

Summary of Last Lecture								
The Standard Model of Particle Physics								
An elegant theory that describes accurately (almost) all measurements in particle physics								
Matter fermions 3 generations of quarks & leptons 					Forcesmediated by the exchange of gauge bosons			
Quark	Quarks and Leptons				Interaction	Gauge Bosons	Charge, e	
v _e e	v _µ µ	ν _τ τ	0 -1		Strong	gluons	0	
u d	C	t	+2/3		Electro- magnetic	Photon	0	
• Antimatter					Weak	W, Z	0, ±1	
 Quarks form into hadrons - mesons and baryons 					Gravity	graviton	0	

Introduction: Measurements in Particle Physics

Force

Strong

Electromag

Weak

- What properties of particles can we measure?
- How do we study the interactions, or the forces, between them?

Static Particle Properties

- Mass, *m*, Charge, *q*
- Magnetic moment
- Spin and Parity, J^π

Particle Decays

- Particle lifetime, τ , and width, Γ
- Allowed and forbidden decays → conservation laws

Particle Scattering

Two types: Elastic scattering *e.g.* $e^-p \rightarrow e^-p$; inelastic scattering *e.g.* $e^+e^- \rightarrow \mu^+\mu^-$

- Total cross section, **σ**.
- Differential cross section, $d\sigma/d\Omega$

Typical Cross

Sections

10 mb

10⁻² mb

10⁻¹³ mb

3

Typical

Lifetimes

10⁻²⁰ - 10⁻²³ s

10⁻²⁰ - 10⁻¹⁶ s

10⁻¹³ - 10³ s

Conservation Laws						
Noether's Theorem: Every symmetry of nature has a conservation law associated with it, and vice-versa.						
• Energy & Momentum; Angular Momentum						
conserved in all interactions						
Symmetry: translations in space and time; rotations in space						
Charge conservation						
conserved in all interactions						
Symmetry: gauge transformation - underlying symmetry in QM description of electromagnetism						
Lepton Number and Quark Number symmetry						
$L_e, L_\mu, L_ au$ number of quarks minus number of anti-quarks $N_q - N_{ar q}$						
symmetry: mystery!						
Quark Flavour, Isospin, Parity						
conserved in strong and electromagnetic interactions						
violated in weak interactions						
Symmetry: unknown						

Summary					
 Natural Units: set ħ=c=1 Measure energies in GeV Every quantity is measured as a power of energy 	 Particle lifetime and width Most particles decay, described by: lifetime, τ, time taken for sample to decrease to 1/e. Width, Γ=ħ/τ 				
Invariant Mass $p^2 = E^2 - \vec{p}^2 = m^2$ For a decay $A \rightarrow ab$ $M_A^2 = (p_a^\mu + p_b^\mu)^2$	Collider and Fixed Target Scattering e.g. $ab \rightarrow cd$ $s = (p_a^{\mu} + p_b^{\mu})^2$ $E_{\rm CoM} = \sqrt{s}$ More energy available at a collider to make new particles.				
The strength of an interaction can be described by the cross section, σ . Measured in barn = 10 ⁻²⁸ m ² .	Cross sections (and widths) can be calculated using Fermi's golden rule.				
Event rate = luminosity × cross section Number of events = time-integrated luminosity × cross section	Noether's Theorem: Every symmetry of nature has a conservation law associated with it, and vice-versa.				