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Summary

Natural Units: set ii=c=1

e Measure energies in GeV
e Every quantity is measured as a
power of energy

Particle Decay

e Lifetime, r, time taken for
sample to decrease by I/e.

e Partial width of decay mode,
[(A=x) « | M(A—x)]?

e Total width is sum of all possible
decay widths, I'=f/r

e Branching ratio, proportion
decays to given final state,
BR (A—x) = [(A—x)/T

Particle Scattering

e Cross section, o, probability for
decay to happen. Measured in b=10
-28 mZ‘

e Luminosity, £ is a property of beam.

e Integrated luminosity, [Ldt.

e Number of events: N=¢ [Ldt

e Two types of scattering experiment:
collider and fixed target.

Relativistic Kinematics
(E, Pz, Py, pz) — (E,ﬁ)
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Scattering

Consider a collision between two particles: a and b.
e Elastic collision: @ and b scatter off each other ab — ab. e.g. efe —e'e”
e Inelastic collision: new particles are created ab — cd... €.9. ete —u'u~

Two main types of particle physics experiment:

e Collider experiments beams of « and b are
brought into collision. Often P = —Db

a b
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(Ea, Pa) (Eb, Db)

e Fixed Target Experiments: A beam of a are :
accelerated into a target at rest. a scatters s

off b in the target.
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e We have a beam of particles incident on a target (or another beam).
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e Flux of incident beam, f: number of particles per unit area per unit time.

e Beam illuminates N particles in target.

e We measure the scattering rate, dw/dQ, number of particles scattered in
given direction, per unit time per unit solid angle, dQ.

dw do do/dQ is differential
dQ dQ cross section

e Integrate over the solid angle, rate of scattering: w = fNo
e Define luminosity, L =fN
e Scatteringrate w = Lo




Cross Section and Luminosity

The cross section, ¢, measures the how often

a scattering process occurs. Force Typical Cross
o is characteristic of a given process, from Sections
Fermi’s Golden Rule ¢ « |M|* Strong 10 mb
Also depends on the energy of the colliding Electromag| 102 mb
particles. Weak 103 mb
o measured in units of area. Normally use

barn, 1 b =10"28m?2.

Luminosity, £, is characteristic of the beam.

Measured in units of inverse area per unit e Event rate:

time. w= Lo
Integrated luminosity, [Ldz is luminosity o Total number of events:
delivered over a given period. Measured in -

units of inverse area, usually b1, N=o f Ldt

Centre of Mass Energy, /s

Define Lorentz-invariant quantity, s: square of sum of four-momentum of
incident particles: . _ (ga +£b) ' (]:)a +£b)

= () +(@)+2p p

—a = —a =b

= m24+mj +2E,Ey — |p.]||py| cos 6)

\s=Ecwm is the energy in centre of momentum frame, energy available to
crate new particles!

Fixed Target Collision, b is at rest. E; >> m,, ms /
2 2 —4a 5
s =m, +my +2E,my = 2E,my —_—

E,pa
Ecyv = V2E,my (B, Pi) \

Collider Experiment, with E =E,=Ey>>m,, mp, 0 =1
a b
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| Examples

= = e 2
e From 1989 to 1995 the LEP collider at s = (Ij(e_) +£(P))

CERN collided electrons and positrons
head-on with E(e”) = E(e?) = 45.1 GeV.

(pe") + ()

ng =+ 2(E2 - |Zj‘e+ ’ ’ﬁe* ’ COoSs 0)
2(E2 + |ﬁe+ | ’ﬁe‘ |)

4E?

Ecvy = 2FE = 91.2 GeV

e c(ete —pu'n)=1.9 nb at Ecm=91.2 GeV

e Total integrated luminosity | £ df= 400 pb!
o News(ete—puu) = 400,000 x 1.9 = 380,000

S =

e To make hadrons, the LEP
electron beam was fired into
a Beryllium target.

e Electrons collide with protons
and neutrons in Beryllium.

2
p

‘|‘2(E6Ep - |ﬁe||ﬁp| cos )
~ 2(E.myp)

ECM = \/2Eemp

= /2x45.1x1
= 95 GeV

= mi—km

e In fixed target electron energy
is wasted providing momentum
to the CM system rather than to
make new particles.

Summary

Natural Units: set fii=c=1

e Measure energies in GeV
e Every quantity is measured as a
power of energy

Particle Decay

e Lifetime, 7, time taken for
sample to decrease by I/e.

e Partial width of decay mode,
[(A=x) « | M(A—x)]?

e Total width is sum of all possible
decay widths, I'=h/r

e Branching ratio, proportion
decays to given final state,
BR (A—x) = (A—x)T

Particle Scattering

e Cross section, o, probability for
decay to happen. Measured in b=10
-28 m2.

e Luminosity, £ is a property of beam.

e Integrated luminosity, [ Ldr.

e Number of events: N =¢ [Ldt

e Two types of scattering experiment:
collider and fixed target.

Relativistic Kinematics
p = (E, ps, py, Pz) = (E, D)
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Centre of Mass energy
o an +]:)b>2 ECM — \E




Nuclear and Particle Physics Junior Honours:

Particle Physics

Lecture 3: Quantum Electro-Dynamics & Feynman Diagrams
February 18th 2008

% Antimatter

* Feynman Diagram and Feynman Rules

Electro
] Magnetic

% Quantum description of electromagnetism
% Virtual Particles

% Yukawa Potential for QED

Schrodinger and Klein Gordon

e Quantum mechanics describes momentum and energy in terms of operators:

0 . -
—in 2 >
=1 5 D thV

e E=p’/2m gives time-dependent Schodinger: h? 0
—2—v2\1:( t) = zhat\lf( t)
m

e The solution with a definite energy, E: WV (7, t) = ¢ p(7) exp {—iEt/h}

e However for particles near the speed of light E?=p?c?+m?c? =
2
—h? a—\II(T t) = —h*c*V2U (7, t) + m2ct (7 1)
ot? Klein Gordon Equation
e Solutions with a definite energy, E,=+(p’c*+m3c*)”, and three-momentum, p:
U(r,t) = Nexp{i(p- 7 — Ept)/h}
e Also solutions with a negative energy, E,=E, = (p’c?*+m?c?)”, and momentum, —p:

U*(r,t) = N*exp{i(—p- 7+ Ept)/h}
Klein Gordon

; i ; 2=12 0242 o4 X R
e Negative energy solutions are a direct result of E’=p?c*+m?c?. equation is non-

e We interpret these as anti-particles examinable
10




Antimatter

Klein-Gordon equation predicts negative energy solutions. & j

Dirac Interpretation:

e The vacuum is composed of negative energy levels
with E<0. Each level is filled with two electrons of
opposite spin: the “Dirac Sea”.

e A “hole” in the sea with charge —e and E<0,
appears as a state with charge +e and E>0.

"Dirac Sea"

e This idea lead Dirac to predict the positron,
discovered in 1931.

Feynman-Stueckelberg Interpretation:

e negative energy particles moving backwards
in space and time  correspond to...

e positive energy antiparticles moving forward
in space and time

Ve (=2, —t) o exp[=i/h((=E)(-t) = (=p)(—2))] t
Ut (x,t) o< exp|—i/h(Et— px)]
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Feynman Diagrams

A Feynman diagram is a pictorial representation of a
particular process (decay or scattering) at a particular
order in perturbation theory.

e Feynman diagrams can be used to represent and
calculate the probability amplitudes, M, for
scattering and decays.

e Feynman diagrams are very useful and powerful tools. Richard Feynman receiving

We will use them a lot in this course. We use them a the 1967 Noble prize in
lot in our research! + + physics for his invention of

€ u this technique.
Y
. . —> time
. e il
Conventions :

e Time flows from left to right (occasionally upwards)
— w» o Fermions are solid lines with arrows
—=— o Anti-fermion are solid lines with backward pointing arrows.
~~~~~~ © Bosons are wavy (or dashed) lines

We’ll apply the Feynman Rules to calculate M at different orders in perturbation
theory.
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Quantum Electrodynamics (QED)

QED is the quantum theory of electromagnetic interactions.

Classical electromagnetism: e.g. electon-proton scattering ep—ep
e Force between charged particle arise propagated by the exchange of
from the electric field photons
o Qr e charge of
F=— e electron

Areqr?
e act instantaneously at a distance

Quantum Picture: Q1 e photon
. propagator
e Force between charged particle
described by exchange of photons. p p
<. b
e Strength of interaction is related to e charge of
charge of particles interacting. proton

MD((—)-]/QQ-(%

e Vertex term: each photon-charged particle interaction gives a factor of
fermion charge, 0.

Feynman rules:

e Propagator term: each photon gives a factor of 1/ q2 where ¢ is the photon
four-momentum. = -

e Matrix element is proportional to product of vertex and propagator terms.
13

Virtual Particles

The force between two charged particles is propagated by virtual photons.

e A particle is virtual when its four-momentum squared, does not equal its rest
mass: Mm% # E% — %

e Allowed due to Heisenberg Uncertainty Principle: can borrow energy to create
particle if energy (AE=mc?) repaid within time (A¢), where AEAt= h

Example: electron-positron scattering

creating a muon pair: ete-—u*u~.  ® Four momentum conservation:
BTE, =R TE
Z_?l et u+ B?) e Momentum transferred by the photon is:
Y ¢=(p +p)=(,+p)
) q ) e Squaring,

Lye = e ¢ = @)2+@)+2p p

2 #m3 = 2m2+2(E By — i -

q Y = 2m. +2(E1Ey —py-p2) > 0

e In QED interactions mass of photon propagator is non-zero.
e Only intermediate photons may be virtual. Final state ones must be real!

14




Electromagnetic Vertex

Basic electromagnetic process:
e Initial state fermion

e Absorption or emission of a photon

e Final state fermion
Examples: e-—e™y, e y—e”

All electromagnetic interactions are described e
by the vertex and a photon propagator

QED Conservation Laws

e Momentum, energy and charge is
conserved at all vertices

e Fermion flavour (e, 4, 7, u, d ...) is
conserved: e.g. u—uy allowed,
c—uy forbidden

e Parity, =, is conserved.

Va

Coupling strength

Matrix element is proportional to the
fermion charge: M o< e

Alternatively use the fine structure

constant, a

e2 e? 1

~ 137
= strength of the coupling at the
vertex is o< v o

" Aweghe A
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Basic QED Processes

Electron Bremsstrahlung Photon Absorption
vl I

Photon Absorption

Positron Bremsstrahlung
Y 4

+
e

+ +
e e

e*e” Annihilation Pair Production

+
e

e

. Vacuum Extinction

Vacuum Production
e e

+

— Time

e All of these described by the same basic

vertex term, « Q

e None of above processes is physical as they i
violate energy-momentum conservation:

p?y — (p61 _p62)2 # m’zy

e Join two together to get a real processes

s Channel t Channel

e e |e

- + +
/ e e e

16




Perturbation Theory

QED is formulated from time
dependent perturbation theory.

Perturbation series: break up the
problem into a piece we can solve
exactly plus a small correction.

e.g. for efe—u*u~ scattering.

e Many more diagrams have to be
considered for a accurate
prediction of o(ete —u*u)

As a is small the lowest order in the

expansion dominates, and the series

quickly converges!

For most of the course, we will only
consider lowest order contributions
to processes.

e

Lowest Order >,\Z,\<
.

IMJ? x o

W

2nd Order

et H+ et u+
- m . e_M .

IMJ? o o

3rd Order

IM|? x af
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Yukawa Potential

The quantum and classical descriptions of electromagnetism should agree.

Yukawa developed theory whereby exchange of bosons describes force / potential.

e Klein-Gordon equation:

82

—h——=U(7t) = —h**V>VU (7 1) + m*ct (7, 1)

ot?

Non-time dependent solutions obey:

2
VAU(7) =

h2

m-c

W (7)

Spherically symmetric solutions of this are:

2
. g me,
W(|7]) =~ exp (- 25|17

Ar

h

V(r) = _i exp (—%) with R =

4r
For electromagnetic force, m=0, g=e.

62

Vem(r) = ——

4r

Interpret this as a potential, V, caused by a particle of mass, m.

h

mc

Potential felt by a charged particle due to the exchange of a photon.
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QED Scattering Examples

e Elastic electron-proton scattering: e p—ep o Inelastic e"e’—u'u~

e?  4dra . e’ u+
M X 72 — 72 /'Y

¢ g E 1

- - 794,

4 n 2 2 q - -

e 167« € 18
ox | MPx = =—— -

M| q q P ~TeN P e Momentum transferred by

photon:

e Momentum Eransferre7d to photon from e~: o o
¢ =@, +tp ) =s

¢ = (,-p)=p+p -2 p -
N = = 5 e? 4dna
= 2m; — 2(E¢E; — |pyl|p;| cos6) Mo 5 =—
~ —4FE;E;sin*(6/2) o
. e For this situation need full
e Rutherford scattering: ¢~ Au—e™ Au, density of states, p, (which
can neglect recoil of the gold atoms: E=E=Ey we won’t do...) e
o Z2m2a? 167 E? \./\/l|2 4o’
o = =
E4sin*(0/2) 3 35

Summary

Relativistic quantum mechanics predicts negative energy particles:
antiparticles. Two interpretations:

e a negative energy particle travelling backwards in time.
e a ‘hole’ in a vacuum filled with negative energy states.

Quantum Electro Dynamics (QED) is the quantum mechanical description
of the electromagnetic force.

. . 2 7& m2
Electromagnetic force propagated by virtual photons: 4 Y

Feynman diagrams can be used to illustrate QED processes. Use
Feynman rules to calculate the matrix element, M.

All QED interactions are described by a fermion-fermion-photon vertex:

e Strength of the vertex is the charge of the fermion, Qy.

e Fermion flavour and energy-momentum are conserved at vertex.
The photon propagator ~1/g2 where ¢ is the 4-momentum transferred
by the photon. - -

M is proportional to product of vertex and propagator terms.




