Neutrinos

Pauli hypothesised the neutrino to explain the nuclear beta decay energy spectrum

\[n \rightarrow p + e^- + \bar{\nu}_e \]

The recoil of the nucleus is very small \(\Rightarrow \)

\[p_e = p_n - p_p - p_{\bar{\nu}} \]

\[E_e \approx m_n c^2 - m_p c^2 - E_{\bar{\nu}} \]

Neutrino means “little neutral one”. They have:

- no colour charge
- no electric charge
- only interact via the weak force: very small interaction rate.

Pauli: “I have done a terrible thing. I have postulated a particle that cannot be detected.”

Neutrinos can be detected via inverse beta decay e.g.

\[\nu_e + n \rightarrow p + e^- \]

\[\bar{\nu}_e + p \rightarrow n + e^+ \]

Tiny cross section:

\[\sigma(\nu_e + p \rightarrow n + e^+) \approx 5 \times 10^{-20} \left(\frac{E_{\bar{\nu}}}{\text{MeV}} \right)^2 \text{ barn} \]

Mean free path of neutrinos in water is ~60 light years for a 1 MeV anti-neutrino!
Neutrino Sources & Detectors

Where can we find neutrinos?

The Sun

- Standard Solar Model predicts rates and energy spectra for ν_e

Cosmic rays

- $\pi^+ \rightarrow \mu^+\nu_\mu$; $\mu^+ \rightarrow e^+\bar{\nu}_e\nu_\mu$

Nuclear Reactors

- e.g. $n + ^{235}\text{U} \rightarrow ^{144}\text{Ba} + ^{89}\text{Kr} + 3n + 3\bar{\nu}_e$

Accelerators

- Decay of muons: $\mu^- \rightarrow e^-\bar{\nu}_e\nu_\mu$

To detect neutrinos:

- Get a lot of stuff
 - e.g. water, cleaning fluid, steel...
- Leave in an area of neutrino flux
- Be patient.

Solar Neutrinos

Solar neutrinos were first detected during the 1970s in the Homestake mine, South Dakota

- 100,000 gallons of C2Cl4 (dry cleaning fluid)

$$\nu_e + ^{37}\text{Cl} \rightarrow e^- + ^{37}\text{Ar}$$

Standard Solar Model predicts the flux of neutrinos to produce 1.5 Ar atoms/day

- Only 0.5 Ar atoms/day found

Either:

- Standard Solar Model is wrong
- we don’t know the cross section for neutrino scattering
- electron neutrinos are going missing between creation in the sun and detection on the earth

Final solution now accepted: ν_e turn into ν_μ and ν_τ within sun!
Atmospheric Neutrinos

The Super-Kamiokande experiment in Japan detects atmospheric neutrinos. Reactions are:

\[\nu_e + N \rightarrow e^- + X \]

\[\nu_\mu + N \rightarrow \mu^- + X \]

As most neutrinos don’t interact in the earth, neutrinos produced in every \(\theta \) direction around the earth are detected.

Observed: deficit of \(\nu_\mu \) from other side of earth.

- Interpreted as \(\nu_\mu \rightarrow \nu_e \) OSCILLATIONS in the earth’s crust.
- Different flavours of neutrinos mix and neutrinos have mass!

Neutrino Masses

Both solar and atmospheric neutrino experiments provide evidence for neutrinos changing flavour as they travel.

(\(i.e. \) \(L_e \), \(L_\mu \), \(L_\tau \) not perfectly conserved!

Net number of leptons is conserved.)

Neutrino flavour change is only possible if neutrinos have mass!

- Neutrino masses are not allowed in the Standard Model

Many experiments now underway with accelerator and reactor neutrinos. \(\rightarrow \) Our understanding of neutrinos is rapidly evolving!

Neutrino masses provided the first evidence for particles physics beyond the Standard Model.
Supersymmetry

Particle physicists are hard to please...

Some of us would like extra fundamental particles, related to the observed particles by supersymmetry.

Supersymmetry is symmetry between fermions and bosons:

- Every fundamental fermion has a boson partner. e.g.:
 \[
 u \leftrightarrow \tilde{u}, \quad \tau \leftrightarrow \tilde{\tau}
 \]
 up-quark \leftrightarrow up squark \quad tau-lepton \leftrightarrow tau-slepton.

- Every boson (\(W, Z, \gamma, \text{Higgs}\)) has a fermion partner e.g.:
 \[
 W \leftrightarrow \tilde{W}, \quad H \leftrightarrow \tilde{H}
 \]
 W-boson \leftrightarrow Wino \quad Higgs \leftrightarrow Higgsino.

Unification of the Forces

Maxwell equations’ show that electric and magnetic interactions are manifestations of one interaction: electromagnetism.

We’ve seen electromagnetic and weak interactions are manifestations of one underlying interaction: the electroweak interaction.

- Consequences of unification become apparent at high energies, \(E \sim O(m_Z, m_W)\).

Maybe the electroweak and strong forces are a manifestation of a unified force? This would only become apparent at higher energies.

The couplings of the electromagnetic, weak and strong interactions change as a function of energy, but never become equal...

However, if supersymmetry is correct they would become equal.
And what about gravity?

The ultimate unification of the forces should include gravity.
- But gravity is very much weaker than the other forces...

Many ideas proposed to explain this.

e.g. Extra dimensions
- Most particles (and us) can only travel in the regular 3 space + 1 time dimensions
- Gravitions - the bosons which propagate gravity - can travel in the extra dimensions.
- Strength of gravity is natural weaker in our dimensions
 \[F(r) = G \frac{m_1 m_2}{r^2} \rightarrow G_{\text{new}} \frac{m_1 m_2}{r^4} \]
- They have to be small extra dimensions, otherwise we’d have seen them already.
- If the dimensions are big enough we might see their effects at the LHC!

Summary: Known knowns and known unknowns

The Standard Model is a beautiful theory of (almost) all the measurements we see in particle physics.... But it isn’t the whole picture.

“We can explain everything, but we understand (at a fundamental level) almost nothing!”

Neutrinos flavours mix:
\[\nu_e \leftrightarrow \nu_\mu \leftrightarrow \nu_\tau \]
Only possible if neutrinos have mass!

Supersymmetry is one popular theory for physics beyond the Standard Model.

Supersymmetry provides a candidate particle for dark matter.

Ultimately we think the electroweak, strong and gravitational forces should be described by one underlying interaction.

Lots of fun to come!