

Electroweak Theory

We've seen already that wherever a γ boson can be exchanged a Z can also be exchanged:

- The weak and electromagnetic force are linked.
- At short distances (or high energies) the strength of the electromagnetic force and the weak force are comparable. Can be related by a parameter, $\sin \theta_W$

$$e = g_W \sin \theta_W$$

The weak and electromagnetic interactions are manifestations of a underlying force: **the electroweak force.**

- Couplings of the γ , W (and Z) bosons are related: $e = g_W \sin \theta_W$
- Mass of the W and Z bosons are related: $m_Z^2 = m_W^2 / \cos^2 \theta_W$

Just three fundamental parameters required to describe:

- couplings of W, Z and γ to quarks and leptons
- masses of the W, Z, γ bosons
- interactions of the W, Z, γ bosons with each other

Normally use three most accurately measured parameters $e.g. e, G_F, m_Z$

The Higgs Mechanism

2. In comes a noble prize winner; everyone wants to speak to him. The physicists crowd around him. The noble laureate is not free to move around; he has gained inertia by interacting with the crowd. 1. Physicists at a conference reception; all free to move around the room.

This is analogous to how the particles acquire mass: by interacting with the Higgs field. Laureates of different popularity gain different masses.

The Higgs Boson

4. The physicists gather together to spread the rumour. The group of physicist acquire inertia.

3. The next evening; physicists enjoying another drink.

A rumour enters the room: the keynote speaker tomorrow will announce the discovery of a new particle!

The clustering of the field of physicists is as if a new massive particle has formed. This is the Higgs boson.

11

Summary			
Electromagnetic & weak are manifestations of a single unified electroweak interaction. (just 3 parameters describe interaction!)	Standard Model describes electroweak and QCD. Beautifully verified by experiment, apart from missing Higgs boson.		
At low energies, virtual <i>W</i> and <i>Z</i> bosons responsible for lepton and lightest hadron decays and neutrino scatterings.	At high energies collider produce real <i>W</i> and <i>Z</i> bosons for study. Studies of <i>Z</i> boson decays suggest that only three generations of quarks and leptons.		
Standard Model predicts a Higgs field to account for the masses of the bosons. Higgs field also produces a Higgs boson.	Standard Model makes no prediction for the Higgs boson mass. Searches, as yet, have not found any evidence for the Higgs boson. Should be found at the LHC collider!		

Standard Model Interactions

QED	QCD	Weak Neutral Current	Weak Charged Current
quantum theory of EM interactions	quantum theory of strong interactions	quantum theory of weak interactions	
mediated by exchange of virtual photons	mediated by exchange of gluons	mediated by exchange of <i>Z</i> bosons	mediated by exchange of <i>W</i> bosons
acts on all charged particles	acts on quarks only	acts on all quarks and leptons	
couples to electric charge	couples to colour charge	does not change quark or lepton flavour	changes quark and leptons flavours
coupling strength $\propto e$ $\propto \sqrt{\alpha}$	coupling strength $\propto g_S$ $\propto \sqrt{\alpha_S}$		coupling strength $\propto g_W$ $\propto \sqrt{\alpha_W}$
propagator: $\frac{1}{\underline{q}^2}$	propagator: $\frac{1}{\underline{q}^2}$	propagator: $\frac{1}{(\underline{q}^2 - m_Z^2)}$	propagator: $\frac{1}{(\underline{q}^2-m_W^2)}$
$e^{-\frac{e}{\gamma}}$ q^{Qe} q^{Qe} γ	q - g g	e^{i, v_e} v_e q v_e q v_z^0	$e^{-\frac{g_w}{V_e}}$ u^{V_e} u^{W^+}