Particle Physics: Problem Sheet 1 The Standard Model, Measuring Techniques and QED

- 1. List all fundamental fermions in the Standard Model.
- 2. Explain why the decays $\mu^- \to e^- \bar{\nu}_e \nu_\mu$ and $\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$ are allowed and why $\mu^+ \to e^+ \gamma$ and $\mu^+ \to e^+ e^- e^+$ are forbidden. What about $\mu^+ \to e^- \bar{\nu}_e \nu_\mu$?
- 3. What is 1 fm in inverse GeV? How many seconds is 1 inverse GeV?
- 4. Write down the typical lifetimes for particles that decay by:
 - (a) The strong force
 - (b) The electromagnetic force
 - (c) The weak force

By looking at the liftetimes on the Particle Properties sheet, which force is responsible for the decay of π^0 , B^+ , ω^0 ?

- 5. The lifetime of the η'^0 has not been measured directly. The measurement of the width of the η'^0 is 0.203 ± 0.016 MeV. What is the lifetime of the η'^0 ? What force is responsible for its decay?
- 6. What are the Centre-of-Momentum (CoM) energies of the following machines:

LEP1: e^+e^- collider, both beams 45.6 GeV

LHC: pp collider, both beams 7 TeV

HERA: ep collider, $E_e = 30$ GeV and $E_p = 820$ GeV. If HERA were a fixed target machine what energy would the electron require to give an equivalent CoM energy?

7. The Δ^{++} particle can be produced as a resonance by aiming a pion beam onto a hydrogen target, $\pi^+ p \to \Delta^{++} \to \pi^+ p$. Calculate the energy and momentum of the pions in the Δ^{++} centre-of-mass frame.

From the measured resonance width of $\Gamma(\Delta)=120$ MeV calculate the lifetime of the Δ^{++} .

- 8. At the LEP collider operating at a beam energy of 45.6 GeV the B_d^0 mesons are produced with an average energy of 32 GeV. Calculate the mean decay length of a B_d^0 meson. What is the most probable decay length?
- 9. The simplest vertex in QED is a fermion-fermion-photon vertex. Draw an example Feynman diagram for such a vertex. Write down *all* possible electromagnetic fermion-fermion-photon vertices.
- 10. Draw the lowest order Feynman diagram for electron-proton scattering $e^-p \rightarrow e^-p$. Discuss the corresponding scattering amplitude or Matrix element, \mathcal{M} .

Show that the photon propagator is the origin of the $1/\sin^4(\frac{\theta}{2})$ dependence of the Rutherford cross section for $e^-p \to e^-p$ scattering.