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Summary

Natural Units: set ℏ=c=1

• Measure energies in GeV

• Every quantity is measured as a 
power of energy

Particle Scattering 

• Cross section, !, probability for 

decay to happen.  Measured in b = 10
!28 m2

.

• Luminosity, L is a property of beam.

• Integrated luminosity, !Ldt.

• Number of events: N = ! !Ldt

• Two types of scattering experiment: 
collider and fixed target.

Particle Decay

• Lifetime, ", time taken for 

sample to decrease by 1/e.

• Partial width of decay mode,        

"(A!x) ∝ |M(A#x)|2

• Total width is sum of all possible 
decay widths, "=ℏ/"

• Branching ratio, proportion 
decays to given final state,       

BR (A!x) = "(A!x)/"

Relativistic Kinematics 

Centre of Mass energy

p = (E, px, py, pz) = (E, !p )(
p
)2

= E2 − !p 2 = m2

s = (p
a

+ p
b
)2 ECM =

√
s
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Scattering

Two main types of particle physics experiment:

• Collider experiments beams of a and b are 

brought into collision.  Often 

• Fixed Target Experiments: A beam of a are 

accelerated into a target at rest.  a scatters 

off b in the target.

Consider a collision between two particles: a and b.

• Elastic collision: a and b scatter off each other a b ! a b.  e.g. e+e$#e+e$

• Inelastic collision: new particles are created a b ! c d ...  e.g. e+e$#µ+µ$

b
a

(E, !pa)

a b

(Eb, !pb)(Ea, !pa)

!pa = −!pb

NA48 
Fixed Target: p+Be!K

Tevatron Collider: pp"
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Cross Section

• We have a beam of particles incident on a target (or another beam).

• Flux of incident beam, f : number of particles per unit area per unit time.

• Beam illuminates N particles in target.

• We measure the scattering rate, dw/d#, number of particles scattered in 

given direction, per unit time per unit solid angle, d#.

• Integrate over the solid angle, rate of scattering: 

• Define luminosity, L = f N

• Scattering rate  

D&R lecture 2

dw

dΩ
= fN

dσ

dΩ

w = fNσ

w = Lσ

d!/d# is differential 

cross section

b
a

(E, !pa)
a b

(Eb, !pb)(Ea, !pa)
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Cross Section and Luminosity

Force
Typical Cross 

Sections

Strong 10 mb

Electromag 10!2 mb

Weak 10!13 mb

• The cross section, !, measures the how often 

a scattering process occurs.

• ! is characteristic of a given process, from 

Fermi’s Golden Rule ! ∝ |M|2. 

• Also depends on the energy of the colliding 
particles. 

• !  measured in units of area.  Normally use 

barn, 1 b = 10!28m2.

• Luminosity, L, is characteristic of the beam.  

Measured in units of inverse area per unit 
time. 

• Integrated luminosity, %Ldt is luminosity 

delivered over a given period.  Measured in 
units of inverse area, usually b!1.

• Event rate:

• Total number of events:

w = Lσ

N = σ
∫
Ldt
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Centre of Mass Energy,  
• Define Lorentz-invariant quantity, s: square of sum of four-momentum of 

incident particles:

• &s=ECM is the energy in centre of momentum frame, energy available to 

crate new particles!

• Fixed Target Collision, b is at rest. Ea >> ma, mb

• Collider Experiment, with E = Ea = Eb >> ma, mb, ' = (

s = (p
a

+ p
b
) · (p

a
+ p

b
)

= (p
a
)2 + (p

b
)2 + 2 p

a
· p

b

= m2
a + m2

b + 2(EaEb − |!pa||!pb| cos θ)

b
a

(E, !pa)

a b

(Eb, !pb)(Ea, !pa)

s = m2
a + m2

b + 2Eamb ≈ 2Eamb

ECM =
√

2Eamb

s = 4E2 ECM = 2E

√
s
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• From 1989 to 1995 the LEP collider at 

CERN collided electrons and positrons 

head-on with E(e$) = E(e+) = 45.1 GeV.

• $(e+e!%µ+µ!)=1.9 nb at ECM = 91.2 GeV

• Total integrated luminosity &L dt = 400 pb!1

• Nevts(e+e$#µ+µ$) = 400,000 ' 1.9 = 380,000

Examples

s =
(
p(e+) + p(e−)

)2

= 2m2
e + 2(E2 − |!pe+ ||!pe− | cos θ)

≈ 2(E2 + |!pe+ ||!pe− |)
≈ 4E2

ECM = 2E = 91.2 GeV

• To make hadrons, the LEP 

electron beam was fired into  

a Beryllium target.  

• Electrons collide with protons 

and neutrons in Beryllium.

• In fixed target electron energy 
is wasted providing momentum 
to the CM system rather than to 
make new particles. 

ECM =
√

2Eemp

=
√

2× 45.1× 1
= 9.5 GeV

s =
(
p(e−) + p(p)

)2

= m2
e + m2

p

+2(EeEp − |!pe||!pp| cos θ)
≈ 2(Eemp)
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Summary

Natural Units: set ℏ=c=1

• Measure energies in GeV

• Every quantity is measured as a 
power of energy

Particle Scattering 

• Cross section, !, probability for 

decay to happen.  Measured in b = 10
!28 m2

.

• Luminosity, L is a property of beam.

• Integrated luminosity, !Ldt.

• Number of events: N = ! !Ldt

• Two types of scattering experiment: 
collider and fixed target.

Particle Decay

• Lifetime, ", time taken for 

sample to decrease by 1/e.

• Partial width of decay mode,        

"(A!x) ∝ |M(A#x)|2

• Total width is sum of all possible 
decay widths, "=ℏ/"

• Branching ratio, proportion 
decays to given final state,       

BR (A!x) = "(A!x)/"

Relativistic Kinematics 

Centre of Mass energy

p = (E, px, py, pz) = (E, !p )(
p
)2

= E2 − !p 2 = m2

s = (p
a

+ p
b
)2 ECM =

√
s
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Schrödinger and Klein Gordon

Ê = i! ∂

∂t
!̂p = −i!!∇

ΨE(!r, t) = ψE(!r) exp {−iEt/!}

• However for particles near the speed of light E2=p2c2+m2c4  ⇒

• Solutions with a definite energy, Ep=+(p2c2+m2c4)), and three-momentum, p:

Ψ(!r, t) = N exp {i(!p · !r − Ept)/!}
• Also solutions with a negative energy, En=$Ep = (p2c2+m2c4)), and momentum, !p:

• Negative energy solutions are a direct result of E2=p2c2+m2c4.

• We interpret these as anti-particles

Klein Gordon Equation

• Quantum mechanics describes momentum and energy in terms of operators:

• E=p2/2m gives time-dependent Schödinger:

• The solution with a definite energy, E:

Klein Gordon 
equation is non-

examinable

Ψ∗(!r, t) = N∗ exp {i(−!p · !r + Ept)/!}

− !2

2m
∇2Ψ(!r, t) = i! ∂

∂t
Ψ(!r, t)

−!2 ∂2

∂t2
Ψ("r, t) = −!2c2∇2Ψ("r, t) + m2c4Ψ("r, t)

10



Antimatter

Dirac Interpretation:

• The vacuum is composed of negative energy levels 
with E<0.  Each level is filled with two electrons of 

opposite spin: the “Dirac Sea”.

• A “hole” in the sea with charge $e and E<0,     

appears as a state with charge +e and E>0.

• This idea lead Dirac to predict the positron, 
discovered in 1931.

Nuclear and Particle Physics Franz Muheim 14

AntiparticlesAntiparticles
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Klein-Gordon equation predicts negative energy solutions.

t

x
e! (x,t)

E>0

e+ ($x,$t)

E<0

≡

Feynman-Stueckelberg Interpretation:

• negative energy particles moving backwards 
in space and time     correspond to...

• positive energy antiparticles moving forward 
in space and time

Ψe−(−x,−t) ∝ exp [−i/! ((−E)(−t)− (−p)(−x))]
Ψe+(x, t) ∝ exp [−i/! (Et− px)]
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Feynman Diagrams
• A Feynman diagram is a pictorial representation of a 

particular process (decay or scattering) at a particular 
order in perturbation theory.

• Feynman diagrams can be used to represent and 

calculate the probability amplitudes, M, for 

scattering and decays.

• Feynman diagrams are very useful and powerful tools. 
We will use them a lot in this course.  We use them a 
lot in our research!

Richard Feynman receiving 
the 1967 Noble prize in 

physics for his invention of 
this technique.

Conventions

• Time flows from left to right  (occasionally upwards)

• Fermions are solid lines with arrows

• Anti-fermion are solid lines with backward pointing arrows. 

• Bosons are wavy (or dashed) lines

We’ll apply the Feynman Rules to calculate M at different orders in perturbation 

theory.Nuclear and Particle Physics Franz Muheim 4
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Feynman Diagrams Feynman Diagrams
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Higher Orders

So far only considered lowest order term in the

perturbation series. Higher order terms also

contribute

Lowest Order:

e
-

e
+

µ-

µ+
γ

Second Order:

e
-

e
+

µ-

µ+

e
-

e
+

µ-

µ+

+....

Third Order:

+....

Second order suppressed by relative to first

order. Provided is small, i.e. perturbation is

small, lowest order dominates.

Dr M.A. Thomson Lent 2004

time
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Quantum Electrodynamics (QED)

Classical electromagnetism: 

• Force between charged particle arise 
from the electric field 

• act instantaneously at a distance

Quantum Picture:

• Force between charged particle 
described by exchange of photons.

• Strength of interaction is related to 
charge of particles interacting.

Nuclear and Particle Physics Franz Muheim 2

Quantum ElectrodynamicsQuantum Electrodynamics
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QED is the quantum theory of electromagnetic interactions.

!E =
Q r̂

4πε0r2

e.g. electon-proton scattering ep#ep

propagated by the exchange of 
photons

Feynman rules:

• Vertex term: each photon!charged particle interaction gives a factor of 
fermion charge, Q.

• Propagator term: each photon gives a factor of          where     is the photon 
four-momentum.

• Matrix element is proportional to product of vertex and propagator terms.

1/q2 q

charge of 
electron

charge of 
proton

photon 
propagator

M ∝ e · 1/q2 · e
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The force between two charged particles is propagated by virtual photons.

• A particle is virtual when its four-momentum squared, does not equal its rest 

mass:

• Allowed due to Heisenberg Uncertainty Principle: can borrow energy to create 
particle if energy (*E=mc2) repaid within time (*t), where (E(t ) +

Virtual Particles

• In QED interactions mass of photon propagator is non-zero.

• Only intermediate photons may be virtual.  Final state ones must be real!

Example: electron-positron scattering 
creating a muon pair: e+e$#µ+µ$.

q

p
1

p
3

p
4

p
2
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Higher Orders

So far only considered lowest order term in the

perturbation series. Higher order terms also

contribute

Lowest Order:

e
-

e
+

µ-

µ+
γ

Second Order:

e
-

e
+

µ-

µ+

e
-

e
+

µ-

µ+

+....

Third Order:

+....

Second order suppressed by relative to first

order. Provided is small, i.e. perturbation is

small, lowest order dominates.

Dr M.A. Thomson Lent 2004

• Four momentum conservation:

• Momentum transferred by the photon is:

• Squaring, 

p
1

+ p
2

= p
3

+ p
4

q = (p
1

+ p
2
) = (p

3
+ p

4
)

q2 = (p
1
)2 + (p

2
)2 + 2p

1
· p

2

= 2m2
e + 2(E1E2 − !p1 · !p2) > 0q2 != m2

γ

m2
X != E2

X − !p 2
X
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Basic electromagnetic process:

• Initial state fermion

• Absorption or emission of a photon

• Final state fermion

Examples: e$#e$,, e$,#e$

All electromagnetic interactions are described                                                     
by the vertex and a photon propagator

Electromagnetic Vertex

√
α

QED Conservation Laws

• Momentum, energy and charge is 

conserved at all vertices

• Fermion flavour (e, µ, ", u, d ...) is 

conserved:      e.g. u#u, allowed, 

c#u, forbidden  

• Parity, (, is conserved.

Coupling strength

Matrix element is proportional to the 
fermion charge: 

Alternatively use the fine structure 
constant, -

⇒ strength of the coupling at the 

vertex is

α =
e2

4πε0!c
=

e2

4π
≈ 1

137

M∝ e

∝
√

α
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Basic QED Processes

• All of these described by the same basic 
vertex term, ∝ Q

• None of above processes is physical as they  
violate energy-momentum conservation:

• Join two together to get a real processes 

p2
γ = (pe1 − pe2)

2 "= m2
γ
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• QED is formulated from time 
dependent perturbation theory.

• Perturbation series: break up the 
problem into a piece we can solve 
exactly plus a small correction.

• e.g. for e+e$#µ+µ$ scattering.

• Many more diagrams have to be 
considered for a accurate 
prediction of "(e+e$#µ+µ$).

• As - is small the lowest order in the 

expansion dominates, and the series 
quickly converges!

• For most of the course, we will only 
consider lowest order contributions 
to processes.

Perturbation Theory
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Higher Orders

So far only considered lowest order term in the

perturbation series. Higher order terms also
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e
-

e
+
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+....

Third Order:
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Second order suppressed by relative to first

order. Provided is small, i.e. perturbation is

small, lowest order dominates.
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Lowest Order

|M|2 ∝ α2
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2nd Order

+ ...|M|2 ∝ α4

23

Higher Orders

So far only considered lowest order term in the

perturbation series. Higher order terms also

contribute

Lowest Order:

e
-

e
+

µ-

µ+
γ

Second Order:

e
-

e
+

µ-

µ+

e
-

e
+

µ-

µ+

+....

Third Order:

+....

Second order suppressed by relative to first

order. Provided is small, i.e. perturbation is

small, lowest order dominates.

Dr M.A. Thomson Lent 2004

3rd Order

+ ...

|M|2 ∝ α6
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Yukawa Potential
The quantum and classical descriptions of electromagnetism should agree.

Yukawa developed theory whereby exchange of bosons describes force / potential. 

• Klein-Gordon equation:

• Non-time dependent solutions obey:  

• Spherically symmetric solutions of this are:

• Interpret this as a potential, V, caused by a particle of mass, m.

• For electromagnetic force, m=0, g=e. 

• Potential felt by a charged particle due to the exchange of a photon.

−! ∂2

∂t2
Ψ("r, t) = −!2c2∇2Ψ("r, t) + m2c4Ψ("r, t)

∇2Ψ(!r) =
m2c2

!2
Ψ(!r)

V (r) = − g2

4πr
exp

(
− r

R

)
with R =

!
mc

Ψ(|!r |) = − g2

4πr
exp

(
−mc

! |!r |
)

VEM(r) = − e2

4πr
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• Elastic electron-proton scattering: e$p#e$p

• Momentum transferred to photon from e$:

• Rutherford scattering: e$ Au#e$ Au,            

can neglect recoil of the gold atoms: E=Ei=Ef

QED Scattering Examples

Nuclear and Particle Physics Franz Muheim 8

ElectronElectron--Proton ScatteringProton Scattering
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q2 = (p
f
− p

i
)2 = p2

f
+ p2

i
− 2p

f
· p

i

= 2m2
e − 2(EfEi − |!pf ||!pi| cos θ)

≈ −4EfEi sin2(θ/2)

σ ∝ |M|2 ∝ e4

q4
=

16π2α2

q4

M ∝ e2

q2
=

4πα

q2

σ ∝ Z2π2α2

E4 sin4(θ/2)

• Inelastic e$e+#µ+µ$

• Momentum transferred by 
photon:

• For this situation need full 
density of states, ., (which 

we won’t do...)

σ =
16πE2

3
|M|2 =

4πα2

3s
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Higher Orders

So far only considered lowest order term in the

perturbation series. Higher order terms also

contribute

Lowest Order:

e
-

e
+

µ-

µ+
γ

Second Order:

e
-

e
+

µ-

µ+

e
-

e
+

µ-

µ+

+....

Third Order:

+....

Second order suppressed by relative to first

order. Provided is small, i.e. perturbation is

small, lowest order dominates.

Dr M.A. Thomson Lent 2004

q2 = (p
e+

+ p
e−

)2 = s

M ∝ e2

s2
=

4πα

s2

19

Relativistic quantum mechanics predicts negative energy particles: 
antiparticles.  Two interpretations: 

• a negative energy particle travelling backwards in time.

• a ‘hole’ in a vacuum filled with negative energy states.

Quantum Electro Dynamics (QED) is the quantum mechanical description 
of the electromagnetic force.

Electromagnetic force propagated by virtual photons:

Feynman diagrams can be used to illustrate QED processes.  Use 

Feynman rules to calculate the matrix element, M.

All QED interactions are described by a fermion-fermion-photon vertex:

• Strength of the vertex is the charge of the fermion, Qf.

• Fermion flavour and energy-momentum are conserved at vertex.

The photon propagator ~         where    is the 4-momentum transferred 
by the photon.

M is proportional to product of vertex and propagator terms.

Summary

1/q2 q

q2 != m2
γ
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