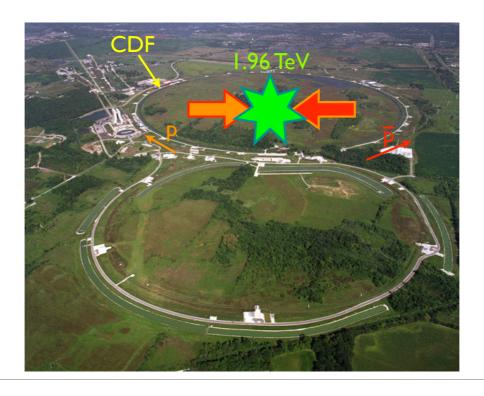

Nuclear and Particle Physics 3:

Particle Physics

Lecture 1: Introduction to Particle Physics February 5th 2007

Particle Physics (PP) a.k.a. High-Energy Physics (HEP)

Dr Victoria Martin


JCMB room 4405 victoria.martin@ed.ac.uk

My research: Particle Physics at Colliders

- CDF at the Fermilab Tevatron, near Chicago: colliding protons and anti-protons at ~2TeV. Currently the world's highest energy collider.
- The international linear collider (ILC), the world's next electron-position collider. Won't start operation until ~2018!!

2

CDF and the Tevatron

3

International Linear Collider

A future project

Many elements still under design and discussion, including...

- location
- cost
- will we build it at all?

Course Contents

Lecture 1 - Introduction

The fundamental particles and forces

Lecture 2 - Tools

Natural Units

Kinematics

Antiparticles

Lecture 3 - Feynman Diagrams

The electromagnetic force

Feynman Diagrams

Lecture 4 - Interactions with matter

Particle accelerators, detectors and experiments.

Lecture 5 - Quarks

Mesons, Baryons

Isospin and strangeness

Lecture 5 - Strong Interactions

Colour, gluons

confinement, running coupling

constant

Lecture 7 - Weak Interactions

Muon and tau decay

Heavy quarks, CKM mechanism

Lecture 8 - Neutrinos

Neutrino Mass and oscillations

Lecture 9 - Electroweak Theory

W and Z bosons

I FP

Spontaneous Symmetry Breaking and

the Higgs Boson

Books!

• In conjunction with attending the lectures you will need to read around the subject to fully understand the material.

Particle Physics, second edition, by B.R. Martin & G. Shaw. 2nd edition (Wiley 1997)

7 copies in JCMB Library.

Introduction to High Energy Physics - D.H. Perkins, 4th edition (CUP 2000)

Introduction to Elementary Particles - D. Griffiths (Wiley 1987)

Quarks and Leptons -F. Halzen & A.D. Martin (Wiley 1984)

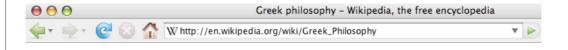
For more information that you could ever need on every particle ever: http://durpdg.dur.ac.uk/lbl/

Motivation

What's the interest in particle physics?

Particle physics collisions recreate conditions just after the **big** bang; the closest we'll ever get to the big bang on earth.

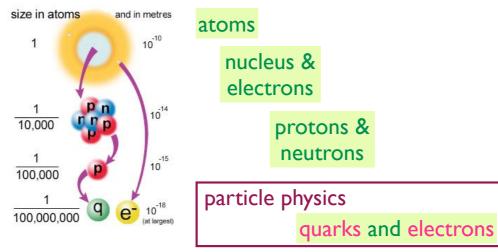
Matter and **anti-matter** were made in equal amounts: so why does the universe look like



To be able to explain what's correct and what's not in this book

Technology spin-offs
CERN: where the web was born!
Medical applications: e.g. PET
Magnetic resonance imaging (MRI)

The Questions of Particle Physics


Pre-Socratic philosophers

[edit]

- What is life?
- From where does everything come?
- Of what does it really consist?
- How do we explain the plurality of things found in nature?
- And why can we describe them with a singular mathematics?

Particle Physics still deals with the last four of these questions!

What is matter made from?

- How does these particles interact?
 - What are electromagnetic forces?
 - What holds nucleus together?
 - What causes radioactivity?
 - How does gravity act at such large distances?

9

Standard Model of Particle Physics

The simplest classification of the **fundamental particles** and their **interactions**

Matter - the fundamental constituents of the universe

- All mater elementary particles are fermions, spin ½ħ
 - leptons e⁻, v
 - quarks u, d proton = uud
- Every particle has an antiparticle e.g. positron(e⁺), antiproton (\bar{p})


Forces - the interactions between elementary particles

- Interactions between quarks and leptons are mediated by exchange of gauge bosons-spin 1ħ
 - Electromagnetic interaction photons (γ)
 - Strong force gluons (g)
 - Weak force W and Z
 - Gravity graviton
- Every force couples to a property of the fermions, e.g. electromagnetic force acts on the electric charge

The Electron

Discovered in 1897 by J. J. Thomson

1916 Noble Prize in Physics

Electron - elementary particle

• Point-like: size $< 10^{-6}$ fm $(10^{-21}$ m)

• Stable: lifetime > 4.6×10²⁶ yrs

• Electric charge,

$$q_e = -e$$

= -1.60217653(14) × 10⁻¹⁹ C

• Mass,

$$m_e = 0.510998918(44) \text{ MeV/c}^2$$

= 9.11×10⁻³¹ kg

• Spin, intrinsic property: ½ħ

The electron is a fermion i.e. electrons satisfy Pauli exclusion principle.

11

The Photon

Particulate nature of light was confirmed in 1924 by A. H. Compton.

Compton scattering: $\gamma \, e^- \to \gamma \, e^ \lambda - \lambda' = \frac{h}{m_e c} (1 - \cos \theta_\gamma)$

Photon - elementary particle

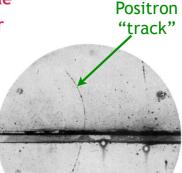
• pointlike: size $< 10^{-6}$ fm $(10^{-21}$ m)

• stable

1927 Noble Prize in Physics

No electric charge $q_{\gamma} \leq 5 \times 10^{-30} q_e$

Massless $m_{\gamma} \le 6 \times 10^{-17} \text{ eV}/c^2 \approx 10^{-52} \text{ kg}$


Energy $E_{\gamma} = h \nu = h c / \lambda$

Spin intrinsic property spin-1ħ photons are bosons

Antiparticles

Every particle has a corresponding antiparticle

Antiparticles of the SM particles are antimatter

Compared its matter partner, an antiparticle has:

- equal mass
- opposite electric charge
- opposite "additive" quantum numbers

Example: positron (e⁺) antiparticle of the electron ("anti-electron") Discovered in 1931 by Carl Anderson

Notation: bar over symbol or minus⇔plus

 $u \leftrightarrow \overline{u} \quad e^- \leftrightarrow e^+ \quad \nu_e \leftrightarrow \overline{\nu_e}$ e.g.

Elementary Particles

The particles that you know already; describes (most) of nuclear physics.

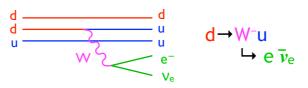
Leptons

Electron and neutrino

Quarks

Nucleons are bounds states of up- and downquarks

The Proton The Neutron


Beta Decay

$$\begin{array}{ccc} n & \rightarrow & p + e^- + \bar{\nu_e} \\ d & \rightarrow & u + e^- + \bar{\nu_e} \end{array}$$

Basic Constituents of Matter

Four spin-1/2 fermions

Particle	Symbol	Electric Charge	Туре
Electron	e ⁻	-	lepton
Neutrino	Ve	0	lepton
Up-quark	u	+2/3	quark
Down-quark	Ь	-1/3	quark

Generations

Nature replicates itself: there are three generations of quarks and leptons

Ist Genera	tion	2nd Generation		3rd Generation		charge
electron neutrino	Ve	muon neutrino	νμ	tau neutrino	ντ	0
electron	e ⁻	muon	μ-	tau	τ-	-1
up quark	u	charm quark	C	top quark	t	+2/3
down quark	d	strange quark	S	bottom quark	Ь	-1/3

Ordinary Matter: built from the 1st generation

Higher Generations:

- copies of (v_e, e⁻, u, d)
- undergo identical interactions
- only difference is mass of particles
- generations are successively heavier

Why 3 generations? symmetry/structure not understood!

15

Leptons

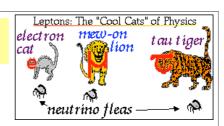
Leptons are particles that **do not** interact via the **strong force**.

Fermions - spin ½ħ

There are six distinct flavours:

- electron and its electron neutrino partner
- muon discovered by Anderson in 1936 in cosmic rays.

Very similar to electrons but ~200 times heavier


Unstable: lifetime is 2.2µs • muon neutrino partner

• tau: even heavier 3500 × m_e

Unstable: lifetime is 291 fs • tau neutrino partner

The additive quantum numbers are charge, Q, and Lepton Family Number, L_e , L_μ , L_τ

Lepton	Symbol	Charge	Mass	Lepto	n Family	Number
		e	$(\mathrm{MeV/c^2})$	L_e	L_{μ}	L_{τ}
Electron Neutrino	ν_e	0	< 0.001	+1	0	0
Electron	e^{-}	-1	0.511	+1	0	0
Muon Neutrino	ν_{μ}	0	< 0.001	0	+1	0
Muon	μ^-	-1	105.7	0	+1	0
Tau Neutrino	$\nu_{ au}$	0	< 0.001	0	0	+1
Tau	τ^{-}	-1	1777	0	0	+1

Leptons Properties

Charge and lepton family number are conserved in all interactions.

Question: how does a muon decay?

$$\mu^+ \rightarrow e^+ \gamma$$
 FORBIDDEN

$$\mu^- \to e^- \bar{\nu}_e \, \nu_\mu$$
 ALLOWED $\mu^+ \to e^+ \nu_e \, \bar{\nu}_\mu$

Charged leptons interact via electromagnetic and weak forces.

Neutrinos interact only via weak force.

- neutrinos are almost massless
- v_e and \overline{v}_e are distinct particles with different quantum numbers

$$L_e(\nu_e) = +1 \qquad L_e(\bar{\nu}_e) = -1$$

17

Quarks

- Quarks are fundamental fermions with spin-1/2ħ
- Six distinct flavours: u, d, s, c, t, b. Fractional charge: +2/3 e or -1/3 e
- Quark carry isospin, quark flavour and electric charge quantum numbers

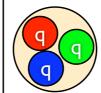
Quark	Symbol	Charge	Mass	Isospin	Quark Flavour
		e		(I,I_z)	quantum number
up	u	+2/3	$1.5 - 4.5 \; \mathrm{MeV}/c^2$	(1/2, +1/2)	-
down	d	-1/3	5 - $8.5~{ m MeV}/c^2$	(1/2, -1/2)	-
charm	c	+2/3	1 - $1.4~{ m GeV}/c^2$	-	C = +1
strange	S	-1/3	80 - $155~{ m MeV}/c^2$	_	S = -1
top	t	+2/3	$171.4 \pm 2.1~{ m GeV}/c^2$	m(proton) =	T = +1
bottom	b	-1/3	4 - $4.5~{ m GeV}/c^2$	938 MeV/ <i>c</i> ²	B = -1

- Quarks interact via the strong, electromagnetic and weak forces
- Quarks are never found isolated, they always combine into bound states called "hadrons" - confinement
- Quarks carry a new quantum number known as colour -
 - each quark has either red, blue or green colour charge
 - anti-quarks have anti-red, anti-blue or anti-green colour charge

Hadrons: Mesons & Baryons

- Free quarks have never been observed quarks are locked inside hadrons
- Hadrons are bound states of quarks: either (qqq) or $(q\overline{q})$
- Charge of hadron is always integer multiple of electric charge, e
- Colour charge of hadron is always neutral
- Two types of hadrons mesons and baryons

Mesons = $q\bar{q}$


Bound states of quark anti-quark pair

Bosons: spin 0, 1ħ, 2ħ e.g. pions

$$\pi^{+} = (u\overline{d})
\pi^{-} = (\overline{u}d)
\pi^{0} = \frac{1}{\sqrt{2}}(u\overline{u} - d\overline{d})$$

Baryons = qqq

Three quark bound states
Fermions: spin 1/2ħ, 3/2ħ ...
e.g. proton (uud), neutron (ddd)
anti-baryons e.g. anti-proton

$$p = (uud)$$

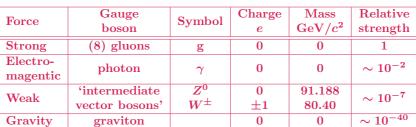
$$n = (udd)$$

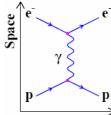
$$\bar{p} = (\bar{u}\bar{u}\bar{d})$$

10

Interactions: Classical & Quantum

Classical Interactions


electromagnetism and gravity - action at a distance


"...that one body may act upon another at a distance through a vacuum without the mediation of anything else, by and through which their action and force may be conveyed from one to another, is to me so great an absurdity that, I believe no man, who has in philosophic matters a competent faculty of thinking, could ever fall into it."

(Newton in a letter to Richard Bentley, 25 Feb. 1693)

Interactions and Forces in Particle Physics

quarks and leptons interact via exchange of spin-1ħ gauge bosons gravity does not (yet) fit into this framework

Time

The Fundamental Forces

Strong Force (gluon, g)

- Acts on colour charge i.e. only on quarks
- Holds hadrons together and nuclei together

Weak Force (W & Z)

- Acts on "weak hypercharge" i.e. on all quarks and leptons
- Responsible for fission, fusion and radioactive decays

Electromagnetic force (photon, γ)

- Acts on electric charge i.e. on all charged particles
- Hold atoms and molecules together

Gravity (graviton)

- Acts on mass ... i.e. on all particles except the photon and gluons
- v. weak on subatomic scales
- Responsible for large scale structure of the universe

21

Summary

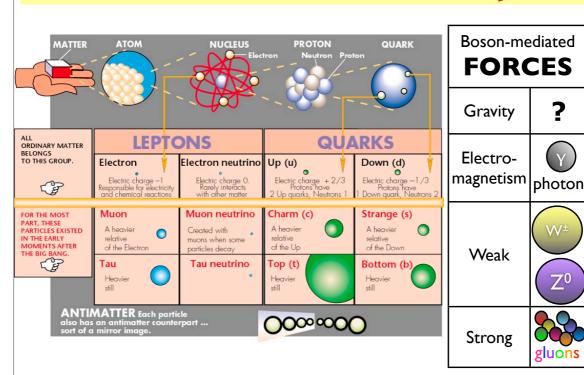
The Standard Model of Particle Physics

An elegant theory that describes accurately (almost) all measurements in particle physics

Matter

- fermions
- 3 generations of quarks & leptons

Quarks and Leptons			Charge, e
v _e	ν _μ	V _τ	0
e	μ	τ	-1
u	C	t	+2/3
d	S	b	-1/3


- Antimatter
- Quarks form into hadrons mesons and baryons

Forces

mediated by the exchange of gauge bosons

54456 5030113				
Interaction	Gauge Bosons	Charge, e		
Strong	gluons	0		
Electro- magnetic	Photon	0		
Weak	W, Z	0, ±1		
Gravity	graviton	0		

Standard Model of Particle Physics

