

The Higgs Mechanism

 In comes a noble prize winner; everyone wants to speak to him.
The physicists crowd around him.
The noble laureate is not free to move around; he has gained inertia by interacting with the crowd. 1. Physicists at a conference reception; all free to move around the room.

This is analogous to how the particles acquire mass: by interacting with the Higgs field. Laureates of different popularity gain different masses.

The Higgs Boson

The physicists gather together to spread the rumour. The group of physicist acquire inertia. The next evening; physicists enjoying another drink.

A rumour enters the room: the keynote speaker tomorrow will announce the discovery of a new particle!

3

The clustering of the field of physicists is as if a new massive particle has formed. This is the Higgs boson.

Neutrino Sources & Detectors

Where can we find neutrinos?

The Sun

• Standard Solar Model predicts rates and energy spectra for *v*_e

Cosmic rays

• $\pi^+ \rightarrow \mu \nu_{\mu}; \mu^+ \rightarrow e^+ \nu_e \overline{\nu}_{\mu}$

Nuclear Reactors

Accelerators

• Decay of muons: $\mu^- \rightarrow e^- \overline{v}_e v_\mu$

To detect neutrinos:

- Get a lot of stuff
 - e.g. water, cleaning fluid, steel...
- Leave in a area of neutrino flux
- Be patient.

5

Summary		
The Standard Model is a beautiful theory of (almost) all the measurements we see in particle physics But it isn't the whole picture.		"We can explain everything, but we understand (at a fundamental level) almost nothing!"
The Higgs mechanism explains the masses of the fermions and massive bosons.	Neutrinos flavours mix: $v_e \leftrightarrow v_\mu \leftrightarrow v_\tau$ Only possible if neutrinos have mass!	Supersymmetry is one popular theory for physics beyond the Standard Model.
Ultimately we think the electroweak, strong and gravitational forces should be described by one underlying interaction.		Lots of fun to come!