Nuclear and Particle Physics Junior Honours:

Particle Physics

Lecture 2: Practical Particle Physics
February 12th 2007

How do we study the particles and the forces?

% Natural Units
%k Particle properties: lifetime and
width

% Relativistic kinematics
%k Scattering: cross sections,\/g

%k Fermi’s golden rule
sk Conservation laws

Summary of Last Lecture

The Standard Model of Particle Physics

An elegant theory that describes accurately (almost) all
measurements in particle physics

Matter Forces
e fermions e mediated by the exchange of
gauge bosons

e 3 generations of quarks & leptons

Gauge | Charge,

Quarks and Leptons | Charge, e Interaction Bosons o
Vee \:J“ \;T _01 Strong gluons 0
u | ¢ |t | 3 Electro- 1 ppoton | 0
q . b 173 magnetic

e Antimatter Weak W, Z 0, £1

e Quarks form into hadrons - Gravity |graviton 0

mesons and baryons




Introduction: Measurements in Particle Physics

e What properties of particles can we measure?
e How do we study the interactions, or the forces, between them?

Static Particle Properties . .
Force Typical Typical Cross

e Mass, m, Charge, g Lifetimes Sections

e Magnetic moment Strong [1020- 10235 10 mb

e Spin and Parity, J©
Electromag |10 - 10-%s| 102 mb

Particle Decays Weak 10713 - 103 s 103 mb

e Particle lifetime, 1, and width, I
e Allowed and forbidden decays — conservation laws

Particle Scattering

Two types: Elastic scattering e.g. e'p—ep; inelastic scattering e.g. e*e = p*u-
e Total cross section, ©.

e Differential cross section, do/dQ

Natural Units |

kg m s
Sl units: [M] [L] [T]

e For everyday physics Sl units are a natural choice: M student)~80kg.
e Not so good for particle physics: Mproton~10727kg

e We choose to work in a different basis - Natural Units. based on the
language of particle physics: quantum mechanics and relativity.

e The basis of natural units are:
* unit of action in QM: 71 (Js)
* velocity of light: ¢ (ms™)
* Unit of energy: GeV = 10°eV = 1.60 x 10710 J
Energy GeV Time (GeV/h)™
Momentum GeV/c Length (GeV/hc)™

Mass GeV/c? Area (GeV/hc)?




Natural Units I

Simplify even further by choosing ¢=hA =1
All quantities are expressed in powers of GeV

Energy GeV Time GeV'
Momentum GeV Length GeV-'
Mass GeV Area GeV?

Convert to Sl units by reintroducing missing factors of 4 and ¢
e Example: Area = 1 GeV2
[L)? = [E]2[A"[d™ = [B) 72 [B)[T)" [L]™T)™™ n=2,m =2
Area (in Sl units) =1 GeV2x h? ¢ = 3.89 x 1032 m2=0.389 mb

Other common units: ) s
e Masses and energies measured in MeV e lengthsin fm =10""m
e cross section measured in barn, b = 1022 m? e electric charge in units of e

Two useful relations:  pc = 197 MeV fm B = 6.582 x 10~22 MeV s

Particle Lifetime

e The signature of many particle interactions is a decay.

e Most particles decay. Decay is characterised by the lifetime of the decay,
the time taken for the sample to reduce to 1/e of original sample.
dN t r
— =——=——t = N(t) = Ngexp(—t/7) = Ngexp(—TIt/h)
dt T h
I = width (next page)

e In the lab, time is dilated. Particles travel L=ypct before decaying.
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Particle Resonance

o Lifetimes of particles can be very short, e.g. ~ unmeasurable!
lifetime Of A++ (UULI) iS 5)(10_24 S, CT=1 -5 fm- | Jly Mass Silicon Selection |

e Heisenburg Uncertainty Principle: energy and (A7 COF rainoary 1000
time are related: AFAt~h

e Natural width of a particle N=h/t=1/1

-
[
=

3
o Ny, =~2x10°
* 6~14MeV

Entries / 2 MeV
g

-3
=3

e For a short-lived particles, a ‘resonance’ appears
in the mass spectrum. e.g. J/y meson (cc)
decays to two muons: J/y—utu-

D
=3

40

MQ(J/W = (p;ﬁ ""pu*)Q 20
= pi+ +pi— + 2pu+pp,* T PR AR T

) ) 295 3 3.05 3.4 315 3.2 3.25
m, + m, + (E,u"‘ Eu— — Dut - pu—) Jiy Mass (GeV/c?)

Thu Aug §20:26:38 2004

e The mass of J/y not fixed, has an intrinsic uncertainty!'
e The total width of a particle is the sum of widths for all possible final
states.
(Total width = transition amplitude, Ti-f, can be calculated using Fermi’s golden rule.)
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Review: Relativistic Dynamics

Please review dynamics and relativity lectures 13-15.

e Two important quantities for Lorentz transformations:
B=u/c () = 1/y/1- 2

Four-momentum of a particle: P/ = (E/¢, ey Py, P=)

[ J
e Energy of a particle E? =% + m2c*  E =~ymc?
e Scalar product of 4-momentum: p* = p* - p, = (E/c)* — p? = m*c?

Particles with m=0 travel at the speed of light

istake in handouts
Natural Units

Lorentz boosts: v = E/m 6 = |p|/m B=I[p|/E

Four momentum:  p" = (E, ps, py, D2)

Invariant mass = p°> = E% — p? = m?




Review: Particle Decay

° Pb o o Pd
MA mp md

pi - (MA70> p'lL)L - (Ebaﬁb> pg - (Ed7ﬁd)
Before After

Decay of an unstable
particle at rest:

A-bd

e Four-momentum conservation:
pa=ny 4+, = p =0 —p}
Pi=D% + 03— 2pa-pa = M3 +m5+2MaE; =m?
M3 +m?2 —m;
2M 4

For moving particles, apply appropriate Lorentz boost.

= [ = Py = —Pd

e Example: 7" — v, work in rest frame of pion. m,=0

2 2
ms; +m

E, = T“ = 109.8 MeV  [Pu| = [Pu] = /E2 —m2 = 29.8 MeV /c
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Collisions and Scattering

Consider a collision between two particles: a and b
e Elastic collision: a and b scatter off each otherab — a b
e Inelastic collision: new particles are createda b — cd ...

Two main types of particle physics experiment:

e Fixed Target Experiments: A beam of a are

accelerated into a target at rest. a scatters
off b in the target.

/
——@
(E.7.) g

\ LAB Frame

e Collider experiments beams of a and b are
brought into collision

e a and b collide, usually p, = —pp
a - b :
(Eas Pa) (Eb, Db) CM Frame T3
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Fixed Target Scattering
ab-cd..

e beam of nq particles per unit area at velocity va

e Incident flux, Fq- number of particles crossing area normal to the
beam direction per unit time Fa= ng Va incident beam

e np: number of target particles
e We measure dN scattered particles in solid angle dQ per unit time

e Integrated event rate (per unit time) N = /deQ

detector

target sphere

e How do we relate this to the underlying physics we want to study?

e Differential cross section: probability to observe a scattered particle in dQ
do B Scattered flux/Unit of solid angle o // d—adQ
ds? Incident flux/Unit of surface s}

e The total cross section, o, effective area of the scattering, normalised to incident flux.

* Define the luminosity, L = 72,Vq 1 Cross sections measured
dN do £dg N, in barn, 1b = 1028 m?
—— = NgUNp—~ = L— = = :
a0 aVa bdQ a0 o Generally: nb, fb

o ' Luminosity: inverse area/unit time:
Event rate = luminosity x cross section measured in 103034 cm-2s-!
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Collider Scattering

e Define the invariant quantity, s: ab—-cd....
s = (ph+1y) (Pap+Dou) s N b
_ 2 2 > <€
= pa2+ Db -2|-2papb (Ea, D) ! \ (Ey, 7))
= mZ+mi +2(E,Ey — |ul|Py| cosb)

[s is the energy in centre of momentum frame Ecom = \/g
This is the total energy of the collision available to crate new particles!

Normally E>>m, and 6=180"  FE v ~ \/4F, E),

e Example: Large Electron Positron Collider at CERN
collided electrons and positrons with E.=45.6 GeV
from 1989-1995.

Ecm = 2Ee = 91.2 GeV.

e Cross section to create Z -bosons at /s=91.2 GeV: o
(e*e—=Z—hadrons) = 26 nb
e How many Z—hadrons events were created for the
: - ; total integrated luminosity of [£ dt = 162 pb~'?
Event rate = luminosity x cross section
= Number of events = time-integrated luminosity x cross section

e Number of events = [£ dt x 6 = 26,000 x 162 = 4,536,000
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/s at Collider and Fixed Target

Fixed Target Collision

_ 2 2 T a /
s = mi+mj+2(E.Ey — |Du||pp| cosl) — °

= mg + m% + 2E,my, (E, Pa)
e ForEq>>ma, mp s =2E,my

Ecom = v 2E,my

e e.9. At NA48 450 GeV protons hit protons in target:

Ecom = V2 x 450 x 1 = 30 GeV

Collider Experiment ab-cd.
s = mi+m}+2E.By — |Pallph coso) a N / b
e For Eq= Ep>> Mqa, Mp, COS O=TT Ea,Da) ! \ (Ev, py)

s =4E? Ecom =2E
e e.9. The SppS collider at CERN in the ’80s collided p and p with E=270GeV
ECOM = 540 GeV
e In a fixed target experiment most of the proton’s energy is wasted providing
momentum to the COM system rather than being available for the interaction.
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Fermi’s Golden Rule

What do measured cross sections tell us about the properties of the interactions?

e The transition rate, the probability of the interaction per unit time, depends on
the cross section and the flux:

Ti_>f = Fo
e Fermi’s Golden Rule: gives for a transition between two eigenstates of a system.
(from time dependent perturbation theory)
density of final states
Ty = !Mfz 2pe”

Matrix element, containing My — <,U , ‘H
the fundamental physics ' gl

¥ >

e The initial state | ;) is the two particles a and b (including 4-momenta).

e e.g. scattering reactionab — cd

e The final state |y is two particles ¢ and d (including 4-momenta).

e Density of final states: measures how many possible final states for a b scattering exist
e In the next lecture we will see how to calculate matrix elements.
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Conservation Laws

Noether’s Theorem: Every symmetry of nature has a conservation law associated
with it, and vice-versa.

e Energy & Momentum; Angular Momentum

conserved in all interactions

Symmetry: translations in space and time; rotations in space
e Charge conservation

conserved in all interactions

Symmetry: gauge transformation - underlying symmetry in QM description of
electromagnetism

e Lepton Number and Quark Number symmetry
Le, L,,, L; number of quarks minus number of anti-quarks /N, — IV,
symmetry: mystery!
e Quark Flavour, Isospin, Parity
conserved in strong and electromagnetic interactions
violated in weak interactions
Symmetry: unknown
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Summary

Most particles decay, described by:

* Measure engrgigs in GeV o lifetime, T, time taken for sample to
e Every quantity is measured as a decrease to 1/e.

power of energy o Width, M=h/t

Invariant Mass Collider and Fixed Target Scattering

2 2 =2 2 e.g. ab—cd...
p°=FK P =m
s=(ph + )" Ecom = /s
) e More energy available at a collider to
My = (ph +0p,) make new particles.

For a decay A—ab

The strength of an interaction can
be described by the cross section,
0. Measured in barn = 10728 m2,

Cross sections (and widths) can be
calculated using Fermi’s golden rule.

Event rate = luminosity x cross section | Noether’s Theorem: Every symmetry of
Number of events = time-integrated nature has a conservation law associated
luminosity x cross section with it, and vice-versa.
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