Physics 3:

Particle Physics

Lecture 3: Quantum Electro-Dynamics & Feynman Diagrams
February 18th 2008

- * Antimatter
- * Feynman Diagram and Feynman Rules
- * Quantum description of electromagnetism
- * Virtual Particles
- * Yukawa Potential for QED

Summary

Natural Units: set $\hbar = c = 1$

- Measure energies in GeV
- Every quantity is measured as a power of energy

Particle Decay

- Lifetime, τ, time taken for sample to decrease by 1/e.
- Partial width of decay mode, $\Gamma(A \to x) \propto |\mathcal{M}(A \to x)|^2$
- Total width is sum of all possible decay widths, $\Gamma = \hbar / \tau$
- Branching ratio, proportion decays to given final state, BR $(A \rightarrow x) = \Gamma(A \rightarrow x)/\Gamma$

Particle Scattering

- Cross section, σ , probability for decay to happen. Measured in b = 10 $^{-28}$ m².
- Luminosity, \mathcal{L} is a property of beam.
- Integrated luminosity, $\int \mathcal{L} dt$.
- Number of events: $N = \sigma \int \mathcal{L} dt$
- Two types of scattering experiment: collider and fixed target.

Relativistic Kinematics

$$\underline{\underline{p}} = (E, p_x, p_y, p_z) = (E, \vec{p})
(\underline{\underline{p}})^2 = E^2 - \vec{p}^2 = m^2$$

Centre of Mass energy

$$s = (p + p)^2 \qquad E_{\rm CM} = \sqrt{s}$$

Scattering

Consider a collision between two particles: a and b.

- Elastic collision: a and b scatter off each other a $b \rightarrow a$ b. e.g. $e^+e^- \rightarrow e^+e^-$
- Inelastic collision: new particles are created $a \ b \rightarrow c \ d \dots \ e.g. \ e^+e^- \rightarrow \mu^+\mu^-$

Two main types of particle physics experiment:

• Collider experiments beams of a and b are brought into collision. Often $\vec{p}_a = -\vec{p}_b$

$$\xrightarrow{a} \qquad \qquad b \qquad \qquad (E_a, \vec{p}_a) \qquad (E_b, \vec{p}_b)$$

• Fixed Target Experiments: A beam of *a* are accelerated into a target at rest. *a* scatters off *b* in the target.

3

Cross Section

D&R lecture 2

• We have a beam of particles incident on a target (or another beam).

- Flux of incident beam, f: number of particles per unit area per unit time.
- Beam illuminates N particles in target.
- We measure the scattering rate, $dw/d\Omega$, number of particles scattered in given direction, per unit time per unit solid angle, $d\Omega$.

- Integrate over the solid angle, rate of scattering: $w=fN\sigma$
- Define luminosity, $\mathcal{L} = fN$
- ullet Scattering rate $w=\mathcal{L}\sigma$

Cross Section and Luminosity

- The cross section, σ , measures the how often a scattering process occurs.
- σ is characteristic of a given process, from Fermi's Golden Rule $\sigma \propto |\mathcal{M}|^{2}$.
- Also depends on the energy of the colliding particles.
- σ measured in units of area. Normally use barn, 1 b = 10^{-28} m².
- Luminosity, £, is characteristic of the beam.
 Measured in units of inverse area per unit time.
- Integrated luminosity, $\int \mathcal{L}dt$ is luminosity delivered over a given period. Measured in units of inverse area, usually \mathbf{b}^{-1} .

Force	Typical Cross Sections
Strong	10 mb
Electromag	10 ⁻² mb
Weak	10 ⁻¹³ mb

• Event rate:

$$w = \mathcal{L}\sigma$$

• Total number of events:

$$N = \sigma \int \mathcal{L}dt$$

5

Centre of Mass Energy, \sqrt{s}

Define Lorentz-invariant quantity, s: square of sum of four-momentum of incident particles:

$$= (\underline{p}_{a} + \underline{p}_{b}) \cdot (\underline{p}_{a} + \underline{p}_{b})$$

$$= (\underline{p}_{a})^{2} + (\underline{p}_{b})^{2} + 2\underline{p}_{a} \cdot \underline{p}_{b}$$

$$= m_{a}^{2} + m_{b}^{2} + 2(E_{a}E_{b} - |\vec{p}_{a}||\vec{p}_{b}|\cos\theta)$$

- $\sqrt{s}=E_{\rm CM}$ is the energy in centre of momentum frame, energy available to crate new particles!
- Fixed Target Collision, b is at rest. $E_a >> m_a$, m_b

$$s = m_a^2 + m_b^2 + 2E_a m_b \approx 2E_a m_b$$
$$E_{\text{CM}} = \sqrt{2E_a m_b}$$

• Collider Experiment, with $E = E_a = E_b >> m_a$, m_b , $\theta = \pi$

$$s = 4E^2$$
 $E_{\rm CM} = 2E$

Examples

• From 1989 to 1995 the LEP collider at CERN collided electrons and positrons head-on with $E(e^-) = E(e^+) = 45.1$ GeV.

$$s = \left(\underbrace{p}(e^{+}) + \underbrace{p}(e^{-}) \right)^{2}$$

$$= 2m_{e}^{2} + 2(E^{2} - |\vec{p}_{e^{+}}||\vec{p}_{e^{-}}|\cos\theta)$$

$$\approx 2(E^{2} + |\vec{p}_{e^{+}}||\vec{p}_{e^{-}}|)$$

$$\approx 4E^{2}$$

 $E_{\rm CM} = 2E = 91.2 \,{\rm GeV}$

- $\sigma(e^+e^-\to \mu^+\mu^-)=1.9 \text{ nb at } E_{\rm CM}=91.2 \text{ GeV}$
- Total integrated luminosity $\int \mathcal{L} dt = 400 \text{ pb}^{-1}$
- $N_{\text{evts}}(e^+e^- \rightarrow \mu^+\mu^-) = 400,000 \times 1.9 = 380,000$

- To make hadrons, the LEP electron beam was fired into a Beryllium target.
- Electrons collide with protons and neutrons in Beryllium.

$$s = \left(\underline{p}(e^{-}) + \underline{p}(p)\right)^{2}$$

$$= m_{e}^{2} + m_{p}^{2}$$

$$+2(E_{e}E_{p} - |\vec{p}_{e}||\vec{p}_{p}|\cos\theta)$$

$$\approx 2(E_{e}m_{p})$$

$$E_{CM} = \sqrt{2E_{e}m_{p}}$$

$$= \sqrt{2 \times 45.1 \times 1}$$

$$= 9.5 \text{ GeV}$$

 In fixed target electron energy is wasted providing momentum to the CM system rather than to make new particles.

7

Summary

Natural Units: set $\hbar = c = 1$

- Measure energies in GeV
- Every quantity is measured as a power of energy

Particle Decay

- Lifetime, τ, time taken for sample to decrease by 1/e.
- Partial width of decay mode, $\Gamma(A \to x) \propto |\mathcal{M}(A \to x)|^2$
- Total width is sum of all possible decay widths, $\Gamma = \hbar / \tau$
- Branching ratio, proportion decays to given final state, BR $(A \rightarrow x) = \Gamma(A \rightarrow x)/\Gamma$

Particle Scattering

- Cross section, σ , probability for decay to happen. Measured in b = 10 $^{-28}$ m².
- Luminosity, \mathcal{L} is a property of beam.
- Integrated luminosity, \(\int dt. \)
- Number of events: $N = \sigma \int \mathcal{L} dt$
- Two types of scattering experiment: collider and fixed target.

Relativistic Kinematics

$$\underline{\underline{p}} = (E, p_x, p_y, p_z) = (E, \vec{p})
(\underline{\underline{p}})^2 = E^2 - \vec{p}^2 = m^2$$

Centre of Mass energy

$$s = (\underline{p}_{a} + \underline{p}_{b})^{2} \quad E_{\rm CM} = \sqrt{s}$$

Nuclear and Particle Physics Junior Honours:

Particle Physics

Lecture 3: Quantum Electro-Dynamics & Feynman Diagrams February 18th 2008

- * Antimatter
- * Feynman Diagram and Feynman Rules
- * Quantum description of electromagnetism
- * Virtual Particles
- * Yukawa Potential for QED

q

Schrödinger and Klein Gordon

• Quantum mechanics describes momentum and energy in terms of operators:

$$\hat{E}=i\hbarrac{\partial}{\partial t}$$
 $\hat{ec{p}}=-i\hbarar{
abla}$

- $\emph{E=p^2/2m}$ gives time-dependent **Schödinger**: $-\frac{\hbar^2}{2m} \nabla^2 \Psi(\vec{r},t) = i\hbar \frac{\partial}{\partial t} \Psi(\vec{r},t)$
- ullet The solution with a definite energy, ${\it E}$: $\Psi_E(ec r,t)=\psi_E(ec r)\exp\left\{-iEt/\hbar
 ight\}$
- However for particles near the speed of light $E^2=p^2c^2+m^2c^4 \Rightarrow$

$$-\hbar^2\frac{\partial^2}{\partial t^2}\Psi(\vec{r},t)=-\hbar^2c^2\nabla^2\Psi(\vec{r},t)+m^2c^4\Psi(\vec{r},t) \label{eq:perturb}$$
 Klein Gordon Equation

• Solutions with a definite energy, $E_p = +(p^2c^2 + m^2c^4)^{\frac{1}{2}}$, and three-momentum, p:

$$\Psi(\vec{r},t) = N \exp \left\{ i(\vec{p} \cdot \vec{r} - E_p t) / \hbar \right\}$$

• Also solutions with a negative energy, $E_n = -E_p = (p^2c^2 + m^2c^4)^{\frac{1}{2}}$, and momentum, -p:

$$\Psi^*(\vec{r}, t) = N^* \exp\{i(-\vec{p} \cdot \vec{r} + E_p t)/\hbar\}$$

• Negative energy solutions are a direct result of $E^2=p^2c^2+m^2c^4$.

Klein Gordon equation is nonexaminable

• We interpret these as anti-particles

Antimatter

Klein-Gordon equation predicts negative energy solutions. E

Dirac Interpretation:

- The vacuum is composed of negative energy levels with E<0. Each level is filled with two electrons of opposite spin: the "Dirac Sea".
- A "hole" in the sea with charge -e and E<0, appears as a state with charge +e and E>0.
- This idea lead Dirac to predict the **positron**, discovered in 1931.

- negative energy particles moving backwards in space and time correspond to...
- positive energy antiparticles moving forward in space and time

$$\Psi_{e^{-}}(-x,-t) \propto \exp\left[-i/\hbar\left((-E)(-t)-(-p)\overline{(-x)}\right)\right]$$

$$\Psi_{e^{+}}(x,t) \propto \exp\left[-i/\hbar\left(Et-px\right)\right]$$

11

Feynman Diagrams

- A Feynman diagram is a pictorial representation of a particular process (decay or scattering) at a particular order in perturbation theory.
- Feynman diagrams can be used to **represent** and **calculate** the **probability amplitudes**, \mathcal{M} , for scattering and decays.
- Feynman diagrams are very useful and powerful tools.
 We will use them a lot in this course. We use them a lot in our research!

Richard Feynman receiving the 1967 Noble prize in physics for his invention of this technique.

time

Conventions

- Time flows from left to right (occasionally upwards)
 - Fermions are solid lines with arrows
 - Anti-fermion are solid lines with backward pointing arrows.

Bosons are wavy (or dashed) lines

We'll apply the Feynman Rules to calculate $\mathcal M$ at different orders in perturbation theory.

Quantum Electrodynamics (QED)

QED is the quantum theory of electromagnetic interactions.

Classical electromagnetism:

• Force between charged particle arise from the electric field

$$\vec{E} = \frac{Q\,\hat{r}}{4\pi\epsilon_0 r^2}$$

act instantaneously at a distance

Ouantum Picture:

- Force between charged particle described by exchange of photons.
- Strength of interaction is related to charge of particles interacting.

e.g. electon-proton scattering $ep \rightarrow ep$ propagated by the exchange of photons

Feynman rules:

- Vertex term: each photon-charged particle interaction gives a factor of fermion charge, Q.
- ullet Propagator term: each photon gives a factor of $1/q^2$ where $\underline{\underline{q}}$ is the photon
- Matrix element is proportional to product of vertex and propagator terms.

13

Virtual Particles

The force between two charged particles is propagated by virtual photons.

- A particle is virtual when its four-momentum squared, does not equal its rest mass: $m_X^2 \neq E_X^2 - \vec{p}_X^2$
- Allowed due to Heisenberg Uncertainty Principle: can borrow energy to create particle if energy ($\Delta E = mc^2$) repaid within time (Δt), where $\Delta E \Delta t \approx \hbar$

Example: electron-positron scattering creating a muon pair: $e^+e^- \rightarrow \mu^+\mu^-$.

• Four momentum conservation:

$$\underline{p}_{=1} + \underline{p}_{=2} = \underline{p}_{=3} + \underline{p}_{=4}$$

• Momentum transferred by the photon is:

$$\underline{\underline{q}} = (\underline{\underline{p}}_1 + \underline{\underline{p}}_2) = (\underline{\underline{p}}_3 + \underline{\underline{p}}_4)$$

- In QED interactions mass of photon propagator is non-zero.
- Only intermediate photons may be virtual. Final state ones must be real!

Electromagnetic Vertex

Basic electromagnetic process:

- Initial state fermion
- Absorption or emission of a photon
- Final state fermion

Examples: $e^- \rightarrow e^- \gamma$, $e^- \gamma \rightarrow e^-$

All electromagnetic interactions are described by the vertex and a photon propagator

OED Conservation Laws

- Momentum, energy and charge is conserved at all vertices
- Fermion flavour $(e, \mu, \tau, u, d...)$ is conserved: e.g. $u \rightarrow u\gamma$ allowed, $c \rightarrow u\gamma$ forbidden
- Parity, π , is conserved.

Coupling strength

Matrix element is proportional to the fermion charge: $\mathcal{M} \propto e$

Alternatively use the fine structure

constant,
$$\alpha$$

$$\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c} = \frac{e^2}{4\pi} \approx \frac{1}{137}$$

⇒ strength of the coupling at the vertex is $\propto \sqrt{\alpha}$

Basic QED Processes

- All of these described by the same basic vertex term, ∝ Q
- None of above processes is physical as they violate energy-momentum conservation:

$$p_{\gamma}^2 = (p_{e_1} - p_{e_2})^2 \neq m_{\gamma}^2$$

• Join two together to get a real processes

Perturbation Theory

- QED is formulated from time dependent perturbation theory.
- Perturbation series: break up the problem into a piece we can solve exactly plus a small correction.

- Many more diagrams have to be considered for a accurate prediction of $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$:
- As α is small the lowest order in the expansion dominates, and the series quickly converges!
- For most of the course, we will only consider lowest order contributions to processes.

17

Yukawa Potential

The quantum and classical descriptions of electromagnetism should agree.

Yukawa developed theory whereby exchange of bosons describes force / potential.

• Klein-Gordon equation:

$$-\hbar \frac{\partial^2}{\partial t^2} \Psi(\vec{r}, t) = -\hbar^2 c^2 \nabla^2 \Psi(\vec{r}, t) + m^2 c^4 \Psi(\vec{r}, t)$$

• Non-time dependent solutions obey:

$$\nabla^2 \Psi(\vec{r}) = \frac{m^2 c^2}{\hbar^2} \Psi(\vec{r})$$

• Spherically symmetric solutions of this are:

$$\Psi(|\vec{r}|) = -\frac{g^2}{4\pi r} \exp\left(-\frac{mc}{\hbar}|\vec{r}|\right)$$

• Interpret this as a potential, V, caused by a particle of mass, m.

$$V(r) = -\frac{g^2}{4\pi r} \exp\left(-\frac{r}{R}\right) \text{ with } R = \frac{\hbar}{mc}$$

• For electromagnetic force, m=0, g=e.

$$V_{\rm EM}(r) = -\frac{e^2}{4\pi r}$$

• Potential felt by a charged particle due to the exchange of a photon.

QED Scattering Examples

• Elastic electron-proton scattering: $e^-p \rightarrow e^-p$

$$\mathcal{M} \propto \frac{e^2}{\underline{q}^2} = \frac{4\pi\alpha}{\underline{q}^2}$$

$$\sigma \propto |\mathcal{M}|^2 \propto \frac{e^4}{\underline{q}^4} = \frac{16\pi^2\alpha^2}{\underline{q}^4}$$

$$\rho$$

• Momentum transferred to photon from e^- :

$$\underline{q}^2 = (\underline{p}_f - \underline{p}_i)^2 = \underline{p}_f^2 + \underline{p}_i^2 - 2\underline{p}_f \cdot \underline{p}_i$$

$$= 2m_e^2 - 2(E_f E_i - |\vec{p}_f||\vec{p}_i|\cos\theta)$$

$$\approx -4E_f E_i \sin^2(\theta/2)$$

• Rutherford scattering: $e^- A \mathbf{u} \rightarrow e^- A \mathbf{u}$, can neglect recoil of the gold atoms: $E = E_i = E_f$

$$\sigma \propto \frac{Z^2 \pi^2 \alpha^2}{E^4 \sin^4(\theta/2)}$$

• Inelastic $e^-e^+ \rightarrow \mu^+\mu^-$

 Momentum transferred by photon:

$$\underline{\underline{q}}^2 = (\underline{\underline{p}}_{e^+} + \underline{\underline{p}}_{e^-})^2 = s$$

$$\mathcal{M} \propto \frac{e^2}{s^2} = \frac{4\pi\alpha}{s^2}$$

 For this situation need full density of states, ρ, (which we won't do...)

$$\sigma = \frac{16\pi E^2}{3} |\mathcal{M}|^2 = \frac{4\pi\alpha^2}{3s}$$

10

Summary

Relativistic quantum mechanics predicts negative energy particles: **antiparticles.** Two interpretations:

- a negative energy particle travelling backwards in time.
- a 'hole' in a vacuum filled with negative energy states.

Quantum Electro Dynamics (QED) is the quantum mechanical description of the electromagnetic force.

Electromagnetic force propagated by virtual photons: $\underline{\underline{q}}^2 \neq m_\gamma^2$

Feynman diagrams can be used to **illustrate** QED processes. Use Feynman rules to calculate the matrix element, \mathcal{M} .

All QED interactions are described by a fermion-fermion-photon vertex:

- Strength of the vertex is the charge of the fermion, Q_f .
- Fermion flavour and energy-momentum are conserved at vertex.

The photon propagator $\sim 1/\underline{q}^2$ where $\underline{\underline{q}}$ is the 4-momentum transferred by the photon.

 ${\mathcal M}$ is proportional to product of vertex and propagator terms.