
### Physics 3:

# Particle Physics

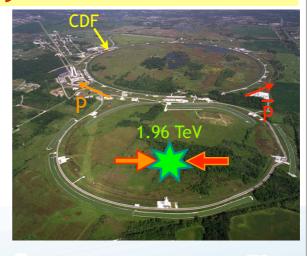
Lecture 1: Introduction to the Standard Model of Particle Physics

February 11th 2008



Particle Physics (PP) a.k.a. High-Energy Physics (HEP)

## Particle Physics and Me


Dr Victoria Martin

JCMB room 4405

victoria.martin@ed.ac.uk

My research deals with Particle Physics at Colliders. Two projects:

- CDF at the Fermilab Tevatron, near Chicago: colliding protons and anti-protons at ~2TeV.
   Currently the world's highest energy collider.
- The international linear collider (ILC). World's next electron – position collider. Currently under design.



# Today's Particle **Physics**

• High-energy colliders: trying to produce new, heavy, particles

 Study of difference between matter and anti-matter

 Studying neutrinos from the atmosphere, the sun, and man-made neutrinos.

 Precise measurements of muon decay properties

 Developing new detector technologies and computing strategies for TBs of data

 Developing theories for the shortcomings of our models

Massive numerical calculations of quantum chromodynamics



Origin of nuclear matter (Background) Particle physics looks at physics at: Universe goes through 10<sup>-43</sup>s superfast inflation very high energy densities 10<sup>-32</sup>s Post inflation - soup of 10<sup>27</sup> °C very short distances electrons, quarks and other particles very early times 10<sup>-6</sup>s 10¹3 °C Quarks clump into protons and neutrons At high energies, neutrons, Superhot fog (protons  $10^2 s$ 108 °C and electrons not yet bound protons (and other hadrons) into atoms). Primordial break into their constituent nucleosysnthesis (up to <sup>4</sup>He) quarks.  $3x10^{5} yr$ 105 °C Electrons combine with protons and neutrons to form atoms (H, He) Particle physics always uses 1x109 yr -200 °C Star/Galaxy formation synthesis of heavier nuclei relativity (high energy) and quantum mechanics (very First stars die and eject 15×10<sup>9</sup> yr -270 °C heavy nuclei into space small). further star formation (and planets) Scale set by  $\hbar c = 197.3 \text{ MeV fm}$ Time

### **Course Outline**

Lecture 1 - Introduction

The fundamental particles and forces

Lecture 2 - Practical Particle Physics

Natural units, kinematics

Collisions, scattering and decay

Lecture 3 - Electromagnetic force and Feynman Diagrams

Anti-particles and virtual particles

Quantum electromagnetic force (QED)

Feynman diagrams

Lecture 4 - Experimental Methods

Particle accelerators, detectors and experiments.

Lecture 5 - Quarks and Leptons, Mesons and Baryons

Quantum numbers

Evidence for quarks and colour

 $e^+e^- \rightarrow \text{hadrons}$ 

Lecture 6 - Strong Interactions

Gluons, hadronisation

Confinement, running coupling

constant

Lecture 7 - Weak Interactions

Muon and tau decay

Lepton universality

Weak quark decays

Lecture 8 - Neutrinos

Neutrino mass and oscillations

Lecture 9 - Electroweak Theory and

beyond

W and Z bosons, LEP

Higgs Boson

. . .

# Books!

• In conjunction with attending the lectures you will need to read around the subject to fully understand the material.



Particle Physics, second edition, by B.R. Martin & G. Shaw. 2<sup>nd</sup> edition (Wiley 1997)

7 copies in JCMB Library.

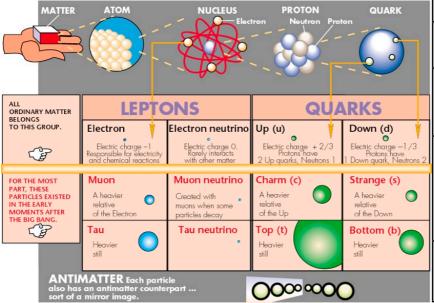


Introduction to High Energy Physics - D.H. Perkins, 4th edition (CUP 2000)



Introduction to Elementary Particles - D. Griffiths (Wiley 1987)




Quarks and Leptons -F. Halzen & A.D. Martin (Wiley 1984)



For more information that you could ever need on every particle ever: <a href="http://durpdg.dur.ac.uk/lbl/">http://durpdg.dur.ac.uk/lbl/</a>

### The Standard Model

The current understanding of the fundamental particles and the interactions between them is called the "Standard Model of Particle Physics".



| Boson-mediated FORCES |                               |  |
|-----------------------|-------------------------------|--|
| Gravity               | ?                             |  |
| Electro-<br>magnetism | photon                        |  |
| Weak                  | W <sup>±</sup> Z <sup>0</sup> |  |
| Strong                | gluons                        |  |

7

## Basic Particles (1st Generation)

The particles that you know already, e.g. from beta decay:  $\mathbf{n} \to \mathbf{p} \; e^- \overline{\nu}_e$ 

#### **Leptons**

Electron and neutrino

#### **Quarks**

Nucleons are bounds states of up-quarks and down-quarks

The Proton The Neutron





#### **Basic Constituents of Matter**

Four spin- $\frac{1}{2}\hbar$  fermions

| Particle   | Symbol     | Electric<br>Charge | Туре   |
|------------|------------|--------------------|--------|
| electron   | <i>e</i> - | -1                 | lepton |
| neutrino   | $ u_e$     | 0                  | lepton |
| up-quark   | u          | +2/3               | quark  |
| down-quark | d          | -1/3               | quark  |

• Particle physics description of beta decay:  $\mathbf{d} \to \mathbf{u} \ e^- \overline{\nu}_e$ 

# **Higher Generations**

Nature replicates itself: there are three generations of quarks and leptons

| 1st Generat          | ion        | 2nd Genera       | 2nd Generation 3rd |                 | 3rd Generation |      |
|----------------------|------------|------------------|--------------------|-----------------|----------------|------|
| electron             | <b>e</b> - | muon             | μ-                 | tau             | <b>T</b> -     | -1   |
| electron<br>neutrino | $v_e$      | muon<br>neutrino | $v_{\mu}$          | tau neutrino    | $v_{\tau}$     | 0    |
| down quark           | d          | strange<br>quark | S                  | bottom<br>quark | b              | -1/3 |
| up quark             | u          | charm quark      | c                  | top quark       | t              | +2/3 |

Ordinary Matter: built from the 1st generation

#### **Higher Generations:**

- copies of  $(v_e, e^-, \mathbf{u}, \mathbf{d})$
- undergo identical interactions
- only difference is mass of particles
- generations are successively heavier

Why 3 generations? symmetry/structure not understood!

1

## Antiparticles

Relativistic QM ⇒ every particle has a corresponding antiparticle

Antiparticles of the SM particles are antimatter

Compared to its matter partner, an antiparticle has:

- equal mass
- opposite electric charge
- opposite "additive" quantum numbers

Positron "track"

Fig. 1. A 63 million volt positron  $(H_2 = 2.1 \times 10^n \text{ gauss-cm})$  passing through a 6 mm lead plate and emerging as a 23 million volt positron  $(H_2 = 7.5 \times 10^n \text{ gauss-cm})$ . The length of this latter path is at least ten times greater than the possible length of a proton path of this curvature.

**Example:** positron ( $e^+$ ) antiparticle of the electron ("anti-electron") Discovered in 1931 by Carl Anderson

**Notation:** bar over symbol or minus ↔ plus

e.g. for first generation:  $\mathbf{u} \leftrightarrow \bar{\mathbf{u}} \quad \mathbf{d} \leftrightarrow \bar{\mathbf{d}} \quad e^- \leftrightarrow e^+ \quad \nu_e \leftrightarrow \bar{\nu}_e$ 

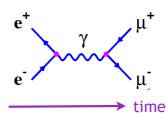
10

# The forces of particle physics

### **Strong**

- Strongest force
- Acts on quarks only
- propagated by (8) gluons, g

### Weak

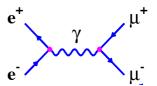

- 3rd strongest force
- Acts on all particles
- propagated by  $W^{\pm}$  and  $Z^{0}$  bosons

### Electromagnetic

- 2nd strongest force
- Acts on charged particles
- propagated by photon,  $\gamma$

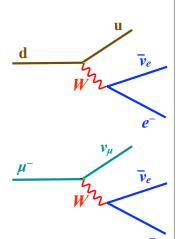
### Gravity

- weakest force negligible at PP scale
- Acts on all particles
- Quantum mechanical description uses "messenger particles" to propagate the force between particles.
- Messenger particles are spin-1 $\hbar$  bosons
- e.g.  $e^+e^- \rightarrow \mu^+\mu^-$  scattering propagated by photon




11

## What do the particles do?


Dynamics and relativity lectures 2, 14, 15

Particles interact via one of the forces: strong, electromagnetic or weak.



#### Two main interactions:

- Particle scattering
  - can be elastic or inelastic
  - we'll mainly consider inelastic scattering
  - e.g. scattering of electron and positron, producing a pair of muons  $e^+e^- \rightarrow \mu^+\mu^-$



### Particle decay

- e.g. Beta decay:  $\mathbf{d} \to \mathbf{u} \ e^{-\overline{\mathbf{v}}_e}$
- e.g. Muon decay:  $\mu^- \rightarrow e^- \overline{\nu}_e \nu_u$

12

time

### Fermi's Golden Rule

Nuclear physics lecture 4

The rate at which a decay or a scattering proceeds is given by **Fermi's Golden Rule**:

Where:

$$T_{i\to f} = \frac{2\pi}{\hbar} |\mathcal{M}|^2 \rho$$

- M is the matrix element we will see how these are calculated for different processes in future lectures.
- $\bullet$   $\rho$  is the density of states we will consider this only for some key processes.
- T is related to the cross section of scattering,  $\sigma$ .

e.g. 
$$\sigma(e^+e^-\rightarrow \mu^+\mu^-) \propto |\mathcal{M}(e^+e^-\rightarrow \mu^+\mu^-)|^2$$
.

• T is related to the inverse lifetime of a decay,  $\tau$ .

e.g. 
$$\tau(\mu^- \rightarrow e^- \overline{\nu}_e \nu_\mu) \propto 1/|\mathcal{M}(\mu^- \rightarrow e^- \overline{\nu}_e \nu_\mu)|^2$$
.

13

## **Quantum Numbers**

Every particle carries a set of quantum numbers, e.g.

- electric charge, Q
- strangeness, S: number of (anti-strange strange) quarks

Each force conserves some or all of the quantum numbers, e.g.:

• all forces conserve electric charge  $\sum Q_{\mathrm{initial}} = \sum Q_{\mathrm{final}}$ 

• e.g. 
$$e^+e^-{
ightarrow}\mu^+\mu^-\sum Q_{\mathrm{initial}}=0=\sum Q_{\mathrm{final}}$$

- strong and electromagnetic forces conserve strangeness
- weak force does not conserve strangeness

We can use conservation of quantum numbers to work out if a process (decay, scattering) is allowed or forbidden.

• In addition, four-momentum and energy are conserved:

$$\sum \underline{p}_{\text{initial}} = \sum \underline{p}_{\text{final}}, \ \sum E_{\text{initial}} = \sum E_{\text{final}}$$

# Hadrons: Mesons & Baryons

- Free quarks have never been observed quarks are locked inside hadrons
- Hadrons are bound states of quarks: either (qqq) or  $(q\bar{q})$
- ullet Charge of hadron is always integer multiple of electric charge, e
- Colour charge of hadron is always neutral
- Two types of hadrons **mesons** and **baryons** (also anti-baryons!  $\overline{qqq}$ )

### Mesons = $q\bar{q}$

Bound states of quark anti-quark pair Bosons: spin 0,  $1\hbar$ ,  $2\hbar$ 

e.g. pions

$$\pi^+ = (u\bar{d})$$

$$\pi^- = (\bar{u}d)$$

$$\pi^0 = \frac{1}{\sqrt{2}}(u\bar{u} - d\bar{d})$$

### Baryons = qqq

Three quark bound states Fermions: spin  $1/2\hbar$ ,  $3/2\hbar$  ...

e.g. proton (uud), neutron (ddd)anti-baryons e.g. anti-proton



$$p = (uud)$$

$$n = (udd)$$

$$\bar{p} = (\bar{\mathbf{u}}\bar{\mathbf{u}}\bar{\mathbf{d}})$$

15

## **Summary**

### The Standard Model of Particle Physics

An elegant theory that describes accurately (almost) all measurements in particle physics

#### Matter

- fermions, spin-½ħ
- 3 generations of quarks & leptons

| Quarks and Leptons |                |                 | Charge, e |
|--------------------|----------------|-----------------|-----------|
| v <sub>e</sub>     | ν <sub>μ</sub> | $v_{	au}$ $	au$ | 0         |
| e                  | μ              |                 | -1        |
| u                  | c              | t               | +2/3      |
| d                  | s              | b               | -1/3      |

- Antimatter partner for each fermion
- Quarks bind together to form hadrons - mesons and baryons

#### **Forces**

 mediated by the exchange of spin-1ħ bosons

| Interaction          | Gauge<br>Bosons  | Charge, $e$ |
|----------------------|------------------|-------------|
| Strong               | gluons, $g$      | 0           |
| Electro-<br>magnetic | Photon, $\gamma$ | 0           |
| Weak                 | W, Z             | 0, ±1       |
| Gravity              | graviton?        | 0           |