
Tom Davinson

School of Physics & Astronomy

First SPES School on Experimental Techniques
with Radioactive Beams

INFN LNS Catania – November 2011

Experimental Challenges
Lecture 4: Digital Signal Processing

T
H
E

U N
I VERS I T

Y

O
F

E
D I N B U

R
G
H

Objectives & Outline

• Sampling Theorem
• Aliasing
• Filtering? Shaping? What’s the difference? … and why do we do it?
• Digital signal processing
• Digital filters

semi-gaussian, moving window deconvolution
• Hardware
• To DSP or not to DSP?
• Summary
• Further reading

Practical introduction to DSP concepts and techniques

Emphasis on nuclear physics applications

I intend to keep it simple …
… even if it’s not …

… I don’t intend to teach you VHDL!

Sampling

Sampling

Periodic measurement of analogue input signal by ADC

BWs ff 2

The sampling frequency fs= 2fBW is called the Nyquist frequency (rate)

Note: in practice the sampling frequency is usually >5x the signal bandwidth

Sampling Theorem

An analogue input signal limited to a bandwidth fBW can be reproduced from its
samples with no loss of information if it is regularly sampled at a frequency

Aliasing: the problem

Continuous, sinusoidal signal frequency f sampled at frequency fs (fs < f)

Aliasing misrepresents the frequency as a lower frequency f < 0.5fs

Aliasing: the solution

Use low-pass filter to restrict bandwidth of input signal to satisfy Nyquist criterion

BWs ff 2

Digital Signal Processing

Digital signal processing is the software controlled processing of sequential
data derived from a digitised analogue signal.

Some of the advantages of digital signal processing are:

• functionality
 possible to implement functions which are difficult, impractical or impossible
 to achieve using hardware, e.g. FFT, ‘perfect’ filters etc.
• stability
 post-digitisation the data is immune to temperature changes, power supply
 drifts, interference etc.
• noiseless
 post-digitisation no additional noise from processing
 (assuming calculations are performed with sufficient precision)
• linearity
 … perfect!

… what next?Digital Signal Processing

Objectives of Pulse Shaping

Filter – modification of signal bandwidth (frequency domain)

Shaper – modification of signal shape (time domain)

Fourier transform – calculate frequency domain from time domain
 (and vice versa)

Signal modified in frequency domain signal shape modified

Filter = Shaper

Why use pulse shaping?

• Signal to noise ratio optimisation
• Throughput optimisation
• Ballistic deficit minimisation
• ADC input signal conditioning

• Conflicting requirements – compromise solutions



Signal to Noise Ratio Optimisation

log f

Gain (dB)

Noise Floor

Preamp

CR-(RC)n Amplifier

20dB/decade

20dB/decade

20dB/decade

n x 20dB/decade

~MHz

ff RCπ2

1

πτ2

1

f

s

C
C

• Reduce bandwidth to optimise signal to noise ratio
• Optimum shaping time for minimum noise

Throughput Optimisation

from L.Wielpowski & R.P.Gardner,
NIM 133 (1976) 303

from F.S.Goulding & D.A.Landis,
IEEE Trans. Nucl. Sci. 25 (1978) 896

Minimise pulse width to minimise effects
of pileup and maximise throughput
– short shaping times required

Ballistic Deficit

from Nuclear Electronics, P.W. Nicholson, Wiley, 1974
 K.Hatch, IEEE Trans. Nucl. Sci. NS15 (1968) 303

Require long shaping times compared to
input risetime variations

Digital Filters

Finite Impulse Response (FIR) filter (Convolution Filter)

yi = a0xi + a1xi-1 + a2xi-2 + …

where a0, a1 … etc. are coefficients,
xi, xi-1 … etc. the input data and
yi, yi-1 … etc. the output data.

Example – moving average filter

Infinite Impulse Response (IIR) filter (Recursive Filter)

yi = a0xi + a1xi-1 + a2xi-2 + … + b1yi-1 + b2yi-2 + b3yi-3 + …

where b1, b2 … etc. are coefficients.

Example – simple first order (single pole) filter

Simple Recursive Filters

Low pass filter
(integrator) zb

za





1

0 1

High pass filter
(differentiator)

where 10  z

For an analogue RC circuit, the time constant RC is the time to decay to 36.8%
of the initial value: d is the number of samples it takes for a digital recursive filter
to decay to the same level.







 

d
z

1
exp

11110   iiii ybxaxay

110  iii ybxay

zb

z
a

z
a









1

1

0

2

1
2

1

DSP Program: Semi-Gaussian Filter

FORTRAN77 source code

 PROGRAM semigauss

C Number of samples = n
 INTEGER n
 PARAMETER (n = 1000000)

C Number of poles = n_poles
 INTEGER n_poles
 PARAMETER (n_poles = 6)

C Gain=1/(n_poles**n_poles
C *exp(-n_poles)/n_poles!)
 REAL gain
 PARAMETER (gain = 6.22575)

C Time constant = tc samples
 REAL tc
 PARAMETER (tc = 20.0)

C Pole zero correction = pz samples
 REAL pz
 PARAMETER (pz = 500.0)

 INTEGER i, j
 REAL a0, a1, b0
 REAL x(0:n-1), y(0:n-1), z(0:n-1)
 REAL t(0:n-1)

C Read input data
 DO i = 0, n - 1
 READ(5, *) t(i), x(i)
 ENDDO

C Single pole high pass filter
C with pole-zero correction
 b1 = EXP(-1.0 / tc)
 a0 = (1.0 + b1) / 2.0
 a1 = - (1.0 + b1) / 2.0

 DO i = 1, n - 1
 y(i) = b1 * y(i - 1) + a0 * x(i)
 + + a1 * x(i - 1) + x(i - 1) / pz
 ENDDO

C n-pole low pass filter
 b1 = EXP(-1.0 / tc)
 a0 = 1.0 - b1

 DO j = 1, n_poles
 DO i = 1, n - 1
 z(i) = b1 * z(i - 1) + a0 * y(i)
 ENDDO
 DO i = 1, n - 1
 y(i) = z(i)
 ENDDO
 ENDDO

C Write semi-gaussian filter output
 DO i = 1, n - 1
 WRITE(6, *) t(i), gain * z(i)
 ENDDO

 STOP
 END

Input Data

• Samples 1M
• Events 1000
• Preamplifier output amplitude 500
• Preamplifier decay time  500 samples
• Signal to noise ratio 25:1

Assuming we sample at 10MHz (100ns per sample)

• Sample history 0.1s
• Mean event rate 10kHz

The same input dataset will be used for all of the examples

Semi-Gaussian Filter Output

Semi-Gaussian Filter contd.

In practice, the semi-gaussian filter algorithm described would be elaborated
to include one, or more, of the following:

• Constant fraction (or other) discrimination
• Pile-up rejection (PUR)
• Baseline restoration (BLR)
• Ballistic deficit correction
• Peak detection
• Pulse shape analysis (PSA)
• Integral and differential non-linearity correction (INL/DNL)

Example

Add simple discriminator and implement baseline restorer and peak detect
algorithms to generate pulse height spectra

Pulse Height Spectrum from Semi-Gaussian Filter

Preamplifier signal/noise ratio 25:1
Semi-gaussian signal/noise ratio 160:1

Input rate 10kHz, ~74% events no pile up

Moving Window Deconvolution (MWD)

)(
1

)(

)(
1

)()()(

1

1

jMWD
L

iT

jxMixixiMWD

i

Lij
M

L
M

i

Mij
M











τ

MWD filter commonly used for X-ray and -ray detectors

For a preamplifier with decay time 

Trapezoidal shaping: L<M, length of flat top M-L
Triangular shaping: L=M

Differentiation Moving AverageDeconvolved Signal

Moving Average (low pass filter)

Moving Window Deconvolution (MWD) contd.

DSP Program: MWD
 PROGRAM mwd

C Number of samples = n
 INTEGER n
 PARAMETER (n = 1000000)
C Deconvolution window = m samples
 INTEGER m
 PARAMETER (m = 100)
C Moving average window = l samples
 INTEGER l
 PARAMETER (l = 50)
C Pole zero correction = pz samples
 REAL pz
 PARAMETER (pz = 500.0)

 INTEGER i, j
 REAL d_m, ma_l(0:n-1)
 REAL ma_m, mwd_m(0:n-1)
 REAL t(0:n-1), x(0:n-1)

C Read input data
 DO i = 0, n - 1
 READ(5, *) t(i), x(i)
 ENDDO

C Moving window deconvolution
 DO i = m, n - 1
 d_m = x(i) - x(i - m)
 ma_m = 0.0
 DO j = i - m, i - 1
 ma_m = ma_m + x(j)
 ENDDO
 mwd_m(i) = d_m + ma_m / pz
 ENDDO

C Moving average
 DO i = l, n - 1
 ma_l(i) = 0.0
 DO j = i - l, i - 1
 ma_l(i) = ma_l(i) + mwd_m(j)
 ENDDO
 ma_l(i) = ma_l(i) / l
 ENDDO

C Write MWD filter output
 DO i = m, n - 1
 WRITE(6, *) t(i), ma_l(i)
 ENDDO

 STOP
 END

FORTRAN77 source code

Moving Window Deconvolution Filter Output

Digital Signal Processor

Specific hardware to implement the software controlled processing of sequential
digital data derived from a digitised analogue signal.

• DSP algorithms usually implemented with programmable logic devices
 e.g. Field Programmable Gate Arrays (FPGAs) from Xilinx, Altera etc.

• FPGA consists of lots (and lots) of
configurable logic blocks (CLBs)
configurable interconnections
configurable I/O blocks (IOBs)
RAM
etc.

• FPGAs are very powerful devices

from M.Lauer, PhD thesis, 2004

Digital Signal Processor contd.

• Design by high level abstractions with hardware description languages (HDLs)
 e.g. VHDL, Verilog

• HDL code is used to
simulate, optimise and synthesise design

 generate data required to configure FPGA
• Result – customised, high performance computer
• Near real-time performance

architecture Behavioral of add_signed is

SIGNAL temp: std_logic_vector(width downto 0);
SIGNAL ta: std_logic_vector(width downto 0);
SIGNAL tb: std_logic_vector(width downto 0);

begin

temp <= ta + tb + ("0"&CarryIn);

process(signed, A, B, CarryIn)
begin

-- signed input
case signed is

when '1' => ta(width-1 downto 0) <= A;
ta(width) <= A(width-1);
tb(width-1 downto 0) <=B;
tb(width) <= B(width-1);

-- unsigned input
when others => ta(width-1 downto 0) <= A;

ta(width) <= '0';
tb(width-1 downto 0) <=B;
tb(width) <= '0';

end case;
end process;

VHDL code extract – signed 16-bit adder
courtesy Ian Lazarus, CCLRC DL

Digital Signal Processor: GRT4

from M.Lauer, PhD thesis,
University of Heidelberg, 2004

http://npg.dl.ac.uk/GRT
GRT4 4x 80MHz 14-bit ADCs, 6U VME card

Digital Signal Processor: Amptek DP4

Size: 8.9cm x 6.4cm

http://www.amptek.com/dpp.html

Digital Signal Processor: XSPRESS

• Classic DSP application

• EG&G Ortec 30 x 30mm2 HPGe EXAFS array

• CCLRC DL VME-based DSP instrumentation

• Adaptive digital signal processing algorithm
 filter bandwidth varied depending on time
 available to next event

• Throughput c. 400kHz/channel at 5% resolution
 (400eV FWHM Cu K)

R.Farrow et al., NIM B97 (1995) 567

Digital Signal Processor: other examples

XIA DGF4

Miniball @ REX-ISOLDE
see Thorsten Kroll’s lectures

DSSSDs + … @ HRIBF/ORNL
M.Karny et al. Phys. Rev. Lett. 90 (2003) 012502
http://fribusers.org/4_GATHERINGS/2_SCHOOLS/2010/talks/Grzywacz_1.pdf

CAEN V17xx Modules

see T.Marchi’s presentation

AGATA

see E.Farnea’s presentation
F.Recchia et al., NIM A 604 (2009) 555

The New World

Multichannel 100MSPS, 14-bit ADC modules

GRETINA + … http://grfs1.lbl.gov/
GAMMASPHERE refit
FMA 160x160 DSSSD being upgraded

TIGRESS/SHARC J.P.Martin et al., IEEE NS55 (2008) 84

TIGRESS VXI racks
32-fold segmented HPGe detectors
SHARC DSSSDs

C.A.Diget et al., J. Inst. 6 (2011) P02005

To DSP or not to DSP?

Use DSP for …
resolution & throughput optimisation
variable detector pulse shapes

Use analogue signal processing for …
fast shaping
systems not sensitive to, or with fixed, detector pulse shapes
high density (low area, low power) applications

Expect …
ADCs with higher precision, speed & density

lower power & cost

more powerful FPGAs
an expanding range of applications

Summary

• DSP concepts are straightforward
- you don’t need to be a rocket scientist to understand them

• Real world DSP implementations use FPGAs
- this is rocket science
- highly abstracted hardware design description
- optimised generic design building blocks available
- development, test and optimisation tools available
- real time performance

• Other nuclear physics applications
- spectrum analysis

• Wider applications
- sound/image/video
- neural networks
- data compression
- FFT
- etc.

Further Reading

Digital Signal Processing:
A Practical Guide for Engineers and Scientists,

Steven W.Smith, Newnes, 2003
http://www.dspguide.com

Digital Signal Processing: the perfect filter?

Example

• 32,001 point windowed-sinc filter configured as a low pass filter
• Stopband attenuation >120dB (1 part in a million)
• Roll off 0.0125% of sample rate
• 1kHz low pass filter gain 1+/-0.002 d.c. to 1000Hz

gain <0.0002 above 1001Hz

low pass
RC Filter

from Smith, Digital Signal Processing

Moving Average Filter

 




1

0
)(

1
)(

m

j
jix

m
iy

where x is the input signal, y the output signal and m is the number of points
(samples) in the average.

Alternatively, symmetrically about the output point

odd)(
1

)(
2/)1(

2/)1(
mjix

m
iy

m

mj
 




• No relative shift between input and output

• Commonly used digital filter
easy to use and understand

• Optimum filter for reducing random noise and minimising degradation of
 step response
• Good signal smoother (time domain)
• Poor filter (frequency domain)
• Noise reduction m

DSP Program: Moving Average Filter

FORTRAN77 source code

 PROGRAM ma

C Number of samples = n
 INTEGER n
 PARAMETER (n = 1000000)

C Moving average sample length
C = m samples (m is an odd number)
 INTEGER m
 PARAMETER (m=21)

 INTEGER i, j
 REAL t(0:n-1), x(0:n-1), y(0:n-1)

C Read input data
 DO i = 0, n - 1
 READ(5, *) t(i), x(i)
 ENDDO

C Calculate moving average
C
C Loop for each data point
C Zero output data point
C Loop m times for sum
C Calculate m-point average

 DO i = (m - 1) / 2, n - (m - 1) / 2
 y(i) = 0.0
 DO j = - (m - 1) / 2, (m - 1) / 2
 y(i) = y(i) + x(i + j)
 ENDDO
 y(i) = y(i) / m
 ENDDO

C Write moving average filter output
 DO i = (m - 1) / 2, n - (m - 1) / 2
 WRITE(6, *) t(i), y(i)
 ENDDO

 STOP
 END

Moving Average Filter Output

Moving Average Filter

Implementation by Recursion

Consider two adjacent output points produced by a 5-point moving average
filter, for example,

)53()52()51()50()49()51(

)52()51()50()49()48()50(

xxxxxy

xxxxxy




or,
)48()53()50()51(xxyy 

More generally,

1,
2

1
)()()1()(


 pq

m
pqixpixiyiy

Note that only two calculations per output data point are required independent
of the number of points m in the moving average.

