Physics 3:

Particle Physics

Lecture 4: Accelerators and Detectors

February 21st 2008

David Farley, d-farley@ibiblio.org

DOCTOR FUN

Bunny researchers at the High Energy Candy Collider generate exotic short-lived isotopes of Peeponium.

Particle Beams and Accelerators

- Particle Physics Labs
- Accelerators
- Synchrotron Radiation

* Particle Detectors:

- A modern collider detector
- Interactions of particles with matter
- Particle reconstruction

Particle Acceleration

Long-lived charged particles can be accelerated to high momenta using electromagnetic fields.

• e^+ , e^- , p, \bar{p} , $\mu^{\pm}(?)$ and Au, Pb & Cu nuclei have been accelerated so far...

Why accelerate particles?

- High beam energies \Rightarrow high $E_{\mathrm{CM}} \Rightarrow$ more energy to create new particles
- Higher energies probe shorter physics at shorter distances
- De-Broglie wavelength: $\frac{\lambda}{2\pi} = \frac{\hbar c}{pc} \approx \frac{197~{
 m MeV~fm}}{p~{
 m [MeV}/c]}$
- e.g. 20 GeV/c probes a distance of 0.01 fm.

An accelerator complex uses a variety of particle acceleration techniques to reach the final energy.

Particle Physics Colliders around the World

SLAC, California	SLC	1989-1998	e^-e^+	50 GeV e ⁻ and 50 GeV e ⁺
	PEP II	1997-2008	e^-e^+	9.0 GeV e^- and 3.1 GeV e^+
Fermilab, nr Chicago	Tevatron	1987-2009	$p \overline{p}$	980 GeV p and 980 GeV \overline{p}
CERN, Geneva	LEP	1989-2000	e^-e^+	E _{CM} : 89 to 206 GeV
	LHC	2008	p p	<i>E</i> _{CM} : 14 TeV
DESY, Hamburg	HERA	1990-2007	<i>e</i> - <i>p</i>	920 GeV p and 30 GeV e ⁻
KEK, near Toyko	KEKB	1999	e^-e^+	8.0 GeV e^- and 3.5 GeV e^+
Brookhaven National Lab, Long Island	RHIC	2000	AuAu, CuCu	200 GeV/nucleon

The Tevatron Complex

• As a example, we'll follow the chain of the Tevatron accelerator.

FERMILAB'S ACCELERATOR CHAIN

Proton source: 7 litre bottle of hydrogen. Cost US\$200.

1 bottle lasts about a year

Cockroft-Walton
Accelerator
DC Voltage accelerates
particles through steps
to about 1MV

Linac

- After Cockroft-Wolton comes the linac (<u>lin</u>ear <u>ac</u>celerator)
- Charged particles in vacuum tubes accelerated by an alternating current, with a very high frequency: "Radio Frequency" (RF)
- RF frequencies typically a few 100 MHz
- Field strengths few MV/m requires specialised power sources: "klystrons"

- The tubes act as Faraday cages: when the particles are in the tubes they feel no force
- Outside of the tubes they feel the potential difference between successive tubes, they accelerate forward
- Alternating current ensures that the difference always has the correct sign for acceleration.

Cyclotrons and Synchrotrons

- The Cyclotron invented by Ernest Lawerence
- Two D-shaped electrodes perpendicular magnetic field
 - Constant frequency AC current applied to each electrode
 - Can to accelerate particles to ~10 MeV
 - At higher energies relativistic effects take over, circular path cannot be maintained need...

$$\vec{F} = q\vec{v} \times \vec{B}$$

• Synchrotron accelerators use variable *B*-field strength and radio frequency *E*-field, synchronised with particle speed to accelerate charged particles to relativistic energies.

Series of bending and focussing magnets

- Beams have a constant radius in a synchrotron.
- Synchrotrons used as storage rings and colliders.

Synchrotrons at the Tevatron

- Many synchrotrons used at the Tevatron:
 - Booster: proton energy from 400 MeV to 8 GeV
 - Recycler: stores antiprotons at 8 GeV
 - Main Injector: 8 GeV to 120 GeV
 - Tevatron: 120 GeV to 980 GeV
- Storage ring: once particles have desired energy, they can be stored. Typically 8-24h.
- The Tevatron stores both the proton and anti-proton beam travelling in opposite directions.
- Collider: two beams are steered to collide at two points in the (CDF and DØ experiments).

Antiproton Production

- Protons from the main injector are fired onto a nickel target.
- 1 million protons produces 20-30 8 GeV antiprotons.
- Magnetic field used to separate p from \overline{p} .
- Stored in the accumulator synchrotron for several hour to several days until required for collision in Tevatron.
- At the end of a 'store' in the Tevatron any remaining antiprotons are stored in the Recycler synchrotron.

FERMILAB'S ACCELERATOR CHAIN

- Two collision points in the Tevatron:
 CDF and DØ
- We'll see the CDF detector in a moment...

Synchrotron Radiation

 In a synchrotron the accelerated charged particles emit photons: synchrotron radiation.

• The energy lost every turn depends of the energy and mass of the particle $(\gamma = E/m)$ and the radius of the orbit, ρ :

 $\Delta E = \frac{q^2 \beta^3 \gamma^4}{3\epsilon_0 \rho}$

 Synchrotrons are used as highenergy photon sources

 In a storage ring, the energy lost due to synchrotron radiation must be returned to the beam to keep the collision energy constant.

A Modern Collider Detector

- Use CDF at the Tevatron as an example.
- Most collider detectors are quite similar same component pieces, different implementations
 - From inside to out:
 - 1. Silicon tracker
 - 2. Gaseous tracker
 - 3. 1.4 T Solenoid Magnet 6. Muon detectors
- 4. Electromagnetic Calorimeter
- 5. Hadronic Calorimeter

Interactions with Matter

- An experiment should detect all particles that live long enough to interact with the detector.
- Detector generally starts a few centimetres from the interaction point.
- Length travelled before decay is $L=\beta\gamma c\tau$, therefore particles with $\tau > \sim 10^{-10}$ s appear in detector
 - e^{\pm} , μ^{\pm} , π^{\pm} , K^{\pm} , K^{0} , p, n, γ , v
- Use series of different detection techniques to identify these particles.
- Infer the existence of shorter-lived particles from the decay produces.

Charged Particle Energy Loss

- Energy loss of charged particle through matter is described by **Coulomb scattering**. Moving charged particles scatter off atomic electrons causing ionisation.
- Ionisation energy loss given by **Bethe-Bloch** formula:

$$-\frac{dE}{dx} = \frac{4\pi}{m_e c^2} \cdot \frac{N_A Z \rho}{A} \cdot \frac{Q^2}{\beta^2} \cdot \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \cdot \left[\ln\left(\frac{2m_e c^2 \beta^2}{I \cdot (1 - \beta^2)}\right) - \beta^2\right]$$

- \rightarrow dE/dx particle energy lost per x [MeVg⁻¹cm²]
- → x distance travelled by particle
- \rightarrow Q particle charge (e)
- $ightharpoonup N_A$ Avogadro's number
- Z, A atomic and mass number of medium
- I excitation energy of medium
- $\rightarrow \rho$ density of medium
- Measure dE/dx to identify the type of particle (as we know the medium we are using for our detector).
- Also measure total energy absorbed by detector.

Charged Particle Tracking

- Charged particle trajectories are curved in magnetic fields.
- Use the curvature, ρ , to measure the momentum transverse to the field, p_T .

$$p_T[\mathrm{GeV}/c] = 0.3 B[\mathrm{T}] \, \rho[\mathrm{m}]$$

- Old method: use a homogenous substance to trace out the entire motion.
- Modern method: take several position measurements as charged particle passes.
 Reconstruct a 'track'
- CDF Silicon detector: charged particle ionises silicon semiconductor. Six very accurate position measurements per track
- CDF Drift chamber: large volume filled with argonne-ethane-CF₄ mixture. Gas is ionised and drifts towards cathode and anode wires. Up to 96 position measurements per track.

Electromagnetic and Hadronic Calorimeters

- Calorimeters measure the energy deposited when particles are absorbed.
- Electrons, positrons and photons are mainly absorbed in the electromagnetic calorimeter.
- Hadrons: $(\pi^{\pm}, K^{\pm}, K^{0}, p, n)$ are mainly absorbed in the hadronic calorimeter.
- CDF uses a **sampling calorimeter**: sample parts of the shower. Extrapolate to obtain the full amount of energy.
 - CDF electromagnetic calorimeter: Lead + light sensitive scintillator.
 - CDF hadronic calorimeter: Iron + light sensitive scintillator.
 - Better energy measurements may be made using a homogeneous calorimeter -
 - A homogeneous calorimeter measured all deposited energy
 - scintillating crystals (e.g. Caesium Iodide)
 - Cryogenic liquids (argon, krypton, xenon).

Neutrino Identification at Colliders

- Neutrinos are not charged and only interact via the weak force \Rightarrow they do not interact at all in the detector. $\sum \vec{p}_{\mathrm{initial}} = \sum \vec{p}_{\mathrm{final}}$
 - The initial momentum of the collision is along beam direction, no perpendicular component.
 - Total reconstructed momentum perpendicular to the beam should sum to zero.
 - We infer neutrinos from absence of momentum seen in a particular direction.

Direction of momentum carried by neutrino

We'll talk about the signal produced by quarks in a detector in lecture 6.

Summary

- We accelerate particles to obtain more E_{CM} in order to produce new, as yet, undiscovered particles.
- Long-lived charged particles may be accelerated in a magnetic field.
- An accelerator complex uses a system of **Linacs** and **Synchrotrons** to accelerate particles to the desired energy.
- Synchrotrons can also be used to store energetic particles.
- Synchrotron radiation: energy loss due to photon emission
 - energy need to be added back to beam at a collider
 - can be exploited produce high frequency gamma rays
- Particle detectors strive to reconstruct all long-lived particles.
- System of complex subdetector systems used to reconstruct position, momentum, energy and particle type.
- Charged particles leave several position measurements in the tracking detector.
 Positions are joined up to trace out a 'track', used to reconstruct the momentum.
- Most particles (except muons and neutrinos) loose their energy in calorimeters, allowing the energies of these particles to be measured.