Physics 3:

Particle Physics

Lecture 7: Introduction to the Weak Force
March 3rd 2008

- *Weak interactions
- *Charged and neutral current
- *Feynman Rules for weak force

Introduction to the Weak Force

The weak force is responsible for some of the most important phenomena:

- Decays of the muon and tau leptons
- Neutrino interactions
- Decays of the lightest mesons and baryons
- Radioactivity, nuclear fission and fusion

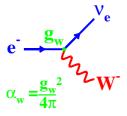

Characteristics of Weak Processes:

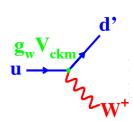
- Long lifetimes 10⁻¹³ 10³ s
- Small cross sections 10⁻¹³ mb

Boson	₩±	Z^0
Mass GeV/c ²	80.4	91.2
charge, e	±1	0
spin	1ħ	1ħ

Weak Force is propagated by massive W^+ , W^- and Z^0 bosons

- The interactions of W^{\pm} and Z^{0} are different (related by symmetry of the weak interaction)
 - W^{\pm} and Z^{0} can interact with each other
 - W^{\pm} and γ can interact (as W^{\pm} bosons are charged)

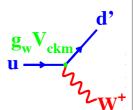

Weak Vertices


QED	<i>W</i> -boson
mediated by the exchange of virtual photons	mediated by the exchange of \emph{W} boson
acts on all charged particles	acts on all quark and leptons
coupling strength $\propto e \propto \sqrt{\alpha}$	coupling strength $\propto g_W \propto \sqrt{\alpha_W}$
propagator term: $1/(q^2-m_{\gamma}^2)=1/q^2$	propagator term: $1/(q^2-m_W^2)$
For many processes: $\mathcal{M} \propto e^2/q^2$	For many processes: $\mathcal{M} \propto g w^2/(q^2 - m w^2)$
e e n	e gw

Recall: matrix element, \mathcal{M} , is the amplitude of a process. Scattering cross section, $\sigma \propto \mathcal{M}^2$. Decay width, $\Gamma \propto \mathcal{M}^2$

Interactions of the W^{\pm} boson

- Known as "charged current interactions"
- Charged current acts on all fermions quarks and leptons
- Charged current changes the flavour of the fermion:
 - *e.g.* electron emitting an *W*-boson can't remain an electron violates conservation of charge!
 - an electron turns into a electron neutrino
 - an up quark turns into a down quark and vice versa!
- Coupling strength at every vertex $\propto g_W$
- ullet Propagator term describing the W-boson lpha $\dfrac{1}{({ar q}^2-m_W^2)}$
 - $\bullet \underline{q}$ is the four-momentum transferred by the W-boson


Allowed Flavour Changes

At a W-boson vertex:

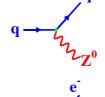
- Lepton numbers: L_e , L_μ and L_τ , is conserved: Allowed lepton flavour changes: $e^-\leftrightarrow v_e$ $\mu^-\leftrightarrow v_u$ $\tau^-\leftrightarrow v_\tau$
- $e^{-\frac{g_w}{4\pi}}$ v_e w_e

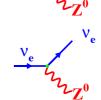
- \bullet Baryon number, \mathcal{B} , is conserved
- Strangeness, Charmness ... S, C, B, T are violated: Allowed quark flavour changes:

$$(Q=+2/3 e quark) \leftrightarrow (Q=-1/3 e quark)$$
$$(d s b) \leftrightarrow (u c t)$$

- ullet Each of the nine possible quark flavour changes has a different coupling strength, given matrix term $V_{
 m CKM}$
- Main quark flavour changes are within generations:

$$d \leftrightarrow u \quad s \leftrightarrow c \quad b \leftrightarrow t$$

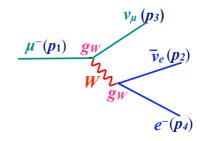

5


Interactions of the Z^0 boson

- Known as "neutral current interactions"
- Acts on all fermions quarks and leptons
- Neutral current conserves flavour of the fermion
- No allowed fermion flavour changes

 Coupling depends on fermion flavour - we won't consider this in this course

Anywhere a photon could be exchanged a \mathbb{Z}^0 boson can be exchanged. (Almost vice-versa, except \mathbb{Z}^0 boson also has neutrino interactions too!)


Electromagnetic and weak neutral current interactions are linked!

Feynman Rules for Weak Interaction

How to calculate the matrix element, \mathcal{M} , for a weak decay or scattering

e.g. decay of a muon $\mu^- \rightarrow e^- v_\mu \overline{v}_e$

- Draw the Feynman diagram for the process
 - give a four momentum for each particle

- Check quantum numbers conservation at every vertex
 - For both W and Z: L_e , L_μ and L_τ , \mathcal{B} , Q
 - For Z only: no change of quark or lepton flavour
- ullet Is energy and momentum conserved? For ${
 m decay:} \ \sum m_{
 m initial} > \sum m_{
 m final}$
- Write down the coupling at each vertex: gw (for W)
- Work out four-momentum transferred by boson: $\underline{\underline{q}} = (\underline{\underline{p}}_3 \underline{\underline{p}}_{=1}) = (\underline{\underline{p}}_4 + \underline{\underline{p}}_2)$
- Write down the **propagator term** for each boson: $1/(q^2-m_{\mathrm{boson}}^2)$
- ${\mathcal M}$ is proportional to product of vertex and propagator terms: ${\mathcal M} \propto \frac{g_w^2}{(\underline{\underline q}^2 m_W^2)}$

7

Summary

The weak force acts on all quarks and leptons.

Two **massive** bosons propagate the weak interaction: W^{\pm} and Z^{0} .

Weak interactions are characterised by:

- Long lifetimes 10⁻¹³ 10³ s
- Small cross sections 10⁻¹³ mb

W[±]-boson interactions changes fermion flavour

- quark coupling at W^{\pm} vertex: $g_W V_{\text{CKM}}$
- lepton coupling at W^{\pm} vertex: g_W
- W^{\pm} propagator term:

 $\frac{1}{(\underline{\underline{q}^2 - m_W^2})}$

 Z^0 -boson interactions conserve the flavour of the fermion

 \bullet Z^0 -boson propagator term:

$$\frac{1}{(\underline{q}^2 - m_Z^2)}$$

Z⁰-boson interaction is connected to electromagnetic interaction