFC, Daresbury Laboratory