

Much Ado about Isospin				
 Isospin was introduced as a quantum number before it was known that hadrons are composed of quarks. Now we know it describes the number of up and down quarks in hadrons. Total isospin, <i>I</i> third component of isospin, <i>I</i> 	Quark u d ū d	$ I \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 1/2 $	$\begin{array}{c} I_Z \\ +1/2 \\ -1/2 \\ -1/2 \\ +1/2 \end{array}$	
$I_Z = \frac{1}{2} \left[N(\mathbf{u}) - N(\mathbf{d}) + N(\mathbf{d}) - N(\mathbf{u}) \right]$ Two hadrons with the same isospin, <i>I</i> , exhibit a symmetry: they have roughly equal mass and the strong force between the constituent quarks is equal. <i>Example</i> : Pions: π^+ , π^0 and π^- have m(π^\pm)=139.6 MeV/c ² , m(π^0)=135.0 MeV/c ² .				
• π^+ is ud: $I_Z = \frac{1}{2} + \frac{1}{2} = 1$ • π^0 is uu or dd: $I_Z = \frac{1}{2} + (-\frac{1}{2}) = 0$ • π^- is du: $I_Z = (-\frac{1}{2}) + (-\frac{1}{2}) = -1$ Total isospin is the highest value of the I_Z . π^+ , π^0 , π^- all have $I = 1$				

Mesons				
Mesons: bound state of a quark and an anti-quark. They have: • Zero net colour charge. $ \psi\rangle = \frac{1}{\sqrt{3}} r\overline{r} + g\overline{g} + b\overline{b}\rangle$ • Zero net baryon number. $\mathcal{B}=\pm 1/3 \pm (-1/3) = 0$	Parity of a meson: $\pi(q\bar{q}) = \pi(q)\pi(\bar{q})(-1)^{L}$ $= (+1)(-1)(-1)^{L} = -1^{L+1}$			
 Psudeo-scalar mesons: J^π=0⁻ Ground state of qq̄ combination Angular momentum, L=0 Spin of quark and antiquark anti-aligned ↑↓ or ↓↑ S=0 Total angular momentum J=L+S=0)			
 Vector Mesons: J^π=1⁻ First excited state of qq̄ combination. Angular momentum, L=0 Spin of quark and antiquark aligned ↑↑ or ↓↓ S=1 Total angular momentum J=L+S=1 				
Mesons are bosons, they have integer spin: 0, $1\hbar$, $2\hbar$,				

Heavier Mesons and Baryons

We can also use the quark model to predict hadrons with charm and bottom quarks. Need to use more quantum numbers:

- Charge, Q (or isospin, I)
- Strangeness, S
- Charm, C and/or bottom-ness, B
- Hypercharge Y = \mathcal{B} +S+C+B+T

Charmed Mesons and Baryons

- $J^{\pi}=0^-$: $D^0 = c\bar{u}$, $D^+=c\bar{d}$, $D_{S^+}=c\bar{s}$
- $J^{\pi}=1^-$: $D^{*0} = c\bar{u}$, $D^{*+}=c\bar{d}$, $D_S^{*+}=c\bar{s}$
- $J^{\pi}=1/2^+$: $D^0 = c\bar{u}, D^+=c\bar{d}, D_S^+=c\bar{s}$

Bottom Hadrons

- $J^{\pi}=0^-$: B⁺ = ub, B⁰=db, B_S⁺=sb
- *J*^π=1⁻: B^{*+} = ub, D^{*+}=db, D_S^{*+}=sb
- $J^{\pi}=1/2^+$: $\Lambda_b^0 = bud$

Most recently discovered meson B_C⁺=bc

The top quark does not form hadrons!

11