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Bunny researchers at the High Energy Candy Collider generate exotic
short-lived isotopes of Peeponium.

Particle Acceleration

e Charged particles are accelerated to high momenta using
electromagnetic fields: e*, e, p, p, Au, Pb, Cu nuclei, p*

e Why accelerate particles?
e High beam energies = high Econ = more energy to create new
particles
e Higher energies probe shorter physics at shorter distances
o De-Broglie wavelength: ~ A _ e 197 MeV fm
2T pc p [MeV /c|

e e.9. 20 GeV/c probes a distance of 0.01 fm.

e An accelerator complex usually uses a variety of particle acceleration
techniques to reach the final energy.




Particle Physics Colliders around the World
SLC e e’ 50 GeV e™ and 50 GeV e*
SLAC, California
PEP Il e e’ 9.0 GeV e~ and 3.1 GeV e*
Fermilab, near Chicago | Tevatron | pp 980 GeV p and 980 GeV p
LEP e et Ecom: 89 to 206 GeV
CERN, Geneva
LHC pp Ecom: 14 TeV
DESY, Hamburg HERA e p 920 GeV p and 30 GeV e~
KEK, near Toyko KEKB e et 8.0 GeV e~ and 3.5 GeV e*
Brookhaven National AuAu,
Lab, Long Island RHIC CuCu 200 GeV/nucleon

The Tevatron Complex

e As a example, we’ll follow the chain of the Tevatron accelerator.

FERMILAB'S ACCELERATOR CHAIN
— MAIN INJECTOR
&

" TARGET HALL

TEVATRON

- .

DZERO

5 < ANTIPROTON
SOURCE

~
o
(Y BODSTER

o7 UNac

u
COCKCROFT-WALTON

Proton source: 7 litre
bottle of hydrogen.
Cost USS200. 1 bottle A
lasts about a year & S e~

PROTON

Cockroft-Walton
Accelerator

DC Voltage accelerates

particles through steps

to about 1MV




Linac

e After Cockfroft-Wolton is the linac: linear accelerator.

e Charged particles in vacuum tubes accelerated by an
alternating current, with a very high frequency, “Radio
Frequency” (RF)

e frequencies typically a few 100 MHz

e Field strengths - few MV/m requires specialised power
sources: klystrons .
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e The Cyclotron - invented by Ernest Lawerence
e Two D-shaped electrodes - perpendicular magnetic field

e Constant frequency AC current applied to each
electrode

e (Can to accelerate particles to ~10 MeV

e At higher energies relativistic effects take over,
circular path cannot be maintained need...

e Synchrotron accelerators use variable B-field strength and
radio frequency E-field, synchronised with particle speed to
accelerate charged particles to relativistic energies.

e Series of bending and
focussing magnets

e Beams have a constant radius in a synchrotron.
e Synchrotrons used as storage rings and colliders.

e Many synchrotrons used at the Tevatron:

e Booster: proton energy from 400 MeV to
8 GeV

e Accumulator: stores antiprotons at 8 GeV
e Main Injector: 8 GeV to 120 GeV
e Tevatron: 120 GeV to 980 GeV

e Storage ring: once particles have desired
energy, they can be stored. Typically 8-24h.

e The Tevatron stores both the proton and
anti-proton beam travelling in opposite
directions.

e Collider: two beams are steered to collide
at two points in the (CDF and D@
experiments).




Antiproton Production

e Protons from the main injector are fired onto a nickel
target.

e 1 million protons produces 20-30 8 GeV antiprotons.
e Magnetic field used to separate p from p.

e Stored in the accumulator synchrotron for several hour
to several days - until required for collision in Tevatron.

e At the end of a ‘store’ in the Tevatron any remaining
antiprotons are stored in the recycler synchrotron.
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In a synchrotron the accelerated
charged particles emit photons:
synchrotron radiation.
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The energy lost every turn depends
of the energy and mass of the
particle (y=E/m) and the radius of
the orbit, p:
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Synchrotrons are used as high-
energy photon sources

In a storage ring, the energy lost
due to synchrotron radiation must
be returned to the beam to keep
the collision energy constant.
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Interactions with Matter

Tracking Electromagnetic Hadron Muon
chamber calorimeter  calorimeter charmber

Innermost Layer... =————J ... Outermost Layer

e At an experiment we have to be able to detect all the particle that live long
enough to interact with the detector.

e Detector is generally a few centimetres from the interaction point.

e Length travelled before decay is L=Byct, anything with 1>~10-'0 s might appear in
detector

o e, 5 K5 KO, p,n, y, v
e Use series of different detection techniques to identify these particles.
e Infer the existence of shorter-lived particles from the decay produces.
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Charged Particle Energy Loss

e Energy loss of charged particle through matter is described by Coulomb scattering.
Moving charged particles scatter off atomic electrons causing ionisation.

e Energy loss of charged particles by ionisation is given by Bethe-Bloch formula:
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e Ny4: Avogadro’s number
e Z, A atomic and mass number of medium
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e re=2.82 fm (classical radius of electron) 0.1 1.0 IOﬁY:p”égO
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Interactions of Photons

e Photons are neutral, Bethe-Bloch formula does not B @ Catbon (Z=6) 7
app ly. IMb %% o - experimental Oy _

e Photons can create charged particles (e.g. y—e*e") i
or transfer energy to charged particles:

e low energies (<100 keV): Photoelectric effect

e
y +atom —> atom” +e”

e medium energies (-1 MeV): Compton scattering

1kb

Cross section (barns/atom)

10 mb

e high energies (> 10 MeV): e+e- pair production
in electric field of nucleus
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(b) Lead (Z=82) -
o -experimental Oy

¥ + nucleus - e*e” + nucleus

¢ Intensity of photon energy decreases over distance:

1kb [~

Cross section (barns/atom)

I, = Iyexp(—px)

K = Kphoto + HCompton + Mpair '
— NA . 2 10 mb 2 A
,U’Z - 0-7, cm g 10eV 1 keV 1 MeV 1GeV 100 GeV
A Photon Energy
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Interactions of electrons and positrons

Response of electrons, positrons and photons are inter-linked.

In addition to ionisation energy loss, electrons lose energy by
Bremsstrahlung: e-—ey

Positrons annihilate with electrons in matter making pairs of photons:
e*e —yy

e For e+, e-, y: end result is an electromagnetic shower. Total energy
transferred to detector is related to initial energy of the particle.

W”Wcﬁ%
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A Modern Collider Detector

e Use CDF at the Tevatron as an example.

e Most collider detectors are quite similar - same components blocks:
different implementations

e From inside to out:
1. Silicon tracker 4. Electromagnetic Calorimeter

2. Gaseous tracker 5. Hadronic Calorimeter
3. 1.4 T Solenoid Magnet 6. Muon detectors

Charged particle trajectories are curved
in magnetic fields.

Measure the momentum transverse to the
field.

pr(GeV/c] = 0.3 B[T] p[m]

Old method: use a homogenous substance
to trace out the entire motion.

Modern method: take several position
measurements as charged particle passes.
Reconstruct a ‘track’

Silicon detector: charged particle ionises _ |
silicon semiconductor. Six very accurate
position measurements.

Drift chamber: large volume filled with
argonne-ethane-CF4 mixture. Gas is
ionised and drifts towards cathode and
anode wires. 96 position measurements
per track.




Electromagnetic and Hadronic Calorimeters

Electrons, positrons and photons produce electromagnetic showers

Hadrons: (m%, K*, K%, p, n) produce hadronic showers

Calorimeters measures the energy deposited.

CDF uses a sampling calorimeter: sample parts of the shower. Extrapolate to
obtain the full amount of energy.

e CDF electromagnetic calorimeter: Lead + light sensitive scintillator.
e CDF hadronic calorimeter: Iron + light sensitive scintillator.

e Better energy measurements
may be made using a
homogeneous calorimeter -
measures all deposited energy
e.g. scintillating crystals (NaJ,
Csl, BGO, ...) or cryogenic
liquids(argon, krypton, xenon).

Particle ldentification

All charged particles: Hits in the e Use information from all detector
tracking detectors are linked together subsystems to identify which particle
to reconstruct the ‘tracks’. was seen.

Electrons: A track and a narrow . _

. Particle Detector Flectromagnetic  Hadron
ClUSter Of energy n the at e+e- Collider Tracking Calorimeter
electromagnetic calorimeter.

Muons: Tracks matching to hits in the
muon detector.

Photons: A narrow cluster of energy in
the electromagnetic calorimeter, and
no track.

Neutrinos: Inferred from their
absence, using an energy balance
technique.

e+e- > qg
Production

Pions/Kaons/protons: Track and
calorimeter energy. energy loss dE/dx Parton Shower/
can be used to separate p, m and K. Hedronisation

Neutrons energy in electromagnetic
and hadronic calorimeter.
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Neutrino Identification at Colliders

e Neutrinos: Neutrinos are not charged, very small cross section = they do not
interact at all in the detector.

e Incoming momentum of the collision is along beam direction. Momentum in
the detector should balance perpendicular to beam.

e We infer neutrinos for absence of momentum seen in a particular direction.

Direction of
momentum carried
away by neutrino

19

Summary

e We accelerate particles to obtain more Ecom to produce new
particles.

e Probes very short distance scales, very short lived particles.

e Linacs and Synchrotrons are main accelerating structures.
e Synchrotron radiation: energy loss due to photon emission:
e energy need to be added back to beam at a collider
e can be exploited produce high frequency light

e Particle detectors strive to reconstruct all long-lived particles.

e System of complex subdetector systems used to reconstruct
position, momentum, energy and particle type.
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