Partice Physics: Problem Sheet 2 More on QED, Accelerators & Detectors, Quark & Leptons

- 1. Please make sure you have done questions 9 and 10 on last week's question sheet.
- 2. Draw the lowest and second order Feynman diagrams for electron-muon scattering $e^-\mu^- \rightarrow e^-\mu^-$. Discuss the corresponding Matrix element, \mathcal{M} , and cross section for the lowest order. Estimate the contribution of the second order diagrams to the cross section.
- 3. In a synchrotron accelerator, why do charged particles loose energy? The energy loss per turn is:

$$\Delta E = \frac{q^2 \beta^3 \gamma^4}{3\epsilon_0 \rho}$$

The LEP and LHC synchrotrons are built in the same tunnel ($\rho_{\text{LEP}} = \rho_{\text{LHC}} = 4300 \text{ m}$). At LEP the energy of the electrons was $E_e = 45.2 \text{ GeV}$; at LHC the energy of the protons will be $E_p = 7000 \text{ GeV}$. What is the ratio of the energy loss at LEP and LHC?

- 4. Describe (briefly) how an electron, a charged pion and a muon appear in a typical collider detector.
- 5. Cosmic ray muons are produced at the top of the atmosphere. As they travel through matter, muons loose energy to ionisation. The energy loss for muons can be described by $dE/dx \approx 2.0 \text{ MeVg}^{-1} \text{cm}^2$.

How much energy does a muon with three-momentum, $p_{\pi} = 5 \text{ GeV}/c$ lose by ionisation before reaching sea level?

The mass thickness of the atmosphere, x, in g/cm², can be inferred from the pressure at sea level, P = 1 atm = 10⁵ kgm⁻¹s⁻², by assuming the density to be constant.

- 6. What quantum numbers are associated with leptons? Are they conserved in strong, weak and electromagnetic interactions?
- 7. What quantum numbers are associated with quarks? Are they conserved in strong, weak and electromagnetic interactions?
- 8. What are the charge, isospin, strangeness and baryon quantum numbers for the \bar{u} , d and \bar{s} quarks? What are the quantum numbers of the lambda anti-baryon, $\bar{\Lambda}^0$, and of the antiproton, \bar{p} ? Make sure you understand these in terms of quark content!
- 9. The four delta baryons: $\Delta^{++}, \Delta^{+}, \Delta^{0}, \Delta^{-}$ are formed only of up and down quarks, and form part of a isospin quadruplet. What is the quark content and isospin, I and I_Z , for these baryons?