Physics 3:

Particle Physics

Lecture 2: Practical Particle Physics

February 14th 2008

How do we study the particles and the forces? What properties of particles, decays & scatterings can we measure?

- * Particle Properties
- * Natural Units
- * Relativistic kinematics
- Decay Properties
- Scattering Properties

Particle Properties

Static properties of the fundamental particles and the hadrons e.g.:

- Mass, m charge, Q
- spin, J parity, π

We assign additional quantum numbers to each particle:

- Lepton number, L: Number of leptons number of anti-leptons
 - **➡** Electron number, L_e $L_e = N(e^-) N(e^+) + N(\nu_e) N(\bar{\nu}_e)$
 - ightharpoonup Muon number, L_{μ} $L_{\mu} = N(\mu^{-}) N(\mu^{+}) + N(\nu_{\mu}) N(\bar{\nu}_{\mu})$
 - lacktriangle Tau number, $m{L}_{ au}$ $L_{ au}=N(au^{-})-N(au^{+})+N(
 u_{ au})-N(ar{
 u}_{ au})$
- Quark number, N_q : Number of quarks number of anti-quarks
- Baryon number, $\mathcal{B}_{q} = 1/3 N_q$

All of these quantum numbers (including Q) are conserved in all reactions: strong, electromagnetic and weak.

Natural Units I

kg m s SI units: [M] [L] [T]

- For everyday physics SI units are a natural choice: $M_{(JH \, student)} \sim 80 \, kg$.
- Not so good for particle physics: $M_{\text{proton}} \sim 10^{-27} \text{kg}$
- PP chooses a different basis Natural Units, based on the language of particle physics: quantum mechanics and relativity.
- The basis of natural units are:
 - * unit of action in QM: \hbar (Js)
 - ★ velocity of light: c (ms⁻¹)
 - ★ Unit of energy: $GeV = 10^9 eV = 1.60 \times 10^{-10} J$

Time $(GeV/\hbar)^{-1}$ **Energy GeV** Momentum GeV/c Length $(GeV/\hbar c)^{-1}$ Mass GeV/c² Area $(GeV/\hbar c)^{-2}$

Natural Units II

Simplify even further by choosing $c = \hbar = 1$!

All quantities are expressed in powers of GeV

Energy GeV Time GeV⁻¹ Momentum GeV Length GeV⁻¹ Mass GeV Area GeV⁻²

Convert to SI units by reintroducing missing factors of \hbar and c

• Example: Area = 1 GeV⁻²

$$[L]^2 = [E]^{-2} [\hbar]^n [c]^m = [E]^{-2} [E]^n [T]^n [L]^m [T]^{-m} \quad n=2, m=2$$
 Area (in SI units) = 1 GeV-2 × \hbar^2 c^2 = 3.89 × 10⁻³² m² = 0.389 mb

Other common units:

- Masses and energies measured in MeV
- lengths in fm = 10⁻¹⁵ m
- cross section measured in barn, $b \equiv 10^{-28} \text{ m}^2$ electric charge in units of e

Two useful relations:

 $\hbar c = 197 \text{ MeV fm}$ $\hbar = 6.582 \times 10^{-22} \text{ MeV s}$

Review: Relativistic Dynamics

Please review dynamics and relativity lectures 13-15.

• Two important quantities for Lorentz transformations:

$$\beta = v/c \qquad \qquad \gamma(v) = 1/\sqrt{1 - \beta^2}$$

- Four-momentum of a particle: $\underline{p}=(E/c,\,p_x,\,p_y,\,p_z)=(E/c,\vec{p}\,)$
- Energy of a particle $E^2 = \overline{\vec{p}}^2 c^2 + m^2 c^4$ $E = \gamma mc^2$
- Scalar product of 4-momentum: $(\underline{p})^2 = (E/c)^2 \vec{p}^2 = m^2c^2$
- Particles with *m*=0 travel at the speed of light

Natural Units

Lorentz boosts: $\gamma = E/m \quad \gamma \beta = |\vec{p}|/m \quad \beta = |\vec{p}|/E$

Four momentum: $\underline{p} = (E, p_x, p_y, p_z) = (E, \vec{p})$

Invariant mass $(\underline{\underline{p}})^2 = E^2 - \vec{p}^2 = m^2$

-

 $K^0 \rightarrow \pi^+\pi^-$

Particle Decay

E 16000

14000

6000

Almost all particles decay. e.g. K_S meson can decay as:

$$K_S \to \pi^+\pi^-$$

 We can reconstruct the mass of a particle using the kinematics of the decay products.

$$\sum \underline{p}_{\underline{=}\mathbf{initial}} = \sum \underline{p}_{\underline{=}\mathbf{final}}$$
$$\underline{p}(K_S) = \underline{p}(\pi^+) + \underline{p}(\pi^-)$$

• squaring each side ...

$$(M(K_S))^2 = \left(\underbrace{p}_{\equiv}(\pi^+) + \underbrace{p}_{\equiv}(\pi^-)\right)^2 \qquad \begin{array}{l} \text{(Not perfect delta function due to} \\ \text{experimental uncertainties)} \\ = \left(\underbrace{p}_{\equiv}(\pi^+)\right)^2 + \left(\underbrace{p}_{\equiv}(\pi^-)\right)^2 + 2\underbrace{p}_{\equiv}(\pi^+) \cdot \underbrace{p}_{\equiv}(\pi^-) \\ = \left(m(\pi^+)\right)^2 + \left(m(\pi^-)\right)^2 + 2E(\pi^+)E(\pi^-) - 2\,\vec{p}\,(\pi^+)\cdot\vec{p}\,(\pi^-) \end{array}$$

• M(Ks) is reconstructed invariant mass of Ks

Particle Lifetime

- Particle lifetime, τ , the time taken for the sample to reduce to 1/e of original sample.
- Different forces have different typical lifetimes.
- Also define total decay width, $\Gamma \equiv \hbar/\tau$.

$$\frac{dN}{dt} = -\frac{t}{\tau} = -\frac{\Gamma}{\hbar}t$$

\rightarrow	M(t) —	$N_{\rm o} \exp($	$-t/\tau$ —	$N_{\rm o}$ evn($(-\Gamma t/\hbar)$

Force	Typical Lifetime	
Strong	10 ⁻²⁰ - 10 ⁻²³ s	
Electromag	10 ⁻²⁰ - 10 ⁻¹⁶ s	
Weak	10 ⁻¹³ - 10 ³ s	

- In its own rest frame particle travels $v\tau = \beta c\tau$ before decaying.
- In the lab, time is dilated by γ .
- If τ is large enough, energetic particles travel a measurable distance $L = \gamma \beta c \tau$ in lab.

7

Particle Width

- Lifetimes can be very short, e.g. lifetime of Δ^{++} baryon (uuu) is 5×10^{-24} s.
- Heisenburg Uncertainty Principle:

$$\Delta E \Delta t \approx \hbar$$

- Very short lifetime gives small Δt .
- $\Delta E \approx \hbar / \Delta t$ is significant \Rightarrow measurable width
- Mass of short lived particles (e.g. Δ⁺⁺) is not fixed.
- Mass has most-likely value, but can take on a range of values.

Decay Modes

Particles can have more than one decay mode. e.g. The K_S meson decays 99.9% of the time in one of two ways:

$$K_S \to \pi^+ \pi^-, K_S \to \pi^0 \pi^0$$

• Each decay mode has its own matrix element, \mathcal{M} . Fermi's Golden Rule gives us the **partial decay width** for each decay mode:

$$\Gamma(K_S \to \pi^+ \pi^-) \propto |\mathcal{M}(K_S \to \pi^+ \pi^-)|^2 \qquad \Gamma(K_S \to \pi^0 \pi^0) \propto |\mathcal{M}(K_S \to \pi^0 \pi^0)|^2$$

• The **total decay width** is equal to the sum of the decay widths for all the allowed decays.

$$\Gamma(K_S) = \Gamma(K_S \to \pi^0 \pi^0) + \Gamma(K_S \to \pi^+ \pi^-)$$

• The **branching ratio**, **BR**, is the fraction of time a particle decays to a particular final state:

$$BR(K_S \to \pi^+ \pi^-) = \frac{\Gamma(K_S \to \pi^+ \pi^-)}{\Gamma(K_S)} \quad BR(K_S \to \pi^0 \pi^0) = \frac{\Gamma(K_S \to \pi^0 \pi^0)}{\Gamma(K_S)}$$

a

Review: Decay Kinematics

Decay of an unstable particle at rest:

$$A_{M_A}$$

$$A \rightarrow b d$$

$$\underline{\underline{p}}_{A} = (M_A, 0) \qquad \qquad \underline{\underline{p}}_{b} = (E_b, \vec{p}_b) \quad \underline{\underline{p}}_{d} = (E_d, \vec{p}_d)$$

۸ft۵r

Before

• Four-momentum conservation:

$$\begin{split} & \underbrace{p}_{=A} = \underbrace{p}_{=b} + \underbrace{p}_{=d} \quad \Rightarrow \quad \underbrace{p}_{=b} = \underbrace{p}_{=A} - \underbrace{p}_{=d} \quad \Rightarrow \quad \overrightarrow{p_b} = -\overrightarrow{p_d} \\ & (\underbrace{p}_{=b})^2 = (\underbrace{p}_{=A})^2 + (\underbrace{p}_{=d})^2 - 2\underbrace{p}_{=A} \cdot \underbrace{p}_{=d} = M_A^2 + m_d^2 - 2M_A \, E_d = m_b^2 \\ & \Rightarrow E_d = \frac{M_A^2 + m_d^2 - m_b^2}{2M_A} & \text{For moving particles, apply appropriate Lorentz boost.} \end{split}$$

• Example: $\pi^+ \to \mu^+ \nu_\mu$ work in rest frame of pion. $m_\nu \approx 0$

$$E_{\mu} = \frac{m_{\pi}^2 + m_{\mu}^2}{2m_{\pi}} = 109.8 \text{ MeV} \quad |\vec{p}_{\nu}| = |\vec{p}_{\mu}| = \sqrt{E_{\mu}^2 - m_{\mu}^2} = 29.8 \text{ MeV}/c$$

Scattering

Consider a collision between two particles: a and b.

- Elastic collision: a and b scatter off each other a $b \rightarrow a$ b. e.g. $e^+e^- \rightarrow e^+e^-$
- Inelastic collision: new particles are created $a \ b \rightarrow c \ d \dots \ e.g. \ e^+e^- \rightarrow \mu^+\mu^-$

Two main types of particle physics experiment:

• Collider experiments beams of a and b are brought into collision. Often $\vec{p}_a = -\vec{p}_b$

$$(E_a, \vec{p}_a) \leftarrow (E_b, \vec{p}_b)$$

• Fixed Target Experiments: A beam of *a* are accelerated into a target at rest. *a* scatters off *b* in the target.

4 4

Cross Section

D&R lecture 2

• We have a beam of particles incident on a target (or another beam).

- Flux of incident beam, f: number of particles per unit area per unit time.
- Beam illuminates N particles in target.
- We measure the scattering rate, $dw/d\Omega$, number of particles scattered in given direction, per unit time per unit solid angle, $d\Omega$.

$$rac{dw}{d\Omega}=fN \begin{picture}(100,0) \put(0,0){\line(0,0){100}} \put(0,$$

- Integrate over the solid angle, rate of scattering: $w=fN\sigma$
- Define luminosity, $\mathcal{L} = fN$
- ullet Scattering rate $w=\mathcal{L}\sigma$

Cross Section and Luminosity

- The cross section, σ , measures the how often a scattering process occurs.
- σ is characteristic of a given process, from Fermi's Golden Rule $\sigma \propto |\mathcal{M}|^{2}$.
- Also depends on the energy of the colliding particles.
- σ measured in units of area. Normally use barn, 1 b = 10^{-28} m².
- Luminosity, £, is characteristic of the beam.
 Measured in units of inverse area per unit time.
- Integrated luminosity, $\int \mathcal{L}dt$ is luminosity delivered over a given period. Measured in units of inverse area, usually \mathbf{b}^{-1} .

Force	Typical Cross Sections	
Strong	10 mb	
Electromag	10 ⁻² mb	
Weak	10 ⁻¹³ mb	

• Event rate:

$$w = \mathcal{L}\sigma$$

• Total number of events:

$$N = \sigma \int \mathcal{L}dt$$

13

Centre of Mass Energy, \sqrt{s}

Define Lorentz-invariant quantity, s: square of sum of four-momentum of incident particles:

$$= (\underline{p}_{a} + \underline{p}_{b}) \cdot (\underline{p}_{a} + \underline{p}_{b})$$

$$= (\underline{p}_{a})^{2} + (\underline{p}_{b})^{2} + 2 \underline{p}_{a} \cdot \underline{p}_{b}$$

$$= m_{a}^{2} + m_{b}^{2} + 2(E_{a}E_{b} - |\vec{p}_{a}||\vec{p}_{b}|\cos\theta)$$

- $\sqrt{s}=E_{\rm CM}$ is the energy in centre of momentum frame, energy available to crate new particles!
- Fixed Target Collision, b is at rest. $E_a >> m_a$, m_b

$$s = m_a^2 + m_b^2 + 2E_a m_b \approx 2E_a m_b$$
$$E_{\rm CM} = \sqrt{2E_a m_b}$$

• Collider Experiment, with $E = E_a = E_b >> m_a$, m_b , $\theta = \pi$

$$s = 4E^2$$
 $E_{\rm CM} = 2E$

Examples

• From 1989 to 1995 the LEP collider at CERN collided electrons and positrons head-on with $E(e^-) = E(e^+) = 45.1$ GeV.

$$s = \left(\underbrace{p(e^{+}) + p(e^{-})}_{=} \right)^{2}$$

$$= 2m_{e}^{2} + 2(E^{2} - |\vec{p}_{e^{+}}||\vec{p}_{e^{-}}|\cos\theta)$$

$$\approx 2(E^{2} + |\vec{p}_{e^{+}}||\vec{p}_{e^{-}}|)$$

$$\approx 4E^{2}$$

 $E_{\rm CM} = 2E = 91.2 \,{\rm GeV}$

- $\sigma(e^+e^-\to \mu^+\mu^-)=1.9 \text{ nb at } E_{\rm CM}=91.2 \text{ GeV}$
- Total integrated luminosity $\int \mathcal{L} dt = 400 \text{ pb}^{-1}$
- $N_{\text{evts}}(e^+e^- \rightarrow \mu^+\mu^-) = 400,000 \times 1.9 = 380,000$

- To make hadrons, the LEP electron beam was fired into a Beryllium target.
- Electrons collide with protons and neutrons in Beryllium.

$$s = \left(\underline{p}(e^{-}) + \underline{p}(p)\right)^{2}$$

$$= m_{e}^{2} + m_{p}^{2}$$

$$+2(E_{e}E_{p} - |\vec{p}_{e}||\vec{p}_{p}|\cos\theta)$$

$$\approx 2(E_{e}m_{p})$$

$$E_{CM} = \sqrt{2E_{e}m_{p}}$$

$$= \sqrt{2 \times 45.1 \times 1}$$

$$= 9.5 \text{ GeV}$$

 In fixed target electron energy is wasted providing momentum to the CM system rather than to make new particles.

15

Summary

Natural Units: set $\hbar = c = 1$

- Measure energies in GeV
- Every quantity is measured as a power of energy

Particle Decay

- Lifetime, τ, time taken for sample to decrease by 1/e.
- Partial width of decay mode, $\Gamma(A \to x) \propto |\mathcal{M}(A \to x)|^2$
- Total width is sum of all possible decay widths, $\Gamma = \hbar/\tau$
- Branching ratio, proportion decays to given final state, BR $(A \rightarrow x) = \Gamma(A \rightarrow x)/\Gamma$

Particle Scattering

- Cross section, σ , probability for decay to happen. Measured in b = 10 $^{-28}$ m².
- Luminosity, \mathcal{L} is a property of beam.
- Integrated luminosity, \(\int dt. \)
- Number of events: $N = \sigma$ [$\mathcal{L}dt$]
- Two types of scattering experiment: collider and fixed target.

Relativistic Kinematics

$$\underline{\underline{p}} = (E, p_x, p_y, p_z) = (E, \vec{p})$$
$$(\underline{\underline{p}})^2 = E^2 - \vec{p}^2 = m^2$$

Centre of Mass energy

$$s = (\underline{p}_{a} + \underline{p}_{b})^{2} \quad E_{\rm CM} = \sqrt{s}$$