Nuclear and Particle Physics Junior Honours: **Particle Physics** Lecture 4: Accelerators and Detectors February 19th 2007

DOCTOR FUN

- Particle Beams and Accelerators
 - Particle Physics Labs
 - Accelerators
 - Synchrotron Radiation
- Particle Detectors:
 - Interactions of particles with matter
 - A modern collider detector
 - particle identification

1

SLAC, California	SLC	e⁻ e⁺	50 GeV e ⁻ and 50 GeV e ⁺
	PEP II	e⁻e⁺	9.0 GeV e ⁻ and 3.1 GeV e ⁺
Fermilab, near Chicago	Tevatron	рÞ	980 GeV p and 980 GeV p
CERN, Geneva	LEP	e⁻ e⁺	E _{CoM} : 89 to 206 GeV
	LHC	рр	Е _{сом} : 14 ТеV
DESY, Hamburg	HERA	e⁻ p	920 GeV p and 30 GeV e⁻
KEK, near Toyko	KEKB	e⁻ e⁺	8.0 GeV e ⁻ and 3.5 GeV e ⁺
Brookhaven National Lab, Long Island	RHIC	AuAu, CuCu	200 GeV/nucleon
		1	NC.
Fernalish	P-		Avana -

Charged Particle Tracking

- Charged particle trajectories are curved in magnetic fields.
- Measure the momentum transverse to the field.

$p_T[{\rm GeV}/c]=0.3\,B[{\rm T}]\,\rho[{\rm m}]$

- Old method: use a homogenous substance to trace out the entire motion.
- Modern method: take several position measurements as charged particle passes. Reconstruct a 'track'
- Silicon detector: charged particle ionises silicon semiconductor. Six very accurate position measurements.
- Drift chamber: large volume filled with argonne-ethane-CF₄ mixture. Gas is ionised and drifts towards cathode and anode wires. 96 position measurements per track.

Electromagnetic and Hadronic Calorimeters

- Electrons, positrons and photons produce electromagnetic showers
- Hadrons: $(\pi^{\pm}, K^{\pm}, K^{0}, p, n)$ produce hadronic showers
- Calorimeters measures the energy deposited.
- CDF uses a **sampling calorimeter**: sample parts of the shower. Extrapolate to obtain the full amount of energy.
 - CDF electromagnetic calorimeter: Lead + light sensitive scintillator.
 - CDF hadronic calorimeter: Iron + light sensitive scintillator.
- Better energy measurements may be made using a homogeneous calorimeter measures all deposited energy e.g. scintillating crystals (NaJ, Csl, BGO, ...) or cryogenic liquids(argon, krypton, xenon).

17

Particle Identification

- All charged particles: Hits in the tracking detectors are linked together to reconstruct the 'tracks'.
- Electrons: A track and a narrow cluster of energy in the electromagnetic calorimeter.
- Muons: Tracks matching to hits in the muon detector.
- Photons: A narrow cluster of energy in the electromagnetic calorimeter, and no track.
- Neutrinos: Inferred from their absence, using an energy balance technique.
- Pions/Kaons/protons: Track and calorimeter energy. energy loss dE/dx can be used to separate p, π and K.
- Neutrons energy in electromagnetic and hadronic calorimeter.

• Use information from all detector subsystems to identify which particle was seen.

