
Nuclear and Particle Physics Junior Honours: Particle Physics

Review Lecture March 19th 2007

- Natural Units
- * Relativistic Dynamics
- Anti-matter
- * Quarks, Leptons & Hadrons
- Feynman Diagrams and Feynman Rules
- * Decays
- * QED, QCD, Weak
- * What you don't need to know

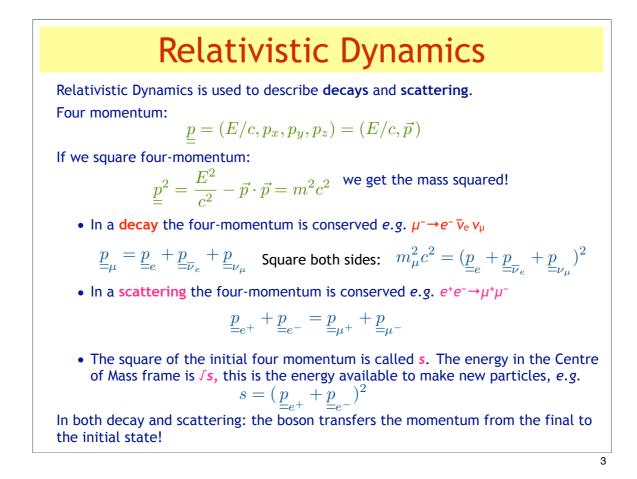
The Standard Model

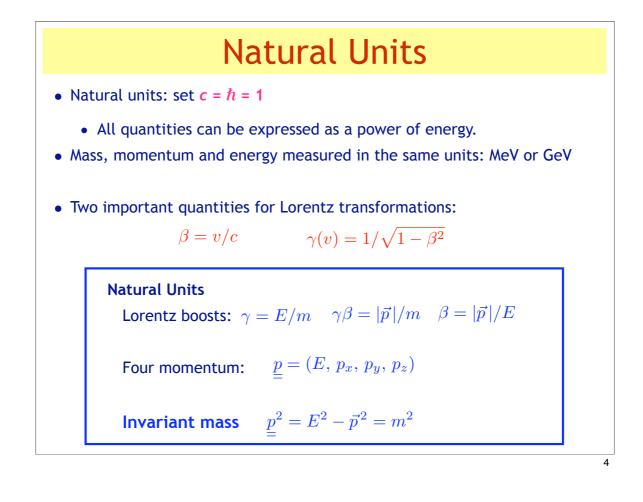
The Standard Model describes more-or-less everything we currently know about particle physics: the matter **particles** and the three of the four forces which describe their **interactions**.

Matter: aka the fermions

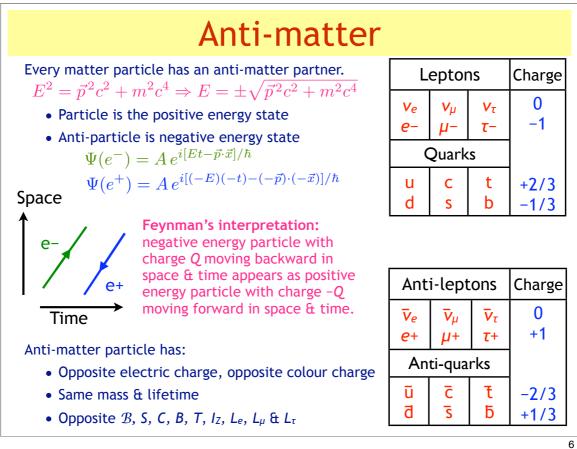
Leptons			Charge, e		
V _e	ν _μ	ν _τ	0		
e-	μ-	τ−	-1		
Quarks					
u	C	t	+2/3		
d	S	b	-1/3		

Two processes/quantities used to examine interactions:


- Decay lifetimes
- Scattering cross sections


Forces

• Interactions are propagated by the exchange of bosons


Interaction	Bosons	Q, e	
Strong	gluons, g	0	
Electro- magnetic	photon, γ	0	
Weak	<i>₩</i> [±] , <i>Z</i> ⁰	0, ±1	
Gravity	?	?	

1

Matter							
Six quarks and six leptons		1st	2nd	3rd	Q		
Matter is grouped into three generations. Each generation consists of: • 1 lepton with Q=-1e		v e e −	ν _μ μ-	ν _τ τ-	0 -1e		
 1 neutral lepton Q=0 (v) 1 quark with Q=+2/3e 1 quark with Q=-1/3e 		u d	C S	t b	+2/3e -1/3e		
Each generation is successively heavier.		Le	,	Lμ	Lτ		
Quantum Numbers • Leptons L _e , L _μ , L _τ		+1 0 0		0 +1	0 0		
• Quarks:		0		0	+1		
 Isospin, Iz=½[N(u)-N(d)+N(d)-N(u)] Baryon number, B=1/3 for quarks, B=-1/3 for anti-quarks Strangness: S, Charm: C, Bottomness: B, Topness: T - number of s, c, b, t S=N(s)-N(s) C=N(c)-N(c) B=N(b)-N(b) T=N(t)-N(t) 							
• Every quark carries a colour charge: red, blu	<mark>e or</mark> gree	en					

Hadrons

Free quarks are never observed.

Quarks are always found in bound colour-neutral states:

- Mesons: a quark and an anti-quark
- Baryons: three quarks
- Anti-baryons: three anti-quarks

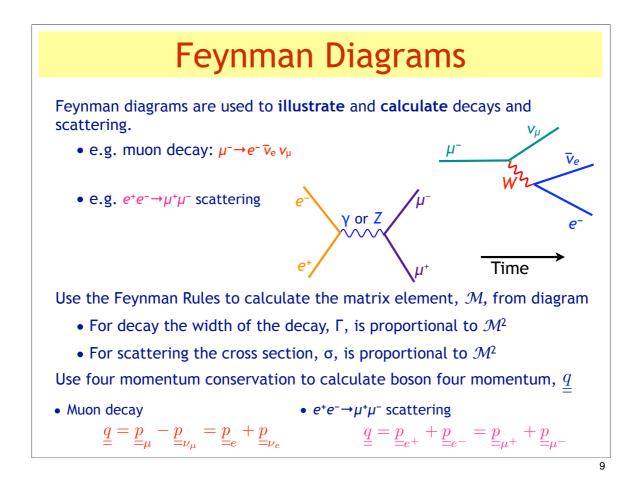
Colour confinement

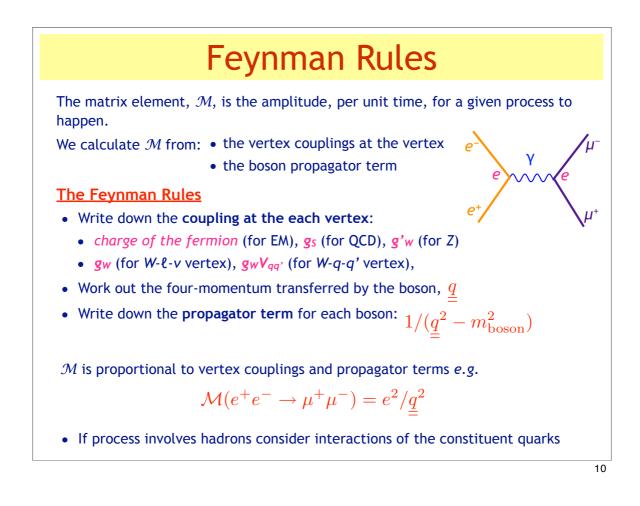
- The quarks are confined to hadrons due to QCD
- gluon self-interactions... & coupling constant αs increases as quarks become further apart

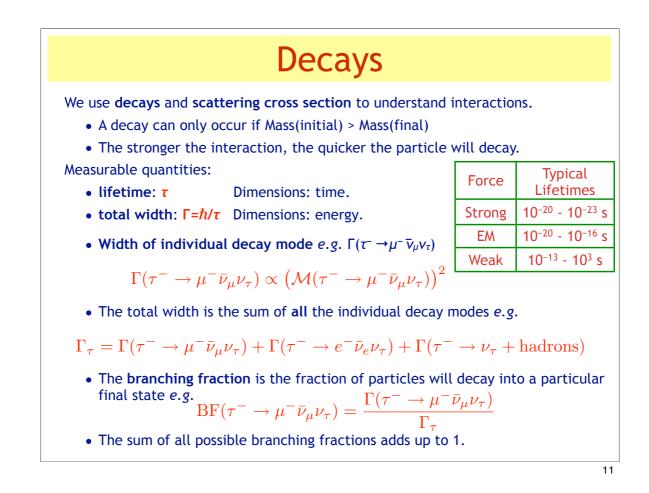
Interactions

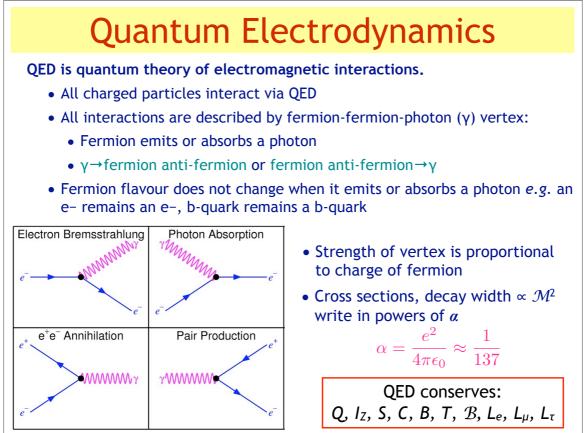
• Consider the interactions of the individual quarks

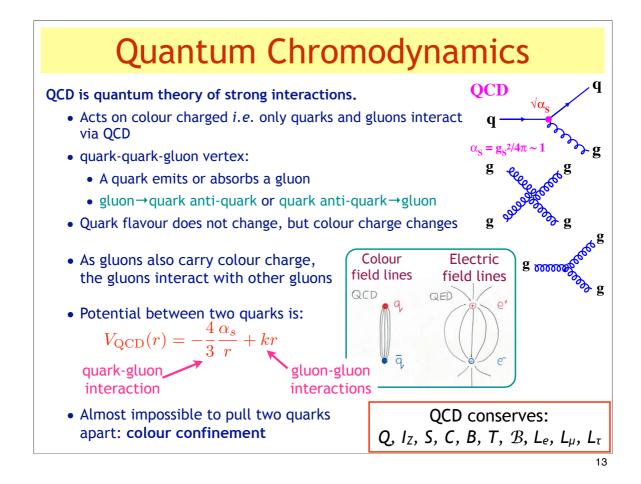
Forces & Interactions

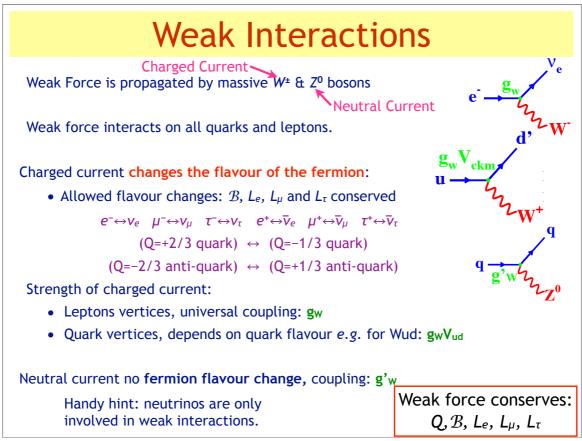

Three forces to consider: strong (QCD), electromagnetic (QED) & weak.

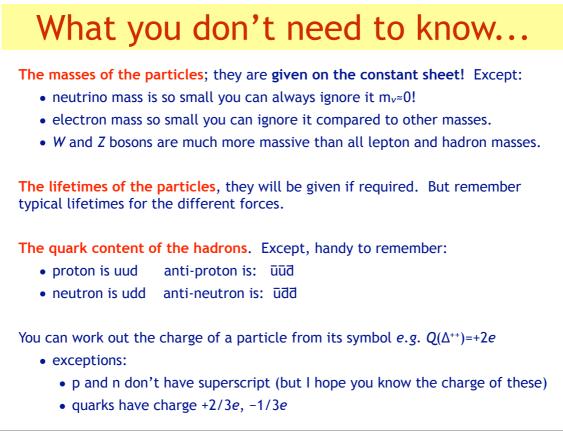

- Weak force has two parts: charged current and neutral current
- Forces are propagated by the exchange of bosons.
 - Bosons exchange four momentum, ${\underline{q}}$, between the initial and final state


Strength of interaction is acts on some properties of the particle, e.g. electromagnetic force is couples to electric charges of interacting particles


Strong	exchange of gluons	couples to colour charge			
Electromagnetic	exchange of photons	couples to electric charge			
Weak Neutral Current	exchange of Z ⁰ boson	couples to all fermions with strength g'w			
Weak Charged Current	exchange of W^{\pm} boson	couples to all fermions with strength gw			


The exchanged bosons are often **virtual** (as opposed to real). Virtual: square of four momentum is not mass squared: $\underline{\underline{q}}^2 = E^2 - \vec{p} \cdot \vec{p} \neq m_{\text{boson}}^2$ Allowed by HUP; we can never directly detect virtual bosons: only their effects.





$\begin{array}{l} \textbf{Weak Interactions at Low Energy}\\ \textbf{If four-momentum } \underbrace{ \mbox{\P} \ transferred by a W-boson is small, } \underbrace{ \mbox{\P} \ \mbox{\P} \ \mbox{$\|\Psi^{W}$} \ \mbox{$use Fermi constant, G_{F}, to describe process}\\ \hline \mbox{$G_{F} = \frac{\sqrt{2} \, g_{w}^{2}}{8 \, m_{W}^{2}}$ \ e.g. Fermi constant can be used to describe beta decay rates}\\ e.g. muon decay has one allowed decay mode $\mu^{-} + e^{-} \overline{v}_{e} v_{\mu}$ \ $\mathcal{M} \propto \frac{g_{W}^{2}}{g_{-}^{2} - m_{W}^{2}} \rightarrow \frac{g_{W}^{2}}{m_{W}^{2}} \propto G_{F}$ \ $\mu^{-} \ \mbox{$\|\Psi^{-} \ \m$

