AIDA detailed design

Steve Thomas ASIC Design Group

15 May 2007

Low & Intermediate Energy Range

High Energy Range

XFEL detector review meeting : 8 May, DESY

Detector carrier density identified as a major risk for electronic design (~50pC charge per pulse)

ESRF with XSTRIP read-out

- 20ps bunch, 2.82ns repetition rate, 1e9 photons/s per channel
- Average of 2.82 photons per bunch, 9400 e/h pairs per bunch
- 1e5 holes per channel in detector volume (~30ns hole drift time)
- Hole concentration p~8e9 /cm³

Silicon detector has $N_D \sim 1e12 \ /cm^3$ ESRF: p<< N_D , carriers have no effect on detector field XFEL: p>> N_{D_1} carriers can influence field: risk of charge shielding effects, with recombination

XFEL

- 100fs bunch, 200ns separation (x 500), 100ms repetition
- 1e5 photons per channel per bunch, 5e8 per second
- 3e8 e/h pairs per 100fs (for 12keV X-rays)
- Hole concentration p~3e12 /cm³

Detailed design issues:

- re-use of existing circuit blocks, optimised for linearity
- analogue behavioural models (faster for top level simulation)
- high-level digital models (Verilog), with synthesis of schematics
- semi-custom digital layout

Digital design: sparse read-out (1997)

Digital design: sparse read-out (2007)

Digital design: automatic layout

Peak hold circuit

Peak hold circuit - full version

Peak hold linearity

Digital delay 1: Shift register

CLK

Digital delay 2: Current limited inverter

Digital delay 2: Current limited inverter

Conclusions:

- **Detector simulation important (XFEL)**
- Linearity maintained with peak-hold
- Two options for reset sequencing (digital or analogue)
- Two options for digital design (traditional approach or synthesis)