

Muon Decay					
How does a muon μ^- decay? • Must decay into lighter particles: e^{\pm} , γ , v . In particular, all hadrons are heavier than m_{μ} . L_e , L_{μ} , L_{τ} conservation \Rightarrow only decay is $\mu^- \rightarrow e^- \bar{v}_e v_{\mu}$ Maximum momentum transferred by the W boson is $\sigma \propto \mathcal{M} ^2 \propto \frac{g_W^4}{(q^2 - m_W^2)^2} \rightarrow \frac{g_W^4}{m_W^4} \propto G_F^2$	$\mathcal{M} \propto \frac{g_W^2}{q^2 - m_W^2}$ $\frac{\mu^- g_W}{v_\mu} \frac{v_\mu}{v_\mu}$ $q = (m_\mu - m_{\nu_\mu})c W^2 \frac{v_e}{g_W}$ e^-				
Width (or decay rate) $\Gamma_{\mu} = \hbar/\tau_{\mu} \propto \sigma$ measures how quickly the decay happens: $\Gamma_{\mu} \propto G_F^2$ • Γ has dimensions of energy, [E]; • G_F^2 has dimensions [E] ⁻⁴ To balance dimensions, use m_{μ} (only other scale in the problem)	Experimental measurements • $\tau_{\mu} = 2.19703 \times 10^{-6} \text{ s}$ • $m_{\mu} = 105.658369 \times 10^{5} \text{ MeV/c}^{2}$ used to extract G_{F} (and g_{W}) $\Rightarrow G_{F} = 1.16637(1) \times 10^{-5} \text{ GeV}^{-2}$				
$\Gamma_\mu=KG_F^2m_\mu^5~~$ (K: dimensionless constant) full calculation gives: $\Gamma_\mu=G_F^2m_\mu^5/(192\pi^3)$	4^{th} year project: measure τ_{μ} and m_{μ}				

Weak Hadron Decays

As the strong and electromagnetic forces conserve *S*, *C*, *B* Lightest hadrons with non-zero *S*, *C*, *B* quantum numbers **must** decay by weak force! Consider the interactions of the constituent quarks.

15

Nobel Prize for Physics 1984

To Carlo Rubbia and Simon van der Meer, from CERN "For their decisive contributions to large projects, which led to the discovery of the field particles *W* and *Z*, communicators of the weak interaction."

• Precision tests of the Standard Model

Weak Interaction Summary					
Weak force acts on all quarks and leptons.	Two massive bosons propagate the weak interaction: <i>W</i> and <i>Z</i> .	Lepton Universality: interactions of all leptons are identical.			
W-boson vertex: fermion flavour change $e^- \leftrightarrow v_e \mu^- \leftrightarrow v_\mu \tau^- \leftrightarrow v_\tau$		Z-boson vertex: no flavour change			
$(Q=+2/3 \ e \ quark) \leftrightarrow (Q=-1/3 \ e \ quark)$ quark coupling: $g_W V_{qq'}$ lepton coupling: g_W propagator term: $1/(q^2-m_W^2)$		coupling: g'w propagator:1/(q²-mz²)			
At low energies (q ² < <mw<sup>2) W-bosons interactions described by Fermi</mw<sup>	Electromagnetic & weak are manifestations of a single unified electroweak interaction. (with just 3 parameters)	Standard Model describes electroweak and QCD. Beautifully verified by experiment, apart from missing Higgs boson.			
$G_F \propto \frac{g_w^2}{m_W^2}$	Particle widths, $\Gamma = \hbar/\tau \propto$ Total width is sum of all f e.g. $\Gamma_{\tau} = \Gamma(\tau \rightarrow \mu \nu \nu) + \Gamma(\tau \rightarrow e$	$\frac{\hbar/\tau \propto \sigma}{\text{BF} = \Gamma(\tau^- \to X)/\Gamma_\tau}$ of all final states widths: $\Gamma(\tau \to evv) + \Gamma(\tau \to hadrons + v)$			

Standard Model Interactions					
QED	QCD	Weak Neutral Current	Weak Charged Current		
quantum theory of EM interactions	quantum theory of strong interactions	quantum theory of weak interactions			
mediated by exchange of virtual photons	mediated by exchange of gluons	mediated by exchange of Z bosons	mediated by exchange of W bosons		
acts on all charged particles	acts on quarks only	acts on all quarks and leptons			
couples to electric charge	couples to colour charge	does not change quark or lepton flavour	changes quark and leptons flavours		
coupling strength $\propto e \propto \sqrt{\alpha}$	coupling strength $\propto g_S \propto \int \alpha_S$	coupling strength ∝ g'w	coupling strength $\propto g_W \propto \int a_W$		
propagator: 1/q ²	propagator: 1/q ²	propagator: $1/(q^2-M_z^2)$	propagator: 1/(q ² -Mw ²)		
$e^{-\frac{e}{\gamma}}$ $q^{\frac{Q}{\gamma}}$ $q^{\frac{Q}{\gamma}}$ $q^{\frac{Q}{\gamma}}$	q d d g g	e^{i}, v_{e} $v_{Z^{0}}$ $q \rightarrow v_{Z^{0}}$	$e^{-\frac{g_{w}}{V_{w}}}$, $u^{V_{e}}$, $u^{W^{*}}$, $u^{W^{*}}$		

